linux/drivers/rtc/rtc-snvs.c
Stefan Agner 119434f44c rtc: snvs: fix wakealarm by call enable_irq_wake earlier
When entering suspend while an wakeup alarm is set, enable_set_wake
should make sure that the RTC interrupt keep being enabled and the
.irq_set_wake for the RTC interrupt get called. However, since the
driver uses the suspend_noirq callback, the call to enable_irq_wake
has been made after disabling the interrupts. While .irq_set_wake
has been called properly, the interrupt remained disabled.

Use the suspend callback to call enable_irq_wake early enough to
ensure the RTC interrupt remains enabled.

Fixes: 7654e9d4fd8f ("drivers/rtc/rtc-snvs: fix suspend/resume")
Cc:  <stable@vger.kernel.org> # 3.19
Signed-off-by: Stefan Agner <stefan@agner.ch>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
2015-06-25 01:13:38 +02:00

392 lines
8.7 KiB
C

/*
* Copyright (C) 2011-2012 Freescale Semiconductor, Inc.
*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#include <linux/clk.h>
/* These register offsets are relative to LP (Low Power) range */
#define SNVS_LPCR 0x04
#define SNVS_LPSR 0x18
#define SNVS_LPSRTCMR 0x1c
#define SNVS_LPSRTCLR 0x20
#define SNVS_LPTAR 0x24
#define SNVS_LPPGDR 0x30
#define SNVS_LPCR_SRTC_ENV (1 << 0)
#define SNVS_LPCR_LPTA_EN (1 << 1)
#define SNVS_LPCR_LPWUI_EN (1 << 3)
#define SNVS_LPSR_LPTA (1 << 0)
#define SNVS_LPPGDR_INIT 0x41736166
#define CNTR_TO_SECS_SH 15
struct snvs_rtc_data {
struct rtc_device *rtc;
void __iomem *ioaddr;
int irq;
spinlock_t lock;
struct clk *clk;
};
static u32 rtc_read_lp_counter(void __iomem *ioaddr)
{
u64 read1, read2;
do {
read1 = readl(ioaddr + SNVS_LPSRTCMR);
read1 <<= 32;
read1 |= readl(ioaddr + SNVS_LPSRTCLR);
read2 = readl(ioaddr + SNVS_LPSRTCMR);
read2 <<= 32;
read2 |= readl(ioaddr + SNVS_LPSRTCLR);
} while (read1 != read2);
/* Convert 47-bit counter to 32-bit raw second count */
return (u32) (read1 >> CNTR_TO_SECS_SH);
}
static void rtc_write_sync_lp(void __iomem *ioaddr)
{
u32 count1, count2, count3;
int i;
/* Wait for 3 CKIL cycles */
for (i = 0; i < 3; i++) {
do {
count1 = readl(ioaddr + SNVS_LPSRTCLR);
count2 = readl(ioaddr + SNVS_LPSRTCLR);
} while (count1 != count2);
/* Now wait until counter value changes */
do {
do {
count2 = readl(ioaddr + SNVS_LPSRTCLR);
count3 = readl(ioaddr + SNVS_LPSRTCLR);
} while (count2 != count3);
} while (count3 == count1);
}
}
static int snvs_rtc_enable(struct snvs_rtc_data *data, bool enable)
{
unsigned long flags;
int timeout = 1000;
u32 lpcr;
spin_lock_irqsave(&data->lock, flags);
lpcr = readl(data->ioaddr + SNVS_LPCR);
if (enable)
lpcr |= SNVS_LPCR_SRTC_ENV;
else
lpcr &= ~SNVS_LPCR_SRTC_ENV;
writel(lpcr, data->ioaddr + SNVS_LPCR);
spin_unlock_irqrestore(&data->lock, flags);
while (--timeout) {
lpcr = readl(data->ioaddr + SNVS_LPCR);
if (enable) {
if (lpcr & SNVS_LPCR_SRTC_ENV)
break;
} else {
if (!(lpcr & SNVS_LPCR_SRTC_ENV))
break;
}
}
if (!timeout)
return -ETIMEDOUT;
return 0;
}
static int snvs_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
unsigned long time = rtc_read_lp_counter(data->ioaddr);
rtc_time_to_tm(time, tm);
return 0;
}
static int snvs_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
unsigned long time;
rtc_tm_to_time(tm, &time);
/* Disable RTC first */
snvs_rtc_enable(data, false);
/* Write 32-bit time to 47-bit timer, leaving 15 LSBs blank */
writel(time << CNTR_TO_SECS_SH, data->ioaddr + SNVS_LPSRTCLR);
writel(time >> (32 - CNTR_TO_SECS_SH), data->ioaddr + SNVS_LPSRTCMR);
/* Enable RTC again */
snvs_rtc_enable(data, true);
return 0;
}
static int snvs_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
u32 lptar, lpsr;
lptar = readl(data->ioaddr + SNVS_LPTAR);
rtc_time_to_tm(lptar, &alrm->time);
lpsr = readl(data->ioaddr + SNVS_LPSR);
alrm->pending = (lpsr & SNVS_LPSR_LPTA) ? 1 : 0;
return 0;
}
static int snvs_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
u32 lpcr;
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
lpcr = readl(data->ioaddr + SNVS_LPCR);
if (enable)
lpcr |= (SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
else
lpcr &= ~(SNVS_LPCR_LPTA_EN | SNVS_LPCR_LPWUI_EN);
writel(lpcr, data->ioaddr + SNVS_LPCR);
spin_unlock_irqrestore(&data->lock, flags);
rtc_write_sync_lp(data->ioaddr);
return 0;
}
static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
struct rtc_time *alrm_tm = &alrm->time;
unsigned long time;
unsigned long flags;
u32 lpcr;
rtc_tm_to_time(alrm_tm, &time);
spin_lock_irqsave(&data->lock, flags);
/* Have to clear LPTA_EN before programming new alarm time in LPTAR */
lpcr = readl(data->ioaddr + SNVS_LPCR);
lpcr &= ~SNVS_LPCR_LPTA_EN;
writel(lpcr, data->ioaddr + SNVS_LPCR);
spin_unlock_irqrestore(&data->lock, flags);
writel(time, data->ioaddr + SNVS_LPTAR);
/* Clear alarm interrupt status bit */
writel(SNVS_LPSR_LPTA, data->ioaddr + SNVS_LPSR);
return snvs_rtc_alarm_irq_enable(dev, alrm->enabled);
}
static const struct rtc_class_ops snvs_rtc_ops = {
.read_time = snvs_rtc_read_time,
.set_time = snvs_rtc_set_time,
.read_alarm = snvs_rtc_read_alarm,
.set_alarm = snvs_rtc_set_alarm,
.alarm_irq_enable = snvs_rtc_alarm_irq_enable,
};
static irqreturn_t snvs_rtc_irq_handler(int irq, void *dev_id)
{
struct device *dev = dev_id;
struct snvs_rtc_data *data = dev_get_drvdata(dev);
u32 lpsr;
u32 events = 0;
lpsr = readl(data->ioaddr + SNVS_LPSR);
if (lpsr & SNVS_LPSR_LPTA) {
events |= (RTC_AF | RTC_IRQF);
/* RTC alarm should be one-shot */
snvs_rtc_alarm_irq_enable(dev, 0);
rtc_update_irq(data->rtc, 1, events);
}
/* clear interrupt status */
writel(lpsr, data->ioaddr + SNVS_LPSR);
return events ? IRQ_HANDLED : IRQ_NONE;
}
static int snvs_rtc_probe(struct platform_device *pdev)
{
struct snvs_rtc_data *data;
struct resource *res;
int ret;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
data->ioaddr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(data->ioaddr))
return PTR_ERR(data->ioaddr);
data->irq = platform_get_irq(pdev, 0);
if (data->irq < 0)
return data->irq;
data->clk = devm_clk_get(&pdev->dev, "snvs-rtc");
if (IS_ERR(data->clk)) {
data->clk = NULL;
} else {
ret = clk_prepare_enable(data->clk);
if (ret) {
dev_err(&pdev->dev,
"Could not prepare or enable the snvs clock\n");
return ret;
}
}
platform_set_drvdata(pdev, data);
spin_lock_init(&data->lock);
/* Initialize glitch detect */
writel(SNVS_LPPGDR_INIT, data->ioaddr + SNVS_LPPGDR);
/* Clear interrupt status */
writel(0xffffffff, data->ioaddr + SNVS_LPSR);
/* Enable RTC */
snvs_rtc_enable(data, true);
device_init_wakeup(&pdev->dev, true);
ret = devm_request_irq(&pdev->dev, data->irq, snvs_rtc_irq_handler,
IRQF_SHARED, "rtc alarm", &pdev->dev);
if (ret) {
dev_err(&pdev->dev, "failed to request irq %d: %d\n",
data->irq, ret);
goto error_rtc_device_register;
}
data->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
&snvs_rtc_ops, THIS_MODULE);
if (IS_ERR(data->rtc)) {
ret = PTR_ERR(data->rtc);
dev_err(&pdev->dev, "failed to register rtc: %d\n", ret);
goto error_rtc_device_register;
}
return 0;
error_rtc_device_register:
if (data->clk)
clk_disable_unprepare(data->clk);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static int snvs_rtc_suspend(struct device *dev)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(data->irq);
return 0;
}
static int snvs_rtc_suspend_noirq(struct device *dev)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
if (data->clk)
clk_disable_unprepare(data->clk);
return 0;
}
static int snvs_rtc_resume(struct device *dev)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
return disable_irq_wake(data->irq);
return 0;
}
static int snvs_rtc_resume_noirq(struct device *dev)
{
struct snvs_rtc_data *data = dev_get_drvdata(dev);
if (data->clk)
return clk_prepare_enable(data->clk);
return 0;
}
static const struct dev_pm_ops snvs_rtc_pm_ops = {
.suspend = snvs_rtc_suspend,
.suspend_noirq = snvs_rtc_suspend_noirq,
.resume = snvs_rtc_resume,
.resume_noirq = snvs_rtc_resume_noirq,
};
#define SNVS_RTC_PM_OPS (&snvs_rtc_pm_ops)
#else
#define SNVS_RTC_PM_OPS NULL
#endif
static const struct of_device_id snvs_dt_ids[] = {
{ .compatible = "fsl,sec-v4.0-mon-rtc-lp", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, snvs_dt_ids);
static struct platform_driver snvs_rtc_driver = {
.driver = {
.name = "snvs_rtc",
.pm = SNVS_RTC_PM_OPS,
.of_match_table = snvs_dt_ids,
},
.probe = snvs_rtc_probe,
};
module_platform_driver(snvs_rtc_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Freescale SNVS RTC Driver");
MODULE_LICENSE("GPL");