mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-20 16:30:53 +00:00
9421bade07
This patch adds a PWM driver based on Atmel Timer Counter Block. The Timer Counter Block is used in Waveform generator mode. A Timer Counter Block provides up to 6 PWM devices grouped by 2: * group 0 = PWM 0 and 1 * group 1 = PWM 2 and 3 * group 2 = PMW 4 and 5 PWM devices in a given group must be configured with the same period value. If a PWM device in a group tries to change the period value and the other device is already configured with a different value an error will be returned. This driver requires device tree support. The Timer Counter Block number used to create a PWM chip is given by the tc-block field in an "atmel,tcb-pwm" compatible node. This patch was tested on kizbox board (at91sam9g20 SoC) with pwm-leds. Signed-off-by: Boris BREZILLON <linux-arm@overkiz.com> Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
446 lines
11 KiB
C
446 lines
11 KiB
C
/*
|
|
* Copyright (C) Overkiz SAS 2012
|
|
*
|
|
* Author: Boris BREZILLON <b.brezillon@overkiz.com>
|
|
* License terms: GNU General Public License (GPL) version 2
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/err.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/io.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/atmel_tc.h>
|
|
#include <linux/pwm.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/slab.h>
|
|
|
|
#define NPWM 6
|
|
|
|
#define ATMEL_TC_ACMR_MASK (ATMEL_TC_ACPA | ATMEL_TC_ACPC | \
|
|
ATMEL_TC_AEEVT | ATMEL_TC_ASWTRG)
|
|
|
|
#define ATMEL_TC_BCMR_MASK (ATMEL_TC_BCPB | ATMEL_TC_BCPC | \
|
|
ATMEL_TC_BEEVT | ATMEL_TC_BSWTRG)
|
|
|
|
struct atmel_tcb_pwm_device {
|
|
enum pwm_polarity polarity; /* PWM polarity */
|
|
unsigned div; /* PWM clock divider */
|
|
unsigned duty; /* PWM duty expressed in clk cycles */
|
|
unsigned period; /* PWM period expressed in clk cycles */
|
|
};
|
|
|
|
struct atmel_tcb_pwm_chip {
|
|
struct pwm_chip chip;
|
|
spinlock_t lock;
|
|
struct atmel_tc *tc;
|
|
struct atmel_tcb_pwm_device *pwms[NPWM];
|
|
};
|
|
|
|
static inline struct atmel_tcb_pwm_chip *to_tcb_chip(struct pwm_chip *chip)
|
|
{
|
|
return container_of(chip, struct atmel_tcb_pwm_chip, chip);
|
|
}
|
|
|
|
static int atmel_tcb_pwm_set_polarity(struct pwm_chip *chip,
|
|
struct pwm_device *pwm,
|
|
enum pwm_polarity polarity)
|
|
{
|
|
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
|
|
|
|
tcbpwm->polarity = polarity;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_tcb_pwm_request(struct pwm_chip *chip,
|
|
struct pwm_device *pwm)
|
|
{
|
|
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
|
|
struct atmel_tcb_pwm_device *tcbpwm;
|
|
struct atmel_tc *tc = tcbpwmc->tc;
|
|
void __iomem *regs = tc->regs;
|
|
unsigned group = pwm->hwpwm / 2;
|
|
unsigned index = pwm->hwpwm % 2;
|
|
unsigned cmr;
|
|
int ret;
|
|
|
|
tcbpwm = devm_kzalloc(chip->dev, sizeof(*tcbpwm), GFP_KERNEL);
|
|
if (!tcbpwm)
|
|
return -ENOMEM;
|
|
|
|
ret = clk_enable(tc->clk[group]);
|
|
if (ret) {
|
|
devm_kfree(chip->dev, tcbpwm);
|
|
return ret;
|
|
}
|
|
|
|
pwm_set_chip_data(pwm, tcbpwm);
|
|
tcbpwm->polarity = PWM_POLARITY_NORMAL;
|
|
tcbpwm->duty = 0;
|
|
tcbpwm->period = 0;
|
|
tcbpwm->div = 0;
|
|
|
|
spin_lock(&tcbpwmc->lock);
|
|
cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
|
|
/*
|
|
* Get init config from Timer Counter registers if
|
|
* Timer Counter is already configured as a PWM generator.
|
|
*/
|
|
if (cmr & ATMEL_TC_WAVE) {
|
|
if (index == 0)
|
|
tcbpwm->duty =
|
|
__raw_readl(regs + ATMEL_TC_REG(group, RA));
|
|
else
|
|
tcbpwm->duty =
|
|
__raw_readl(regs + ATMEL_TC_REG(group, RB));
|
|
|
|
tcbpwm->div = cmr & ATMEL_TC_TCCLKS;
|
|
tcbpwm->period = __raw_readl(regs + ATMEL_TC_REG(group, RC));
|
|
cmr &= (ATMEL_TC_TCCLKS | ATMEL_TC_ACMR_MASK |
|
|
ATMEL_TC_BCMR_MASK);
|
|
} else
|
|
cmr = 0;
|
|
|
|
cmr |= ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO | ATMEL_TC_EEVT_XC0;
|
|
__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
|
|
spin_unlock(&tcbpwmc->lock);
|
|
|
|
tcbpwmc->pwms[pwm->hwpwm] = tcbpwm;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void atmel_tcb_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
|
|
{
|
|
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
|
|
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
|
|
struct atmel_tc *tc = tcbpwmc->tc;
|
|
|
|
clk_disable(tc->clk[pwm->hwpwm / 2]);
|
|
tcbpwmc->pwms[pwm->hwpwm] = NULL;
|
|
devm_kfree(chip->dev, tcbpwm);
|
|
}
|
|
|
|
static void atmel_tcb_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
|
|
{
|
|
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
|
|
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
|
|
struct atmel_tc *tc = tcbpwmc->tc;
|
|
void __iomem *regs = tc->regs;
|
|
unsigned group = pwm->hwpwm / 2;
|
|
unsigned index = pwm->hwpwm % 2;
|
|
unsigned cmr;
|
|
enum pwm_polarity polarity = tcbpwm->polarity;
|
|
|
|
/*
|
|
* If duty is 0 the timer will be stopped and we have to
|
|
* configure the output correctly on software trigger:
|
|
* - set output to high if PWM_POLARITY_INVERSED
|
|
* - set output to low if PWM_POLARITY_NORMAL
|
|
*
|
|
* This is why we're reverting polarity in this case.
|
|
*/
|
|
if (tcbpwm->duty == 0)
|
|
polarity = !polarity;
|
|
|
|
spin_lock(&tcbpwmc->lock);
|
|
cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
|
|
|
|
/* flush old setting and set the new one */
|
|
if (index == 0) {
|
|
cmr &= ~ATMEL_TC_ACMR_MASK;
|
|
if (polarity == PWM_POLARITY_INVERSED)
|
|
cmr |= ATMEL_TC_ASWTRG_CLEAR;
|
|
else
|
|
cmr |= ATMEL_TC_ASWTRG_SET;
|
|
} else {
|
|
cmr &= ~ATMEL_TC_BCMR_MASK;
|
|
if (polarity == PWM_POLARITY_INVERSED)
|
|
cmr |= ATMEL_TC_BSWTRG_CLEAR;
|
|
else
|
|
cmr |= ATMEL_TC_BSWTRG_SET;
|
|
}
|
|
|
|
__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
|
|
|
|
/*
|
|
* Use software trigger to apply the new setting.
|
|
* If both PWM devices in this group are disabled we stop the clock.
|
|
*/
|
|
if (!(cmr & (ATMEL_TC_ACPC | ATMEL_TC_BCPC)))
|
|
__raw_writel(ATMEL_TC_SWTRG | ATMEL_TC_CLKDIS,
|
|
regs + ATMEL_TC_REG(group, CCR));
|
|
else
|
|
__raw_writel(ATMEL_TC_SWTRG, regs +
|
|
ATMEL_TC_REG(group, CCR));
|
|
|
|
spin_unlock(&tcbpwmc->lock);
|
|
}
|
|
|
|
static int atmel_tcb_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
|
|
{
|
|
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
|
|
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
|
|
struct atmel_tc *tc = tcbpwmc->tc;
|
|
void __iomem *regs = tc->regs;
|
|
unsigned group = pwm->hwpwm / 2;
|
|
unsigned index = pwm->hwpwm % 2;
|
|
u32 cmr;
|
|
enum pwm_polarity polarity = tcbpwm->polarity;
|
|
|
|
/*
|
|
* If duty is 0 the timer will be stopped and we have to
|
|
* configure the output correctly on software trigger:
|
|
* - set output to high if PWM_POLARITY_INVERSED
|
|
* - set output to low if PWM_POLARITY_NORMAL
|
|
*
|
|
* This is why we're reverting polarity in this case.
|
|
*/
|
|
if (tcbpwm->duty == 0)
|
|
polarity = !polarity;
|
|
|
|
spin_lock(&tcbpwmc->lock);
|
|
cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
|
|
|
|
/* flush old setting and set the new one */
|
|
cmr &= ~ATMEL_TC_TCCLKS;
|
|
|
|
if (index == 0) {
|
|
cmr &= ~ATMEL_TC_ACMR_MASK;
|
|
|
|
/* Set CMR flags according to given polarity */
|
|
if (polarity == PWM_POLARITY_INVERSED)
|
|
cmr |= ATMEL_TC_ASWTRG_CLEAR;
|
|
else
|
|
cmr |= ATMEL_TC_ASWTRG_SET;
|
|
} else {
|
|
cmr &= ~ATMEL_TC_BCMR_MASK;
|
|
if (polarity == PWM_POLARITY_INVERSED)
|
|
cmr |= ATMEL_TC_BSWTRG_CLEAR;
|
|
else
|
|
cmr |= ATMEL_TC_BSWTRG_SET;
|
|
}
|
|
|
|
/*
|
|
* If duty is 0 or equal to period there's no need to register
|
|
* a specific action on RA/RB and RC compare.
|
|
* The output will be configured on software trigger and keep
|
|
* this config till next config call.
|
|
*/
|
|
if (tcbpwm->duty != tcbpwm->period && tcbpwm->duty > 0) {
|
|
if (index == 0) {
|
|
if (polarity == PWM_POLARITY_INVERSED)
|
|
cmr |= ATMEL_TC_ACPA_SET | ATMEL_TC_ACPC_CLEAR;
|
|
else
|
|
cmr |= ATMEL_TC_ACPA_CLEAR | ATMEL_TC_ACPC_SET;
|
|
} else {
|
|
if (polarity == PWM_POLARITY_INVERSED)
|
|
cmr |= ATMEL_TC_BCPB_SET | ATMEL_TC_BCPC_CLEAR;
|
|
else
|
|
cmr |= ATMEL_TC_BCPB_CLEAR | ATMEL_TC_BCPC_SET;
|
|
}
|
|
}
|
|
|
|
__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
|
|
|
|
if (index == 0)
|
|
__raw_writel(tcbpwm->duty, regs + ATMEL_TC_REG(group, RA));
|
|
else
|
|
__raw_writel(tcbpwm->duty, regs + ATMEL_TC_REG(group, RB));
|
|
|
|
__raw_writel(tcbpwm->period, regs + ATMEL_TC_REG(group, RC));
|
|
|
|
/* Use software trigger to apply the new setting */
|
|
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
|
|
regs + ATMEL_TC_REG(group, CCR));
|
|
spin_unlock(&tcbpwmc->lock);
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_tcb_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
|
|
int duty_ns, int period_ns)
|
|
{
|
|
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
|
|
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
|
|
unsigned group = pwm->hwpwm / 2;
|
|
unsigned index = pwm->hwpwm % 2;
|
|
struct atmel_tcb_pwm_device *atcbpwm = NULL;
|
|
struct atmel_tc *tc = tcbpwmc->tc;
|
|
int i;
|
|
int slowclk = 0;
|
|
unsigned period;
|
|
unsigned duty;
|
|
unsigned rate = clk_get_rate(tc->clk[group]);
|
|
unsigned long long min;
|
|
unsigned long long max;
|
|
|
|
/*
|
|
* Find best clk divisor:
|
|
* the smallest divisor which can fulfill the period_ns requirements.
|
|
*/
|
|
for (i = 0; i < 5; ++i) {
|
|
if (atmel_tc_divisors[i] == 0) {
|
|
slowclk = i;
|
|
continue;
|
|
}
|
|
min = div_u64((u64)NSEC_PER_SEC * atmel_tc_divisors[i], rate);
|
|
max = min << tc->tcb_config->counter_width;
|
|
if (max >= period_ns)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If none of the divisor are small enough to represent period_ns
|
|
* take slow clock (32KHz).
|
|
*/
|
|
if (i == 5) {
|
|
i = slowclk;
|
|
rate = 32768;
|
|
min = div_u64(NSEC_PER_SEC, rate);
|
|
max = min << 16;
|
|
|
|
/* If period is too big return ERANGE error */
|
|
if (max < period_ns)
|
|
return -ERANGE;
|
|
}
|
|
|
|
duty = div_u64(duty_ns, min);
|
|
period = div_u64(period_ns, min);
|
|
|
|
if (index == 0)
|
|
atcbpwm = tcbpwmc->pwms[pwm->hwpwm + 1];
|
|
else
|
|
atcbpwm = tcbpwmc->pwms[pwm->hwpwm - 1];
|
|
|
|
/*
|
|
* PWM devices provided by TCB driver are grouped by 2:
|
|
* - group 0: PWM 0 & 1
|
|
* - group 1: PWM 2 & 3
|
|
* - group 2: PWM 4 & 5
|
|
*
|
|
* PWM devices in a given group must be configured with the
|
|
* same period_ns.
|
|
*
|
|
* We're checking the period value of the second PWM device
|
|
* in this group before applying the new config.
|
|
*/
|
|
if ((atcbpwm && atcbpwm->duty > 0 &&
|
|
atcbpwm->duty != atcbpwm->period) &&
|
|
(atcbpwm->div != i || atcbpwm->period != period)) {
|
|
dev_err(chip->dev,
|
|
"failed to configure period_ns: PWM group already configured with a different value\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
tcbpwm->period = period;
|
|
tcbpwm->div = i;
|
|
tcbpwm->duty = duty;
|
|
|
|
/* If the PWM is enabled, call enable to apply the new conf */
|
|
if (test_bit(PWMF_ENABLED, &pwm->flags))
|
|
atmel_tcb_pwm_enable(chip, pwm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct pwm_ops atmel_tcb_pwm_ops = {
|
|
.request = atmel_tcb_pwm_request,
|
|
.free = atmel_tcb_pwm_free,
|
|
.config = atmel_tcb_pwm_config,
|
|
.set_polarity = atmel_tcb_pwm_set_polarity,
|
|
.enable = atmel_tcb_pwm_enable,
|
|
.disable = atmel_tcb_pwm_disable,
|
|
};
|
|
|
|
static int atmel_tcb_pwm_probe(struct platform_device *pdev)
|
|
{
|
|
struct atmel_tcb_pwm_chip *tcbpwm;
|
|
struct device_node *np = pdev->dev.of_node;
|
|
struct atmel_tc *tc;
|
|
int err;
|
|
int tcblock;
|
|
|
|
err = of_property_read_u32(np, "tc-block", &tcblock);
|
|
if (err < 0) {
|
|
dev_err(&pdev->dev,
|
|
"failed to get Timer Counter Block number from device tree (error: %d)\n",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
tc = atmel_tc_alloc(tcblock, "tcb-pwm");
|
|
if (tc == NULL) {
|
|
dev_err(&pdev->dev, "failed to allocate Timer Counter Block\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
tcbpwm = devm_kzalloc(&pdev->dev, sizeof(*tcbpwm), GFP_KERNEL);
|
|
if (tcbpwm == NULL) {
|
|
atmel_tc_free(tc);
|
|
dev_err(&pdev->dev, "failed to allocate memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
tcbpwm->chip.dev = &pdev->dev;
|
|
tcbpwm->chip.ops = &atmel_tcb_pwm_ops;
|
|
tcbpwm->chip.of_xlate = of_pwm_xlate_with_flags;
|
|
tcbpwm->chip.of_pwm_n_cells = 3;
|
|
tcbpwm->chip.base = -1;
|
|
tcbpwm->chip.npwm = NPWM;
|
|
tcbpwm->tc = tc;
|
|
|
|
spin_lock_init(&tcbpwm->lock);
|
|
|
|
err = pwmchip_add(&tcbpwm->chip);
|
|
if (err < 0) {
|
|
atmel_tc_free(tc);
|
|
return err;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, tcbpwm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_tcb_pwm_remove(struct platform_device *pdev)
|
|
{
|
|
struct atmel_tcb_pwm_chip *tcbpwm = platform_get_drvdata(pdev);
|
|
int err;
|
|
|
|
err = pwmchip_remove(&tcbpwm->chip);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
atmel_tc_free(tcbpwm->tc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id atmel_tcb_pwm_dt_ids[] = {
|
|
{ .compatible = "atmel,tcb-pwm", },
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, atmel_tcb_pwm_dt_ids);
|
|
|
|
static struct platform_driver atmel_tcb_pwm_driver = {
|
|
.driver = {
|
|
.name = "atmel-tcb-pwm",
|
|
.of_match_table = atmel_tcb_pwm_dt_ids,
|
|
},
|
|
.probe = atmel_tcb_pwm_probe,
|
|
.remove = atmel_tcb_pwm_remove,
|
|
};
|
|
module_platform_driver(atmel_tcb_pwm_driver);
|
|
|
|
MODULE_AUTHOR("Boris BREZILLON <b.brezillon@overkiz.com>");
|
|
MODULE_DESCRIPTION("Atmel Timer Counter Pulse Width Modulation Driver");
|
|
MODULE_LICENSE("GPL v2");
|