mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-05 00:41:23 +00:00
4de4ebc6d8
Use schedule_timeout_interruptible() instead of set_current_state()/schedule_timeout() to reduce kernel size. Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Ben Collins <bcollins@debian.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1299 lines
33 KiB
C
1299 lines
33 KiB
C
/* -*- c-basic-offset: 8 -*-
|
|
*
|
|
* amdtp.c - Audio and Music Data Transmission Protocol Driver
|
|
* Copyright (C) 2001 Kristian Høgsberg
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
/* OVERVIEW
|
|
* --------
|
|
*
|
|
* The AMDTP driver is designed to expose the IEEE1394 bus as a
|
|
* regular OSS soundcard, i.e. you can link /dev/dsp to /dev/amdtp and
|
|
* then your favourite MP3 player, game or whatever sound program will
|
|
* output to an IEEE1394 isochronous channel. The signal destination
|
|
* could be a set of IEEE1394 loudspeakers (if and when such things
|
|
* become available) or an amplifier with IEEE1394 input (like the
|
|
* Sony STR-LSA1). The driver only handles the actual streaming, some
|
|
* connection management is also required for this to actually work.
|
|
* That is outside the scope of this driver, and furthermore it is not
|
|
* really standardized yet.
|
|
*
|
|
* The Audio and Music Data Tranmission Protocol is available at
|
|
*
|
|
* http://www.1394ta.org/Download/Technology/Specifications/2001/AM20Final-jf2.pdf
|
|
*
|
|
*
|
|
* TODO
|
|
* ----
|
|
*
|
|
* - We should be able to change input sample format between LE/BE, as
|
|
* we already shift the bytes around when we construct the iso
|
|
* packets.
|
|
*
|
|
* - Fix DMA stop after bus reset!
|
|
*
|
|
* - Clean up iso context handling in ohci1394.
|
|
*
|
|
*
|
|
* MAYBE TODO
|
|
* ----------
|
|
*
|
|
* - Receive data for local playback or recording. Playback requires
|
|
* soft syncing with the sound card.
|
|
*
|
|
* - Signal processing, i.e. receive packets, do some processing, and
|
|
* transmit them again using the same packet structure and timestamps
|
|
* offset by processing time.
|
|
*
|
|
* - Maybe make an ALSA interface, that is, create a file_ops
|
|
* implementation that recognizes ALSA ioctls and uses defaults for
|
|
* things that can't be controlled through ALSA (iso channel).
|
|
*
|
|
* Changes:
|
|
*
|
|
* - Audit copy_from_user in amdtp_write.
|
|
* Daniele Bellucci <bellucda@tiscali.it>
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/types.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/ioctl.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/ioctl32.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/cdev.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/atomic.h>
|
|
|
|
#include "hosts.h"
|
|
#include "highlevel.h"
|
|
#include "ieee1394.h"
|
|
#include "ieee1394_core.h"
|
|
#include "ohci1394.h"
|
|
|
|
#include "amdtp.h"
|
|
#include "cmp.h"
|
|
|
|
#define FMT_AMDTP 0x10
|
|
#define FDF_AM824 0x00
|
|
#define FDF_SFC_32KHZ 0x00
|
|
#define FDF_SFC_44K1HZ 0x01
|
|
#define FDF_SFC_48KHZ 0x02
|
|
#define FDF_SFC_88K2HZ 0x03
|
|
#define FDF_SFC_96KHZ 0x04
|
|
#define FDF_SFC_176K4HZ 0x05
|
|
#define FDF_SFC_192KHZ 0x06
|
|
|
|
struct descriptor_block {
|
|
struct output_more_immediate {
|
|
u32 control;
|
|
u32 pad0;
|
|
u32 skip;
|
|
u32 pad1;
|
|
u32 header[4];
|
|
} header_desc;
|
|
|
|
struct output_last {
|
|
u32 control;
|
|
u32 data_address;
|
|
u32 branch;
|
|
u32 status;
|
|
} payload_desc;
|
|
};
|
|
|
|
struct packet {
|
|
struct descriptor_block *db;
|
|
dma_addr_t db_bus;
|
|
struct iso_packet *payload;
|
|
dma_addr_t payload_bus;
|
|
};
|
|
|
|
#include <asm/byteorder.h>
|
|
|
|
#if defined __BIG_ENDIAN_BITFIELD
|
|
|
|
struct iso_packet {
|
|
/* First quadlet */
|
|
unsigned int dbs : 8;
|
|
unsigned int eoh0 : 2;
|
|
unsigned int sid : 6;
|
|
|
|
unsigned int dbc : 8;
|
|
unsigned int fn : 2;
|
|
unsigned int qpc : 3;
|
|
unsigned int sph : 1;
|
|
unsigned int reserved : 2;
|
|
|
|
/* Second quadlet */
|
|
unsigned int fdf : 8;
|
|
unsigned int eoh1 : 2;
|
|
unsigned int fmt : 6;
|
|
|
|
unsigned int syt : 16;
|
|
|
|
quadlet_t data[0];
|
|
};
|
|
|
|
#elif defined __LITTLE_ENDIAN_BITFIELD
|
|
|
|
struct iso_packet {
|
|
/* First quadlet */
|
|
unsigned int sid : 6;
|
|
unsigned int eoh0 : 2;
|
|
unsigned int dbs : 8;
|
|
|
|
unsigned int reserved : 2;
|
|
unsigned int sph : 1;
|
|
unsigned int qpc : 3;
|
|
unsigned int fn : 2;
|
|
unsigned int dbc : 8;
|
|
|
|
/* Second quadlet */
|
|
unsigned int fmt : 6;
|
|
unsigned int eoh1 : 2;
|
|
unsigned int fdf : 8;
|
|
|
|
unsigned int syt : 16;
|
|
|
|
quadlet_t data[0];
|
|
};
|
|
|
|
#else
|
|
|
|
#error Unknown bitfield type
|
|
|
|
#endif
|
|
|
|
struct fraction {
|
|
int integer;
|
|
int numerator;
|
|
int denominator;
|
|
};
|
|
|
|
#define PACKET_LIST_SIZE 256
|
|
#define MAX_PACKET_LISTS 4
|
|
|
|
struct packet_list {
|
|
struct list_head link;
|
|
int last_cycle_count;
|
|
struct packet packets[PACKET_LIST_SIZE];
|
|
};
|
|
|
|
#define BUFFER_SIZE 128
|
|
|
|
/* This implements a circular buffer for incoming samples. */
|
|
|
|
struct buffer {
|
|
size_t head, tail, length, size;
|
|
unsigned char data[0];
|
|
};
|
|
|
|
struct stream {
|
|
int iso_channel;
|
|
int format;
|
|
int rate;
|
|
int dimension;
|
|
int fdf;
|
|
int mode;
|
|
int sample_format;
|
|
struct cmp_pcr *opcr;
|
|
|
|
/* Input samples are copied here. */
|
|
struct buffer *input;
|
|
|
|
/* ISO Packer state */
|
|
unsigned char dbc;
|
|
struct packet_list *current_packet_list;
|
|
int current_packet;
|
|
struct fraction ready_samples, samples_per_cycle;
|
|
|
|
/* We use these to generate control bits when we are packing
|
|
* iec958 data.
|
|
*/
|
|
int iec958_frame_count;
|
|
int iec958_rate_code;
|
|
|
|
/* The cycle_count and cycle_offset fields are used for the
|
|
* synchronization timestamps (syt) in the cip header. They
|
|
* are incremented by at least a cycle every time we put a
|
|
* time stamp in a packet. As we don't time stamp all
|
|
* packages, cycle_count isn't updated in every cycle, and
|
|
* sometimes it's incremented by 2. Thus, we have
|
|
* cycle_count2, which is simply incremented by one with each
|
|
* packet, so we can compare it to the transmission time
|
|
* written back in the dma programs.
|
|
*/
|
|
atomic_t cycle_count, cycle_count2;
|
|
struct fraction cycle_offset, ticks_per_syt_offset;
|
|
int syt_interval;
|
|
int stale_count;
|
|
|
|
/* Theses fields control the sample output to the DMA engine.
|
|
* The dma_packet_lists list holds packet lists currently
|
|
* queued for dma; the head of the list is currently being
|
|
* processed. The last program in a packet list generates an
|
|
* interrupt, which removes the head from dma_packet_lists and
|
|
* puts it back on the free list.
|
|
*/
|
|
struct list_head dma_packet_lists;
|
|
struct list_head free_packet_lists;
|
|
wait_queue_head_t packet_list_wait;
|
|
spinlock_t packet_list_lock;
|
|
struct ohci1394_iso_tasklet iso_tasklet;
|
|
struct pci_pool *descriptor_pool, *packet_pool;
|
|
|
|
/* Streams at a host controller are chained through this field. */
|
|
struct list_head link;
|
|
struct amdtp_host *host;
|
|
};
|
|
|
|
struct amdtp_host {
|
|
struct hpsb_host *host;
|
|
struct ti_ohci *ohci;
|
|
struct list_head stream_list;
|
|
spinlock_t stream_list_lock;
|
|
};
|
|
|
|
static struct hpsb_highlevel amdtp_highlevel;
|
|
|
|
|
|
/* FIXME: This doesn't belong here... */
|
|
|
|
#define OHCI1394_CONTEXT_CYCLE_MATCH 0x80000000
|
|
#define OHCI1394_CONTEXT_RUN 0x00008000
|
|
#define OHCI1394_CONTEXT_WAKE 0x00001000
|
|
#define OHCI1394_CONTEXT_DEAD 0x00000800
|
|
#define OHCI1394_CONTEXT_ACTIVE 0x00000400
|
|
|
|
static void ohci1394_start_it_ctx(struct ti_ohci *ohci, int ctx,
|
|
dma_addr_t first_cmd, int z, int cycle_match)
|
|
{
|
|
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << ctx);
|
|
reg_write(ohci, OHCI1394_IsoXmitCommandPtr + ctx * 16, first_cmd | z);
|
|
reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16, ~0);
|
|
wmb();
|
|
reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16,
|
|
OHCI1394_CONTEXT_CYCLE_MATCH | (cycle_match << 16) |
|
|
OHCI1394_CONTEXT_RUN);
|
|
}
|
|
|
|
static void ohci1394_wake_it_ctx(struct ti_ohci *ohci, int ctx)
|
|
{
|
|
reg_write(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16,
|
|
OHCI1394_CONTEXT_WAKE);
|
|
}
|
|
|
|
static void ohci1394_stop_it_ctx(struct ti_ohci *ohci, int ctx, int synchronous)
|
|
{
|
|
u32 control;
|
|
int wait;
|
|
|
|
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << ctx);
|
|
reg_write(ohci, OHCI1394_IsoXmitContextControlClear + ctx * 16,
|
|
OHCI1394_CONTEXT_RUN);
|
|
wmb();
|
|
|
|
if (synchronous) {
|
|
for (wait = 0; wait < 5; wait++) {
|
|
control = reg_read(ohci, OHCI1394_IsoXmitContextControlSet + ctx * 16);
|
|
if ((control & OHCI1394_CONTEXT_ACTIVE) == 0)
|
|
break;
|
|
|
|
schedule_timeout_interruptible(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Note: we can test if free_packet_lists is empty without aquiring
|
|
* the packet_list_lock. The interrupt handler only adds to the free
|
|
* list, there is no race condition between testing the list non-empty
|
|
* and acquiring the lock.
|
|
*/
|
|
|
|
static struct packet_list *stream_get_free_packet_list(struct stream *s)
|
|
{
|
|
struct packet_list *pl;
|
|
unsigned long flags;
|
|
|
|
if (list_empty(&s->free_packet_lists))
|
|
return NULL;
|
|
|
|
spin_lock_irqsave(&s->packet_list_lock, flags);
|
|
pl = list_entry(s->free_packet_lists.next, struct packet_list, link);
|
|
list_del(&pl->link);
|
|
spin_unlock_irqrestore(&s->packet_list_lock, flags);
|
|
|
|
return pl;
|
|
}
|
|
|
|
static void stream_start_dma(struct stream *s, struct packet_list *pl)
|
|
{
|
|
u32 syt_cycle, cycle_count, start_cycle;
|
|
|
|
cycle_count = reg_read(s->host->ohci,
|
|
OHCI1394_IsochronousCycleTimer) >> 12;
|
|
syt_cycle = (pl->last_cycle_count - PACKET_LIST_SIZE + 1) & 0x0f;
|
|
|
|
/* We program the DMA controller to start transmission at
|
|
* least 17 cycles from now - this happens when the lower four
|
|
* bits of cycle_count is 0x0f and syt_cycle is 0, in this
|
|
* case the start cycle is cycle_count - 15 + 32. */
|
|
start_cycle = (cycle_count & ~0x0f) + 32 + syt_cycle;
|
|
if ((start_cycle & 0x1fff) >= 8000)
|
|
start_cycle = start_cycle - 8000 + 0x2000;
|
|
|
|
ohci1394_start_it_ctx(s->host->ohci, s->iso_tasklet.context,
|
|
pl->packets[0].db_bus, 3,
|
|
start_cycle & 0x7fff);
|
|
}
|
|
|
|
static void stream_put_dma_packet_list(struct stream *s,
|
|
struct packet_list *pl)
|
|
{
|
|
unsigned long flags;
|
|
struct packet_list *prev;
|
|
|
|
/* Remember the cycle_count used for timestamping the last packet. */
|
|
pl->last_cycle_count = atomic_read(&s->cycle_count2) - 1;
|
|
pl->packets[PACKET_LIST_SIZE - 1].db->payload_desc.branch = 0;
|
|
|
|
spin_lock_irqsave(&s->packet_list_lock, flags);
|
|
list_add_tail(&pl->link, &s->dma_packet_lists);
|
|
spin_unlock_irqrestore(&s->packet_list_lock, flags);
|
|
|
|
prev = list_entry(pl->link.prev, struct packet_list, link);
|
|
if (pl->link.prev != &s->dma_packet_lists) {
|
|
struct packet *last = &prev->packets[PACKET_LIST_SIZE - 1];
|
|
last->db->payload_desc.branch = pl->packets[0].db_bus | 3;
|
|
last->db->header_desc.skip = pl->packets[0].db_bus | 3;
|
|
ohci1394_wake_it_ctx(s->host->ohci, s->iso_tasklet.context);
|
|
}
|
|
else
|
|
stream_start_dma(s, pl);
|
|
}
|
|
|
|
static void stream_shift_packet_lists(unsigned long l)
|
|
{
|
|
struct stream *s = (struct stream *) l;
|
|
struct packet_list *pl;
|
|
struct packet *last;
|
|
int diff;
|
|
|
|
if (list_empty(&s->dma_packet_lists)) {
|
|
HPSB_ERR("empty dma_packet_lists in %s", __FUNCTION__);
|
|
return;
|
|
}
|
|
|
|
/* Now that we know the list is non-empty, we can get the head
|
|
* of the list without locking, because the process context
|
|
* only adds to the tail.
|
|
*/
|
|
pl = list_entry(s->dma_packet_lists.next, struct packet_list, link);
|
|
last = &pl->packets[PACKET_LIST_SIZE - 1];
|
|
|
|
/* This is weird... if we stop dma processing in the middle of
|
|
* a packet list, the dma context immediately generates an
|
|
* interrupt if we enable it again later. This only happens
|
|
* when amdtp_release is interrupted while waiting for dma to
|
|
* complete, though. Anyway, we detect this by seeing that
|
|
* the status of the dma descriptor that we expected an
|
|
* interrupt from is still 0.
|
|
*/
|
|
if (last->db->payload_desc.status == 0) {
|
|
HPSB_INFO("weird interrupt...");
|
|
return;
|
|
}
|
|
|
|
/* If the last descriptor block does not specify a branch
|
|
* address, we have a sample underflow.
|
|
*/
|
|
if (last->db->payload_desc.branch == 0)
|
|
HPSB_INFO("FIXME: sample underflow...");
|
|
|
|
/* Here we check when (which cycle) the last packet was sent
|
|
* and compare it to what the iso packer was using at the
|
|
* time. If there is a mismatch, we adjust the cycle count in
|
|
* the iso packer. However, there are still up to
|
|
* MAX_PACKET_LISTS packet lists queued with bad time stamps,
|
|
* so we disable time stamp monitoring for the next
|
|
* MAX_PACKET_LISTS packet lists.
|
|
*/
|
|
diff = (last->db->payload_desc.status - pl->last_cycle_count) & 0xf;
|
|
if (diff > 0 && s->stale_count == 0) {
|
|
atomic_add(diff, &s->cycle_count);
|
|
atomic_add(diff, &s->cycle_count2);
|
|
s->stale_count = MAX_PACKET_LISTS;
|
|
}
|
|
|
|
if (s->stale_count > 0)
|
|
s->stale_count--;
|
|
|
|
/* Finally, we move the packet list that was just processed
|
|
* back to the free list, and notify any waiters.
|
|
*/
|
|
spin_lock(&s->packet_list_lock);
|
|
list_del(&pl->link);
|
|
list_add_tail(&pl->link, &s->free_packet_lists);
|
|
spin_unlock(&s->packet_list_lock);
|
|
|
|
wake_up_interruptible(&s->packet_list_wait);
|
|
}
|
|
|
|
static struct packet *stream_current_packet(struct stream *s)
|
|
{
|
|
if (s->current_packet_list == NULL &&
|
|
(s->current_packet_list = stream_get_free_packet_list(s)) == NULL)
|
|
return NULL;
|
|
|
|
return &s->current_packet_list->packets[s->current_packet];
|
|
}
|
|
|
|
static void stream_queue_packet(struct stream *s)
|
|
{
|
|
s->current_packet++;
|
|
if (s->current_packet == PACKET_LIST_SIZE) {
|
|
stream_put_dma_packet_list(s, s->current_packet_list);
|
|
s->current_packet_list = NULL;
|
|
s->current_packet = 0;
|
|
}
|
|
}
|
|
|
|
/* Integer fractional math. When we transmit a 44k1Hz signal we must
|
|
* send 5 41/80 samples per isochronous cycle, as these occur 8000
|
|
* times a second. Of course, we must send an integral number of
|
|
* samples in a packet, so we use the integer math to alternate
|
|
* between sending 5 and 6 samples per packet.
|
|
*/
|
|
|
|
static void fraction_init(struct fraction *f, int numerator, int denominator)
|
|
{
|
|
f->integer = numerator / denominator;
|
|
f->numerator = numerator % denominator;
|
|
f->denominator = denominator;
|
|
}
|
|
|
|
static __inline__ void fraction_add(struct fraction *dst,
|
|
struct fraction *src1,
|
|
struct fraction *src2)
|
|
{
|
|
/* assert: src1->denominator == src2->denominator */
|
|
|
|
int sum, denom;
|
|
|
|
/* We use these two local variables to allow gcc to optimize
|
|
* the division and the modulo into only one division. */
|
|
|
|
sum = src1->numerator + src2->numerator;
|
|
denom = src1->denominator;
|
|
dst->integer = src1->integer + src2->integer + sum / denom;
|
|
dst->numerator = sum % denom;
|
|
dst->denominator = denom;
|
|
}
|
|
|
|
static __inline__ void fraction_sub_int(struct fraction *dst,
|
|
struct fraction *src, int integer)
|
|
{
|
|
dst->integer = src->integer - integer;
|
|
dst->numerator = src->numerator;
|
|
dst->denominator = src->denominator;
|
|
}
|
|
|
|
static __inline__ int fraction_floor(struct fraction *frac)
|
|
{
|
|
return frac->integer;
|
|
}
|
|
|
|
static __inline__ int fraction_ceil(struct fraction *frac)
|
|
{
|
|
return frac->integer + (frac->numerator > 0 ? 1 : 0);
|
|
}
|
|
|
|
static void packet_initialize(struct packet *p, struct packet *next)
|
|
{
|
|
/* Here we initialize the dma descriptor block for
|
|
* transferring one iso packet. We use two descriptors per
|
|
* packet: an OUTPUT_MORE_IMMMEDIATE descriptor for the
|
|
* IEEE1394 iso packet header and an OUTPUT_LAST descriptor
|
|
* for the payload.
|
|
*/
|
|
|
|
p->db->header_desc.control =
|
|
DMA_CTL_OUTPUT_MORE | DMA_CTL_IMMEDIATE | 8;
|
|
|
|
if (next) {
|
|
p->db->payload_desc.control =
|
|
DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH;
|
|
p->db->payload_desc.branch = next->db_bus | 3;
|
|
p->db->header_desc.skip = next->db_bus | 3;
|
|
}
|
|
else {
|
|
p->db->payload_desc.control =
|
|
DMA_CTL_OUTPUT_LAST | DMA_CTL_BRANCH |
|
|
DMA_CTL_UPDATE | DMA_CTL_IRQ;
|
|
p->db->payload_desc.branch = 0;
|
|
p->db->header_desc.skip = 0;
|
|
}
|
|
p->db->payload_desc.data_address = p->payload_bus;
|
|
p->db->payload_desc.status = 0;
|
|
}
|
|
|
|
static struct packet_list *packet_list_alloc(struct stream *s)
|
|
{
|
|
int i;
|
|
struct packet_list *pl;
|
|
struct packet *next;
|
|
|
|
pl = kmalloc(sizeof *pl, SLAB_KERNEL);
|
|
if (pl == NULL)
|
|
return NULL;
|
|
|
|
for (i = 0; i < PACKET_LIST_SIZE; i++) {
|
|
struct packet *p = &pl->packets[i];
|
|
p->db = pci_pool_alloc(s->descriptor_pool, SLAB_KERNEL,
|
|
&p->db_bus);
|
|
p->payload = pci_pool_alloc(s->packet_pool, SLAB_KERNEL,
|
|
&p->payload_bus);
|
|
}
|
|
|
|
for (i = 0; i < PACKET_LIST_SIZE; i++) {
|
|
if (i < PACKET_LIST_SIZE - 1)
|
|
next = &pl->packets[i + 1];
|
|
else
|
|
next = NULL;
|
|
packet_initialize(&pl->packets[i], next);
|
|
}
|
|
|
|
return pl;
|
|
}
|
|
|
|
static void packet_list_free(struct packet_list *pl, struct stream *s)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < PACKET_LIST_SIZE; i++) {
|
|
struct packet *p = &pl->packets[i];
|
|
pci_pool_free(s->descriptor_pool, p->db, p->db_bus);
|
|
pci_pool_free(s->packet_pool, p->payload, p->payload_bus);
|
|
}
|
|
kfree(pl);
|
|
}
|
|
|
|
static struct buffer *buffer_alloc(int size)
|
|
{
|
|
struct buffer *b;
|
|
|
|
b = kmalloc(sizeof *b + size, SLAB_KERNEL);
|
|
if (b == NULL)
|
|
return NULL;
|
|
b->head = 0;
|
|
b->tail = 0;
|
|
b->length = 0;
|
|
b->size = size;
|
|
|
|
return b;
|
|
}
|
|
|
|
static unsigned char *buffer_get_bytes(struct buffer *buffer, int size)
|
|
{
|
|
unsigned char *p;
|
|
|
|
if (buffer->head + size > buffer->size)
|
|
BUG();
|
|
|
|
p = &buffer->data[buffer->head];
|
|
buffer->head += size;
|
|
if (buffer->head == buffer->size)
|
|
buffer->head = 0;
|
|
buffer->length -= size;
|
|
|
|
return p;
|
|
}
|
|
|
|
static unsigned char *buffer_put_bytes(struct buffer *buffer,
|
|
size_t max, size_t *actual)
|
|
{
|
|
size_t length;
|
|
unsigned char *p;
|
|
|
|
p = &buffer->data[buffer->tail];
|
|
length = min(buffer->size - buffer->length, max);
|
|
if (buffer->tail + length < buffer->size) {
|
|
*actual = length;
|
|
buffer->tail += length;
|
|
}
|
|
else {
|
|
*actual = buffer->size - buffer->tail;
|
|
buffer->tail = 0;
|
|
}
|
|
|
|
buffer->length += *actual;
|
|
return p;
|
|
}
|
|
|
|
static u32 get_iec958_header_bits(struct stream *s, int sub_frame, u32 sample)
|
|
{
|
|
int csi, parity, shift;
|
|
int block_start;
|
|
u32 bits;
|
|
|
|
switch (s->iec958_frame_count) {
|
|
case 1:
|
|
csi = s->format == AMDTP_FORMAT_IEC958_AC3;
|
|
break;
|
|
case 2:
|
|
case 9:
|
|
csi = 1;
|
|
break;
|
|
case 24 ... 27:
|
|
csi = (s->iec958_rate_code >> (27 - s->iec958_frame_count)) & 0x01;
|
|
break;
|
|
default:
|
|
csi = 0;
|
|
break;
|
|
}
|
|
|
|
block_start = (s->iec958_frame_count == 0 && sub_frame == 0);
|
|
|
|
/* The parity bit is the xor of the sample bits and the
|
|
* channel status info bit. */
|
|
for (shift = 16, parity = sample ^ csi; shift > 0; shift >>= 1)
|
|
parity ^= (parity >> shift);
|
|
|
|
bits = (block_start << 5) | /* Block start bit */
|
|
((sub_frame == 0) << 4) | /* Subframe bit */
|
|
((parity & 1) << 3) | /* Parity bit */
|
|
(csi << 2); /* Channel status info bit */
|
|
|
|
return bits;
|
|
}
|
|
|
|
static u32 get_header_bits(struct stream *s, int sub_frame, u32 sample)
|
|
{
|
|
switch (s->format) {
|
|
case AMDTP_FORMAT_IEC958_PCM:
|
|
case AMDTP_FORMAT_IEC958_AC3:
|
|
return get_iec958_header_bits(s, sub_frame, sample);
|
|
|
|
case AMDTP_FORMAT_RAW:
|
|
return 0x40;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void fill_payload_le16(struct stream *s, quadlet_t *data, int nevents)
|
|
{
|
|
quadlet_t *event, sample, bits;
|
|
unsigned char *p;
|
|
int i, j;
|
|
|
|
for (i = 0, event = data; i < nevents; i++) {
|
|
|
|
for (j = 0; j < s->dimension; j++) {
|
|
p = buffer_get_bytes(s->input, 2);
|
|
sample = (p[1] << 16) | (p[0] << 8);
|
|
bits = get_header_bits(s, j, sample);
|
|
event[j] = cpu_to_be32((bits << 24) | sample);
|
|
}
|
|
|
|
event += s->dimension;
|
|
if (++s->iec958_frame_count == 192)
|
|
s->iec958_frame_count = 0;
|
|
}
|
|
}
|
|
|
|
static void fill_packet(struct stream *s, struct packet *packet, int nevents)
|
|
{
|
|
int syt_index, syt, size;
|
|
u32 control;
|
|
|
|
size = (nevents * s->dimension + 2) * sizeof(quadlet_t);
|
|
|
|
/* Update DMA descriptors */
|
|
packet->db->payload_desc.status = 0;
|
|
control = packet->db->payload_desc.control & 0xffff0000;
|
|
packet->db->payload_desc.control = control | size;
|
|
|
|
/* Fill IEEE1394 headers */
|
|
packet->db->header_desc.header[0] =
|
|
(IEEE1394_SPEED_100 << 16) | (0x01 << 14) |
|
|
(s->iso_channel << 8) | (TCODE_ISO_DATA << 4);
|
|
packet->db->header_desc.header[1] = size << 16;
|
|
|
|
/* Calculate synchronization timestamp (syt). First we
|
|
* determine syt_index, that is, the index in the packet of
|
|
* the sample for which the timestamp is valid. */
|
|
syt_index = (s->syt_interval - s->dbc) & (s->syt_interval - 1);
|
|
if (syt_index < nevents) {
|
|
syt = ((atomic_read(&s->cycle_count) << 12) |
|
|
s->cycle_offset.integer) & 0xffff;
|
|
fraction_add(&s->cycle_offset,
|
|
&s->cycle_offset, &s->ticks_per_syt_offset);
|
|
|
|
/* This next addition should be modulo 8000 (0x1f40),
|
|
* but we only use the lower 4 bits of cycle_count, so
|
|
* we don't need the modulo. */
|
|
atomic_add(s->cycle_offset.integer / 3072, &s->cycle_count);
|
|
s->cycle_offset.integer %= 3072;
|
|
}
|
|
else
|
|
syt = 0xffff;
|
|
|
|
atomic_inc(&s->cycle_count2);
|
|
|
|
/* Fill cip header */
|
|
packet->payload->eoh0 = 0;
|
|
packet->payload->sid = s->host->host->node_id & 0x3f;
|
|
packet->payload->dbs = s->dimension;
|
|
packet->payload->fn = 0;
|
|
packet->payload->qpc = 0;
|
|
packet->payload->sph = 0;
|
|
packet->payload->reserved = 0;
|
|
packet->payload->dbc = s->dbc;
|
|
packet->payload->eoh1 = 2;
|
|
packet->payload->fmt = FMT_AMDTP;
|
|
packet->payload->fdf = s->fdf;
|
|
packet->payload->syt = cpu_to_be16(syt);
|
|
|
|
switch (s->sample_format) {
|
|
case AMDTP_INPUT_LE16:
|
|
fill_payload_le16(s, packet->payload->data, nevents);
|
|
break;
|
|
}
|
|
|
|
s->dbc += nevents;
|
|
}
|
|
|
|
static void stream_flush(struct stream *s)
|
|
{
|
|
struct packet *p;
|
|
int nevents;
|
|
struct fraction next;
|
|
|
|
/* The AMDTP specifies two transmission modes: blocking and
|
|
* non-blocking. In blocking mode you always transfer
|
|
* syt_interval or zero samples, whereas in non-blocking mode
|
|
* you send as many samples as you have available at transfer
|
|
* time.
|
|
*
|
|
* The fraction samples_per_cycle specifies the number of
|
|
* samples that become available per cycle. We add this to
|
|
* the fraction ready_samples, which specifies the number of
|
|
* leftover samples from the previous transmission. The sum,
|
|
* stored in the fraction next, specifies the number of
|
|
* samples available for transmission, and from this we
|
|
* determine the number of samples to actually transmit.
|
|
*/
|
|
|
|
while (1) {
|
|
fraction_add(&next, &s->ready_samples, &s->samples_per_cycle);
|
|
if (s->mode == AMDTP_MODE_BLOCKING) {
|
|
if (fraction_floor(&next) >= s->syt_interval)
|
|
nevents = s->syt_interval;
|
|
else
|
|
nevents = 0;
|
|
}
|
|
else
|
|
nevents = fraction_floor(&next);
|
|
|
|
p = stream_current_packet(s);
|
|
if (s->input->length < nevents * s->dimension * 2 || p == NULL)
|
|
break;
|
|
|
|
fill_packet(s, p, nevents);
|
|
stream_queue_packet(s);
|
|
|
|
/* Now that we have successfully queued the packet for
|
|
* transmission, we update the fraction ready_samples. */
|
|
fraction_sub_int(&s->ready_samples, &next, nevents);
|
|
}
|
|
}
|
|
|
|
static int stream_alloc_packet_lists(struct stream *s)
|
|
{
|
|
int max_nevents, max_packet_size, i;
|
|
|
|
if (s->mode == AMDTP_MODE_BLOCKING)
|
|
max_nevents = s->syt_interval;
|
|
else
|
|
max_nevents = fraction_ceil(&s->samples_per_cycle);
|
|
|
|
max_packet_size = max_nevents * s->dimension * 4 + 8;
|
|
s->packet_pool = pci_pool_create("packet pool", s->host->ohci->dev,
|
|
max_packet_size, 0, 0);
|
|
|
|
if (s->packet_pool == NULL)
|
|
return -1;
|
|
|
|
INIT_LIST_HEAD(&s->free_packet_lists);
|
|
INIT_LIST_HEAD(&s->dma_packet_lists);
|
|
for (i = 0; i < MAX_PACKET_LISTS; i++) {
|
|
struct packet_list *pl = packet_list_alloc(s);
|
|
if (pl == NULL)
|
|
break;
|
|
list_add_tail(&pl->link, &s->free_packet_lists);
|
|
}
|
|
|
|
return i < MAX_PACKET_LISTS ? -1 : 0;
|
|
}
|
|
|
|
static void stream_free_packet_lists(struct stream *s)
|
|
{
|
|
struct packet_list *packet_l, *packet_l_next;
|
|
|
|
if (s->current_packet_list != NULL)
|
|
packet_list_free(s->current_packet_list, s);
|
|
list_for_each_entry_safe(packet_l, packet_l_next, &s->dma_packet_lists, link)
|
|
packet_list_free(packet_l, s);
|
|
list_for_each_entry_safe(packet_l, packet_l_next, &s->free_packet_lists, link)
|
|
packet_list_free(packet_l, s);
|
|
if (s->packet_pool != NULL)
|
|
pci_pool_destroy(s->packet_pool);
|
|
|
|
s->current_packet_list = NULL;
|
|
INIT_LIST_HEAD(&s->free_packet_lists);
|
|
INIT_LIST_HEAD(&s->dma_packet_lists);
|
|
s->packet_pool = NULL;
|
|
}
|
|
|
|
static void plug_update(struct cmp_pcr *plug, void *data)
|
|
{
|
|
struct stream *s = data;
|
|
|
|
HPSB_INFO("plug update: p2p_count=%d, channel=%d",
|
|
plug->p2p_count, plug->channel);
|
|
s->iso_channel = plug->channel;
|
|
if (plug->p2p_count > 0) {
|
|
struct packet_list *pl;
|
|
|
|
pl = list_entry(s->dma_packet_lists.next, struct packet_list, link);
|
|
stream_start_dma(s, pl);
|
|
}
|
|
else {
|
|
ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 0);
|
|
}
|
|
}
|
|
|
|
static int stream_configure(struct stream *s, int cmd, struct amdtp_ioctl *cfg)
|
|
{
|
|
const int transfer_delay = 9000;
|
|
|
|
if (cfg->format <= AMDTP_FORMAT_IEC958_AC3)
|
|
s->format = cfg->format;
|
|
else
|
|
return -EINVAL;
|
|
|
|
switch (cfg->rate) {
|
|
case 32000:
|
|
s->syt_interval = 8;
|
|
s->fdf = FDF_SFC_32KHZ;
|
|
s->iec958_rate_code = 0x0c;
|
|
break;
|
|
case 44100:
|
|
s->syt_interval = 8;
|
|
s->fdf = FDF_SFC_44K1HZ;
|
|
s->iec958_rate_code = 0x00;
|
|
break;
|
|
case 48000:
|
|
s->syt_interval = 8;
|
|
s->fdf = FDF_SFC_48KHZ;
|
|
s->iec958_rate_code = 0x04;
|
|
break;
|
|
case 88200:
|
|
s->syt_interval = 16;
|
|
s->fdf = FDF_SFC_88K2HZ;
|
|
s->iec958_rate_code = 0x00;
|
|
break;
|
|
case 96000:
|
|
s->syt_interval = 16;
|
|
s->fdf = FDF_SFC_96KHZ;
|
|
s->iec958_rate_code = 0x00;
|
|
break;
|
|
case 176400:
|
|
s->syt_interval = 32;
|
|
s->fdf = FDF_SFC_176K4HZ;
|
|
s->iec958_rate_code = 0x00;
|
|
break;
|
|
case 192000:
|
|
s->syt_interval = 32;
|
|
s->fdf = FDF_SFC_192KHZ;
|
|
s->iec958_rate_code = 0x00;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
s->rate = cfg->rate;
|
|
fraction_init(&s->samples_per_cycle, s->rate, 8000);
|
|
fraction_init(&s->ready_samples, 0, 8000);
|
|
|
|
/* The ticks_per_syt_offset is initialized to the number of
|
|
* ticks between syt_interval events. The number of ticks per
|
|
* second is 24.576e6, so the number of ticks between
|
|
* syt_interval events is 24.576e6 * syt_interval / rate.
|
|
*/
|
|
fraction_init(&s->ticks_per_syt_offset,
|
|
24576000 * s->syt_interval, s->rate);
|
|
fraction_init(&s->cycle_offset, (transfer_delay % 3072) * s->rate, s->rate);
|
|
atomic_set(&s->cycle_count, transfer_delay / 3072);
|
|
atomic_set(&s->cycle_count2, 0);
|
|
|
|
s->mode = cfg->mode;
|
|
s->sample_format = AMDTP_INPUT_LE16;
|
|
|
|
/* When using the AM824 raw subformat we can stream signals of
|
|
* any dimension. The IEC958 subformat, however, only
|
|
* supports 2 channels.
|
|
*/
|
|
if (s->format == AMDTP_FORMAT_RAW || cfg->dimension == 2)
|
|
s->dimension = cfg->dimension;
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (s->opcr != NULL) {
|
|
cmp_unregister_opcr(s->host->host, s->opcr);
|
|
s->opcr = NULL;
|
|
}
|
|
|
|
switch(cmd) {
|
|
case AMDTP_IOC_PLUG:
|
|
s->opcr = cmp_register_opcr(s->host->host, cfg->u.plug,
|
|
/*payload*/ 12, plug_update, s);
|
|
if (s->opcr == NULL)
|
|
return -EINVAL;
|
|
s->iso_channel = s->opcr->channel;
|
|
break;
|
|
|
|
case AMDTP_IOC_CHANNEL:
|
|
if (cfg->u.channel >= 0 && cfg->u.channel < 64)
|
|
s->iso_channel = cfg->u.channel;
|
|
else
|
|
return -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* The ioctl settings were all valid, so we realloc the packet
|
|
* lists to make sure the packet size is big enough.
|
|
*/
|
|
if (s->packet_pool != NULL)
|
|
stream_free_packet_lists(s);
|
|
|
|
if (stream_alloc_packet_lists(s) < 0) {
|
|
stream_free_packet_lists(s);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct stream *stream_alloc(struct amdtp_host *host)
|
|
{
|
|
struct stream *s;
|
|
unsigned long flags;
|
|
|
|
s = kmalloc(sizeof(struct stream), SLAB_KERNEL);
|
|
if (s == NULL)
|
|
return NULL;
|
|
|
|
memset(s, 0, sizeof(struct stream));
|
|
s->host = host;
|
|
|
|
s->input = buffer_alloc(BUFFER_SIZE);
|
|
if (s->input == NULL) {
|
|
kfree(s);
|
|
return NULL;
|
|
}
|
|
|
|
s->descriptor_pool = pci_pool_create("descriptor pool", host->ohci->dev,
|
|
sizeof(struct descriptor_block),
|
|
16, 0);
|
|
|
|
if (s->descriptor_pool == NULL) {
|
|
kfree(s->input);
|
|
kfree(s);
|
|
return NULL;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&s->free_packet_lists);
|
|
INIT_LIST_HEAD(&s->dma_packet_lists);
|
|
|
|
init_waitqueue_head(&s->packet_list_wait);
|
|
spin_lock_init(&s->packet_list_lock);
|
|
|
|
ohci1394_init_iso_tasklet(&s->iso_tasklet, OHCI_ISO_TRANSMIT,
|
|
stream_shift_packet_lists,
|
|
(unsigned long) s);
|
|
|
|
if (ohci1394_register_iso_tasklet(host->ohci, &s->iso_tasklet) < 0) {
|
|
pci_pool_destroy(s->descriptor_pool);
|
|
kfree(s->input);
|
|
kfree(s);
|
|
return NULL;
|
|
}
|
|
|
|
spin_lock_irqsave(&host->stream_list_lock, flags);
|
|
list_add_tail(&s->link, &host->stream_list);
|
|
spin_unlock_irqrestore(&host->stream_list_lock, flags);
|
|
|
|
return s;
|
|
}
|
|
|
|
static void stream_free(struct stream *s)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Stop the DMA. We wait for the dma packet list to become
|
|
* empty and let the dma controller run out of programs. This
|
|
* seems to be more reliable than stopping it directly, since
|
|
* that sometimes generates an it transmit interrupt if we
|
|
* later re-enable the context.
|
|
*/
|
|
wait_event_interruptible(s->packet_list_wait,
|
|
list_empty(&s->dma_packet_lists));
|
|
|
|
ohci1394_stop_it_ctx(s->host->ohci, s->iso_tasklet.context, 1);
|
|
ohci1394_unregister_iso_tasklet(s->host->ohci, &s->iso_tasklet);
|
|
|
|
if (s->opcr != NULL)
|
|
cmp_unregister_opcr(s->host->host, s->opcr);
|
|
|
|
spin_lock_irqsave(&s->host->stream_list_lock, flags);
|
|
list_del(&s->link);
|
|
spin_unlock_irqrestore(&s->host->stream_list_lock, flags);
|
|
|
|
kfree(s->input);
|
|
|
|
stream_free_packet_lists(s);
|
|
pci_pool_destroy(s->descriptor_pool);
|
|
|
|
kfree(s);
|
|
}
|
|
|
|
/* File operations */
|
|
|
|
static ssize_t amdtp_write(struct file *file, const char __user *buffer, size_t count,
|
|
loff_t *offset_is_ignored)
|
|
{
|
|
struct stream *s = file->private_data;
|
|
unsigned char *p;
|
|
int i;
|
|
size_t length;
|
|
|
|
if (s->packet_pool == NULL)
|
|
return -EBADFD;
|
|
|
|
/* Fill the circular buffer from the input buffer and call the
|
|
* iso packer when the buffer is full. The iso packer may
|
|
* leave bytes in the buffer for two reasons: either the
|
|
* remaining bytes wasn't enough to build a new packet, or
|
|
* there were no free packet lists. In the first case we
|
|
* re-fill the buffer and call the iso packer again or return
|
|
* if we used all the data from userspace. In the second
|
|
* case, the wait_event_interruptible will block until the irq
|
|
* handler frees a packet list.
|
|
*/
|
|
|
|
for (i = 0; i < count; i += length) {
|
|
p = buffer_put_bytes(s->input, count - i, &length);
|
|
if (copy_from_user(p, buffer + i, length))
|
|
return -EFAULT;
|
|
if (s->input->length < s->input->size)
|
|
continue;
|
|
|
|
stream_flush(s);
|
|
|
|
if (s->current_packet_list != NULL)
|
|
continue;
|
|
|
|
if (file->f_flags & O_NONBLOCK)
|
|
return i + length > 0 ? i + length : -EAGAIN;
|
|
|
|
if (wait_event_interruptible(s->packet_list_wait,
|
|
!list_empty(&s->free_packet_lists)))
|
|
return -EINTR;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static long amdtp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct stream *s = file->private_data;
|
|
struct amdtp_ioctl cfg;
|
|
int err;
|
|
lock_kernel();
|
|
switch(cmd)
|
|
{
|
|
case AMDTP_IOC_PLUG:
|
|
case AMDTP_IOC_CHANNEL:
|
|
if (copy_from_user(&cfg, (struct amdtp_ioctl __user *) arg, sizeof cfg))
|
|
err = -EFAULT;
|
|
else
|
|
err = stream_configure(s, cmd, &cfg);
|
|
break;
|
|
|
|
default:
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
unlock_kernel();
|
|
return err;
|
|
}
|
|
|
|
static unsigned int amdtp_poll(struct file *file, poll_table *pt)
|
|
{
|
|
struct stream *s = file->private_data;
|
|
|
|
poll_wait(file, &s->packet_list_wait, pt);
|
|
|
|
if (!list_empty(&s->free_packet_lists))
|
|
return POLLOUT | POLLWRNORM;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int amdtp_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct amdtp_host *host;
|
|
int i = ieee1394_file_to_instance(file);
|
|
|
|
host = hpsb_get_hostinfo_bykey(&amdtp_highlevel, i);
|
|
if (host == NULL)
|
|
return -ENODEV;
|
|
|
|
file->private_data = stream_alloc(host);
|
|
if (file->private_data == NULL)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int amdtp_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct stream *s = file->private_data;
|
|
|
|
stream_free(s);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct cdev amdtp_cdev;
|
|
static struct file_operations amdtp_fops =
|
|
{
|
|
.owner = THIS_MODULE,
|
|
.write = amdtp_write,
|
|
.poll = amdtp_poll,
|
|
.unlocked_ioctl = amdtp_ioctl,
|
|
.compat_ioctl = amdtp_ioctl, /* All amdtp ioctls are compatible */
|
|
.open = amdtp_open,
|
|
.release = amdtp_release
|
|
};
|
|
|
|
/* IEEE1394 Subsystem functions */
|
|
|
|
static void amdtp_add_host(struct hpsb_host *host)
|
|
{
|
|
struct amdtp_host *ah;
|
|
int minor;
|
|
|
|
if (strcmp(host->driver->name, OHCI1394_DRIVER_NAME) != 0)
|
|
return;
|
|
|
|
ah = hpsb_create_hostinfo(&amdtp_highlevel, host, sizeof(*ah));
|
|
if (!ah) {
|
|
HPSB_ERR("amdtp: Unable able to alloc hostinfo");
|
|
return;
|
|
}
|
|
|
|
ah->host = host;
|
|
ah->ohci = host->hostdata;
|
|
|
|
hpsb_set_hostinfo_key(&amdtp_highlevel, host, ah->host->id);
|
|
|
|
minor = IEEE1394_MINOR_BLOCK_AMDTP * 16 + ah->host->id;
|
|
|
|
INIT_LIST_HEAD(&ah->stream_list);
|
|
spin_lock_init(&ah->stream_list_lock);
|
|
|
|
devfs_mk_cdev(MKDEV(IEEE1394_MAJOR, minor),
|
|
S_IFCHR|S_IRUSR|S_IWUSR, "amdtp/%d", ah->host->id);
|
|
}
|
|
|
|
static void amdtp_remove_host(struct hpsb_host *host)
|
|
{
|
|
struct amdtp_host *ah = hpsb_get_hostinfo(&amdtp_highlevel, host);
|
|
|
|
if (ah)
|
|
devfs_remove("amdtp/%d", ah->host->id);
|
|
|
|
return;
|
|
}
|
|
|
|
static struct hpsb_highlevel amdtp_highlevel = {
|
|
.name = "amdtp",
|
|
.add_host = amdtp_add_host,
|
|
.remove_host = amdtp_remove_host,
|
|
};
|
|
|
|
/* Module interface */
|
|
|
|
MODULE_AUTHOR("Kristian Hogsberg <hogsberg@users.sf.net>");
|
|
MODULE_DESCRIPTION("Driver for Audio & Music Data Transmission Protocol "
|
|
"on OHCI boards.");
|
|
MODULE_SUPPORTED_DEVICE("amdtp");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int __init amdtp_init_module (void)
|
|
{
|
|
cdev_init(&amdtp_cdev, &amdtp_fops);
|
|
amdtp_cdev.owner = THIS_MODULE;
|
|
kobject_set_name(&amdtp_cdev.kobj, "amdtp");
|
|
if (cdev_add(&amdtp_cdev, IEEE1394_AMDTP_DEV, 16)) {
|
|
HPSB_ERR("amdtp: unable to add char device");
|
|
return -EIO;
|
|
}
|
|
|
|
devfs_mk_dir("amdtp");
|
|
|
|
hpsb_register_highlevel(&amdtp_highlevel);
|
|
|
|
HPSB_INFO("Loaded AMDTP driver");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __exit amdtp_exit_module (void)
|
|
{
|
|
hpsb_unregister_highlevel(&amdtp_highlevel);
|
|
devfs_remove("amdtp");
|
|
cdev_del(&amdtp_cdev);
|
|
|
|
HPSB_INFO("Unloaded AMDTP driver");
|
|
}
|
|
|
|
module_init(amdtp_init_module);
|
|
module_exit(amdtp_exit_module);
|