mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-15 06:00:41 +00:00
1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
459 lines
10 KiB
C
459 lines
10 KiB
C
/* $Id: chmc.c,v 1.4 2002/01/08 16:00:14 davem Exp $
|
|
* memctrlr.c: Driver for UltraSPARC-III memory controller.
|
|
*
|
|
* Copyright (C) 2001 David S. Miller (davem@redhat.com)
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list.h>
|
|
#include <linux/string.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <asm/spitfire.h>
|
|
#include <asm/chmctrl.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/io.h>
|
|
|
|
#define CHMCTRL_NDGRPS 2
|
|
#define CHMCTRL_NDIMMS 4
|
|
|
|
#define DIMMS_PER_MC (CHMCTRL_NDGRPS * CHMCTRL_NDIMMS)
|
|
|
|
/* OBP memory-layout property format. */
|
|
struct obp_map {
|
|
unsigned char dimm_map[144];
|
|
unsigned char pin_map[576];
|
|
};
|
|
|
|
#define DIMM_LABEL_SZ 8
|
|
|
|
struct obp_mem_layout {
|
|
/* One max 8-byte string label per DIMM. Usually
|
|
* this matches the label on the motherboard where
|
|
* that DIMM resides.
|
|
*/
|
|
char dimm_labels[DIMMS_PER_MC][DIMM_LABEL_SZ];
|
|
|
|
/* If symmetric use map[0], else it is
|
|
* asymmetric and map[1] should be used.
|
|
*/
|
|
char symmetric;
|
|
|
|
struct obp_map map[2];
|
|
};
|
|
|
|
#define CHMCTRL_NBANKS 4
|
|
|
|
struct bank_info {
|
|
struct mctrl_info *mp;
|
|
int bank_id;
|
|
|
|
u64 raw_reg;
|
|
int valid;
|
|
int uk;
|
|
int um;
|
|
int lk;
|
|
int lm;
|
|
int interleave;
|
|
unsigned long base;
|
|
unsigned long size;
|
|
};
|
|
|
|
struct mctrl_info {
|
|
struct list_head list;
|
|
int portid;
|
|
int index;
|
|
|
|
struct obp_mem_layout layout_prop;
|
|
int layout_size;
|
|
|
|
void __iomem *regs;
|
|
|
|
u64 timing_control1;
|
|
u64 timing_control2;
|
|
u64 timing_control3;
|
|
u64 timing_control4;
|
|
u64 memaddr_control;
|
|
|
|
struct bank_info logical_banks[CHMCTRL_NBANKS];
|
|
};
|
|
|
|
static LIST_HEAD(mctrl_list);
|
|
|
|
/* Does BANK decode PHYS_ADDR? */
|
|
static int bank_match(struct bank_info *bp, unsigned long phys_addr)
|
|
{
|
|
unsigned long upper_bits = (phys_addr & PA_UPPER_BITS) >> PA_UPPER_BITS_SHIFT;
|
|
unsigned long lower_bits = (phys_addr & PA_LOWER_BITS) >> PA_LOWER_BITS_SHIFT;
|
|
|
|
/* Bank must be enabled to match. */
|
|
if (bp->valid == 0)
|
|
return 0;
|
|
|
|
/* Would BANK match upper bits? */
|
|
upper_bits ^= bp->um; /* What bits are different? */
|
|
upper_bits = ~upper_bits; /* Invert. */
|
|
upper_bits |= bp->uk; /* What bits don't matter for matching? */
|
|
upper_bits = ~upper_bits; /* Invert. */
|
|
|
|
if (upper_bits)
|
|
return 0;
|
|
|
|
/* Would BANK match lower bits? */
|
|
lower_bits ^= bp->lm; /* What bits are different? */
|
|
lower_bits = ~lower_bits; /* Invert. */
|
|
lower_bits |= bp->lk; /* What bits don't matter for matching? */
|
|
lower_bits = ~lower_bits; /* Invert. */
|
|
|
|
if (lower_bits)
|
|
return 0;
|
|
|
|
/* I always knew you'd be the one. */
|
|
return 1;
|
|
}
|
|
|
|
/* Given PHYS_ADDR, search memory controller banks for a match. */
|
|
static struct bank_info *find_bank(unsigned long phys_addr)
|
|
{
|
|
struct list_head *mctrl_head = &mctrl_list;
|
|
struct list_head *mctrl_entry = mctrl_head->next;
|
|
|
|
for (;;) {
|
|
struct mctrl_info *mp =
|
|
list_entry(mctrl_entry, struct mctrl_info, list);
|
|
int bank_no;
|
|
|
|
if (mctrl_entry == mctrl_head)
|
|
break;
|
|
mctrl_entry = mctrl_entry->next;
|
|
|
|
for (bank_no = 0; bank_no < CHMCTRL_NBANKS; bank_no++) {
|
|
struct bank_info *bp;
|
|
|
|
bp = &mp->logical_banks[bank_no];
|
|
if (bank_match(bp, phys_addr))
|
|
return bp;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* This is the main purpose of this driver. */
|
|
#define SYNDROME_MIN -1
|
|
#define SYNDROME_MAX 144
|
|
int chmc_getunumber(int syndrome_code,
|
|
unsigned long phys_addr,
|
|
char *buf, int buflen)
|
|
{
|
|
struct bank_info *bp;
|
|
struct obp_mem_layout *prop;
|
|
int bank_in_controller, first_dimm;
|
|
|
|
bp = find_bank(phys_addr);
|
|
if (bp == NULL ||
|
|
syndrome_code < SYNDROME_MIN ||
|
|
syndrome_code > SYNDROME_MAX) {
|
|
buf[0] = '?';
|
|
buf[1] = '?';
|
|
buf[2] = '?';
|
|
buf[3] = '\0';
|
|
return 0;
|
|
}
|
|
|
|
prop = &bp->mp->layout_prop;
|
|
bank_in_controller = bp->bank_id & (CHMCTRL_NBANKS - 1);
|
|
first_dimm = (bank_in_controller & (CHMCTRL_NDGRPS - 1));
|
|
first_dimm *= CHMCTRL_NDIMMS;
|
|
|
|
if (syndrome_code != SYNDROME_MIN) {
|
|
struct obp_map *map;
|
|
int qword, where_in_line, where, map_index, map_offset;
|
|
unsigned int map_val;
|
|
|
|
/* Yaay, single bit error so we can figure out
|
|
* the exact dimm.
|
|
*/
|
|
if (prop->symmetric)
|
|
map = &prop->map[0];
|
|
else
|
|
map = &prop->map[1];
|
|
|
|
/* Covert syndrome code into the way the bits are
|
|
* positioned on the bus.
|
|
*/
|
|
if (syndrome_code < 144 - 16)
|
|
syndrome_code += 16;
|
|
else if (syndrome_code < 144)
|
|
syndrome_code -= (144 - 7);
|
|
else if (syndrome_code < (144 + 3))
|
|
syndrome_code -= (144 + 3 - 4);
|
|
else
|
|
syndrome_code -= 144 + 3;
|
|
|
|
/* All this magic has to do with how a cache line
|
|
* comes over the wire on Safari. A 64-bit line
|
|
* comes over in 4 quadword cycles, each of which
|
|
* transmit ECC/MTAG info as well as the actual
|
|
* data. 144 bits per quadword, 576 total.
|
|
*/
|
|
#define LINE_SIZE 64
|
|
#define LINE_ADDR_MSK (LINE_SIZE - 1)
|
|
#define QW_PER_LINE 4
|
|
#define QW_BYTES (LINE_SIZE / QW_PER_LINE)
|
|
#define QW_BITS 144
|
|
#define LAST_BIT (576 - 1)
|
|
|
|
qword = (phys_addr & LINE_ADDR_MSK) / QW_BYTES;
|
|
where_in_line = ((3 - qword) * QW_BITS) + syndrome_code;
|
|
where = (LAST_BIT - where_in_line);
|
|
map_index = where >> 2;
|
|
map_offset = where & 0x3;
|
|
map_val = map->dimm_map[map_index];
|
|
map_val = ((map_val >> ((3 - map_offset) << 1)) & (2 - 1));
|
|
|
|
sprintf(buf, "%s, pin %3d",
|
|
prop->dimm_labels[first_dimm + map_val],
|
|
map->pin_map[where_in_line]);
|
|
} else {
|
|
int dimm;
|
|
|
|
/* Multi-bit error, we just dump out all the
|
|
* dimm labels associated with this bank.
|
|
*/
|
|
for (dimm = 0; dimm < CHMCTRL_NDIMMS; dimm++) {
|
|
sprintf(buf, "%s ",
|
|
prop->dimm_labels[first_dimm + dimm]);
|
|
buf += strlen(buf);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Accessing the registers is slightly complicated. If you want
|
|
* to get at the memory controller which is on the same processor
|
|
* the code is executing, you must use special ASI load/store else
|
|
* you go through the global mapping.
|
|
*/
|
|
static u64 read_mcreg(struct mctrl_info *mp, unsigned long offset)
|
|
{
|
|
unsigned long ret;
|
|
int this_cpu = get_cpu();
|
|
|
|
if (mp->portid == this_cpu) {
|
|
__asm__ __volatile__("ldxa [%1] %2, %0"
|
|
: "=r" (ret)
|
|
: "r" (offset), "i" (ASI_MCU_CTRL_REG));
|
|
} else {
|
|
__asm__ __volatile__("ldxa [%1] %2, %0"
|
|
: "=r" (ret)
|
|
: "r" (mp->regs + offset),
|
|
"i" (ASI_PHYS_BYPASS_EC_E));
|
|
}
|
|
put_cpu();
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if 0 /* currently unused */
|
|
static void write_mcreg(struct mctrl_info *mp, unsigned long offset, u64 val)
|
|
{
|
|
if (mp->portid == smp_processor_id()) {
|
|
__asm__ __volatile__("stxa %0, [%1] %2"
|
|
: : "r" (val),
|
|
"r" (offset), "i" (ASI_MCU_CTRL_REG));
|
|
} else {
|
|
__asm__ __volatile__("ldxa %0, [%1] %2"
|
|
: : "r" (val),
|
|
"r" (mp->regs + offset),
|
|
"i" (ASI_PHYS_BYPASS_EC_E));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void interpret_one_decode_reg(struct mctrl_info *mp, int which_bank, u64 val)
|
|
{
|
|
struct bank_info *p = &mp->logical_banks[which_bank];
|
|
|
|
p->mp = mp;
|
|
p->bank_id = (CHMCTRL_NBANKS * mp->portid) + which_bank;
|
|
p->raw_reg = val;
|
|
p->valid = (val & MEM_DECODE_VALID) >> MEM_DECODE_VALID_SHIFT;
|
|
p->uk = (val & MEM_DECODE_UK) >> MEM_DECODE_UK_SHIFT;
|
|
p->um = (val & MEM_DECODE_UM) >> MEM_DECODE_UM_SHIFT;
|
|
p->lk = (val & MEM_DECODE_LK) >> MEM_DECODE_LK_SHIFT;
|
|
p->lm = (val & MEM_DECODE_LM) >> MEM_DECODE_LM_SHIFT;
|
|
|
|
p->base = (p->um);
|
|
p->base &= ~(p->uk);
|
|
p->base <<= PA_UPPER_BITS_SHIFT;
|
|
|
|
switch(p->lk) {
|
|
case 0xf:
|
|
default:
|
|
p->interleave = 1;
|
|
break;
|
|
|
|
case 0xe:
|
|
p->interleave = 2;
|
|
break;
|
|
|
|
case 0xc:
|
|
p->interleave = 4;
|
|
break;
|
|
|
|
case 0x8:
|
|
p->interleave = 8;
|
|
break;
|
|
|
|
case 0x0:
|
|
p->interleave = 16;
|
|
break;
|
|
};
|
|
|
|
/* UK[10] is reserved, and UK[11] is not set for the SDRAM
|
|
* bank size definition.
|
|
*/
|
|
p->size = (((unsigned long)p->uk &
|
|
((1UL << 10UL) - 1UL)) + 1UL) << PA_UPPER_BITS_SHIFT;
|
|
p->size /= p->interleave;
|
|
}
|
|
|
|
static void fetch_decode_regs(struct mctrl_info *mp)
|
|
{
|
|
if (mp->layout_size == 0)
|
|
return;
|
|
|
|
interpret_one_decode_reg(mp, 0,
|
|
read_mcreg(mp, CHMCTRL_DECODE1));
|
|
interpret_one_decode_reg(mp, 1,
|
|
read_mcreg(mp, CHMCTRL_DECODE2));
|
|
interpret_one_decode_reg(mp, 2,
|
|
read_mcreg(mp, CHMCTRL_DECODE3));
|
|
interpret_one_decode_reg(mp, 3,
|
|
read_mcreg(mp, CHMCTRL_DECODE4));
|
|
}
|
|
|
|
static int init_one_mctrl(int node, int index)
|
|
{
|
|
struct mctrl_info *mp = kmalloc(sizeof(*mp), GFP_KERNEL);
|
|
int portid = prom_getintdefault(node, "portid", -1);
|
|
struct linux_prom64_registers p_reg_prop;
|
|
int t;
|
|
|
|
if (!mp)
|
|
return -1;
|
|
memset(mp, 0, sizeof(*mp));
|
|
if (portid == -1)
|
|
goto fail;
|
|
|
|
mp->portid = portid;
|
|
mp->layout_size = prom_getproplen(node, "memory-layout");
|
|
if (mp->layout_size < 0)
|
|
mp->layout_size = 0;
|
|
if (mp->layout_size > sizeof(mp->layout_prop))
|
|
goto fail;
|
|
|
|
if (mp->layout_size > 0)
|
|
prom_getproperty(node, "memory-layout",
|
|
(char *) &mp->layout_prop,
|
|
mp->layout_size);
|
|
|
|
t = prom_getproperty(node, "reg",
|
|
(char *) &p_reg_prop,
|
|
sizeof(p_reg_prop));
|
|
if (t < 0 || p_reg_prop.reg_size != 0x48)
|
|
goto fail;
|
|
|
|
mp->regs = ioremap(p_reg_prop.phys_addr, p_reg_prop.reg_size);
|
|
if (mp->regs == NULL)
|
|
goto fail;
|
|
|
|
if (mp->layout_size != 0UL) {
|
|
mp->timing_control1 = read_mcreg(mp, CHMCTRL_TCTRL1);
|
|
mp->timing_control2 = read_mcreg(mp, CHMCTRL_TCTRL2);
|
|
mp->timing_control3 = read_mcreg(mp, CHMCTRL_TCTRL3);
|
|
mp->timing_control4 = read_mcreg(mp, CHMCTRL_TCTRL4);
|
|
mp->memaddr_control = read_mcreg(mp, CHMCTRL_MACTRL);
|
|
}
|
|
|
|
fetch_decode_regs(mp);
|
|
|
|
mp->index = index;
|
|
|
|
list_add(&mp->list, &mctrl_list);
|
|
|
|
/* Report the device. */
|
|
printk(KERN_INFO "chmc%d: US3 memory controller at %p [%s]\n",
|
|
mp->index,
|
|
mp->regs, (mp->layout_size ? "ACTIVE" : "INACTIVE"));
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (mp) {
|
|
if (mp->regs != NULL)
|
|
iounmap(mp->regs);
|
|
kfree(mp);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int __init probe_for_string(char *name, int index)
|
|
{
|
|
int node = prom_getchild(prom_root_node);
|
|
|
|
while ((node = prom_searchsiblings(node, name)) != 0) {
|
|
int ret = init_one_mctrl(node, index);
|
|
|
|
if (!ret)
|
|
index++;
|
|
|
|
node = prom_getsibling(node);
|
|
if (!node)
|
|
break;
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
static int __init chmc_init(void)
|
|
{
|
|
int index;
|
|
|
|
/* This driver is only for cheetah platforms. */
|
|
if (tlb_type != cheetah && tlb_type != cheetah_plus)
|
|
return -ENODEV;
|
|
|
|
index = probe_for_string("memory-controller", 0);
|
|
index = probe_for_string("mc-us3", index);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit chmc_cleanup(void)
|
|
{
|
|
struct list_head *head = &mctrl_list;
|
|
struct list_head *tmp = head->next;
|
|
|
|
for (;;) {
|
|
struct mctrl_info *p =
|
|
list_entry(tmp, struct mctrl_info, list);
|
|
if (tmp == head)
|
|
break;
|
|
tmp = tmp->next;
|
|
|
|
list_del(&p->list);
|
|
iounmap(p->regs);
|
|
kfree(p);
|
|
}
|
|
}
|
|
|
|
module_init(chmc_init);
|
|
module_exit(chmc_cleanup);
|