mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 18:14:04 +00:00
112124ab0a
Limit sampling rate to transition_latency * 100 or kernel limits. If sampling_rate is tried to be set too low, set the lowest allowed value. Signed-off-by: Thomas Renninger <trenn@suse.de> Signed-off-by: Dave Jones <davej@redhat.com>
711 lines
19 KiB
C
711 lines
19 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_ondemand.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* Jun Nakajima <jun.nakajima@intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/sched.h>
|
|
|
|
/*
|
|
* dbs is used in this file as a shortform for demandbased switching
|
|
* It helps to keep variable names smaller, simpler
|
|
*/
|
|
|
|
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
|
|
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
|
|
#define MIN_FREQUENCY_UP_THRESHOLD (11)
|
|
#define MAX_FREQUENCY_UP_THRESHOLD (100)
|
|
|
|
/*
|
|
* The polling frequency of this governor depends on the capability of
|
|
* the processor. Default polling frequency is 1000 times the transition
|
|
* latency of the processor. The governor will work on any processor with
|
|
* transition latency <= 10mS, using appropriate sampling
|
|
* rate.
|
|
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
|
|
* this governor will not work.
|
|
* All times here are in uS.
|
|
*/
|
|
static unsigned int def_sampling_rate;
|
|
#define MIN_SAMPLING_RATE_RATIO (2)
|
|
/* for correct statistics, we need at least 10 ticks between each measure */
|
|
#define MIN_STAT_SAMPLING_RATE \
|
|
(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
|
|
#define MIN_SAMPLING_RATE \
|
|
(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
|
|
/* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
|
|
* Define the minimal settable sampling rate to the greater of:
|
|
* - "HW transition latency" * 100 (same as default sampling / 10)
|
|
* - MIN_STAT_SAMPLING_RATE
|
|
* To avoid that userspace shoots itself.
|
|
*/
|
|
static unsigned int minimum_sampling_rate(void)
|
|
{
|
|
return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
|
|
}
|
|
|
|
/* This will also vanish soon with removing sampling_rate_max */
|
|
#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
|
|
#define LATENCY_MULTIPLIER (1000)
|
|
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
|
|
|
|
static void do_dbs_timer(struct work_struct *work);
|
|
|
|
/* Sampling types */
|
|
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
|
|
|
|
struct cpu_dbs_info_s {
|
|
cputime64_t prev_cpu_idle;
|
|
cputime64_t prev_cpu_wall;
|
|
cputime64_t prev_cpu_nice;
|
|
struct cpufreq_policy *cur_policy;
|
|
struct delayed_work work;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int freq_lo;
|
|
unsigned int freq_lo_jiffies;
|
|
unsigned int freq_hi_jiffies;
|
|
int cpu;
|
|
unsigned int enable:1,
|
|
sample_type:1;
|
|
};
|
|
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
|
|
|
|
static unsigned int dbs_enable; /* number of CPUs using this policy */
|
|
|
|
/*
|
|
* DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
|
|
* lock and dbs_mutex. cpu_hotplug lock should always be held before
|
|
* dbs_mutex. If any function that can potentially take cpu_hotplug lock
|
|
* (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
|
|
* cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
|
|
* is recursive for the same process. -Venki
|
|
*/
|
|
static DEFINE_MUTEX(dbs_mutex);
|
|
|
|
static struct workqueue_struct *kondemand_wq;
|
|
|
|
static struct dbs_tuners {
|
|
unsigned int sampling_rate;
|
|
unsigned int up_threshold;
|
|
unsigned int down_differential;
|
|
unsigned int ignore_nice;
|
|
unsigned int powersave_bias;
|
|
} dbs_tuners_ins = {
|
|
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
|
|
.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
|
|
.ignore_nice = 0,
|
|
.powersave_bias = 0,
|
|
};
|
|
|
|
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
|
|
cputime64_t *wall)
|
|
{
|
|
cputime64_t idle_time;
|
|
cputime64_t cur_wall_time;
|
|
cputime64_t busy_time;
|
|
|
|
cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
|
|
busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
|
|
kstat_cpu(cpu).cpustat.system);
|
|
|
|
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
|
|
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
|
|
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
|
|
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
|
|
|
|
idle_time = cputime64_sub(cur_wall_time, busy_time);
|
|
if (wall)
|
|
*wall = cur_wall_time;
|
|
|
|
return idle_time;
|
|
}
|
|
|
|
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
|
|
{
|
|
u64 idle_time = get_cpu_idle_time_us(cpu, wall);
|
|
|
|
if (idle_time == -1ULL)
|
|
return get_cpu_idle_time_jiffy(cpu, wall);
|
|
|
|
return idle_time;
|
|
}
|
|
|
|
/*
|
|
* Find right freq to be set now with powersave_bias on.
|
|
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
|
|
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
|
|
*/
|
|
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
|
|
unsigned int freq_next,
|
|
unsigned int relation)
|
|
{
|
|
unsigned int freq_req, freq_reduc, freq_avg;
|
|
unsigned int freq_hi, freq_lo;
|
|
unsigned int index = 0;
|
|
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
|
|
struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
|
|
|
|
if (!dbs_info->freq_table) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_next;
|
|
}
|
|
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
|
|
relation, &index);
|
|
freq_req = dbs_info->freq_table[index].frequency;
|
|
freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
|
|
freq_avg = freq_req - freq_reduc;
|
|
|
|
/* Find freq bounds for freq_avg in freq_table */
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_H, &index);
|
|
freq_lo = dbs_info->freq_table[index].frequency;
|
|
index = 0;
|
|
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
|
|
CPUFREQ_RELATION_L, &index);
|
|
freq_hi = dbs_info->freq_table[index].frequency;
|
|
|
|
/* Find out how long we have to be in hi and lo freqs */
|
|
if (freq_hi == freq_lo) {
|
|
dbs_info->freq_lo = 0;
|
|
dbs_info->freq_lo_jiffies = 0;
|
|
return freq_lo;
|
|
}
|
|
jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
|
|
jiffies_hi += ((freq_hi - freq_lo) / 2);
|
|
jiffies_hi /= (freq_hi - freq_lo);
|
|
jiffies_lo = jiffies_total - jiffies_hi;
|
|
dbs_info->freq_lo = freq_lo;
|
|
dbs_info->freq_lo_jiffies = jiffies_lo;
|
|
dbs_info->freq_hi_jiffies = jiffies_hi;
|
|
return freq_hi;
|
|
}
|
|
|
|
static void ondemand_powersave_bias_init(void)
|
|
{
|
|
int i;
|
|
for_each_online_cpu(i) {
|
|
struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
|
|
dbs_info->freq_table = cpufreq_frequency_get_table(i);
|
|
dbs_info->freq_lo = 0;
|
|
}
|
|
}
|
|
|
|
/************************** sysfs interface ************************/
|
|
static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
static int print_once;
|
|
|
|
if (!print_once) {
|
|
printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
|
|
"sysfs file is deprecated - used by: %s\n",
|
|
current->comm);
|
|
print_once = 1;
|
|
}
|
|
return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
|
|
}
|
|
|
|
static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
|
|
{
|
|
static int print_once;
|
|
|
|
if (!print_once) {
|
|
printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
|
|
"sysfs file is deprecated - used by: %s\n",
|
|
current->comm);
|
|
print_once = 1;
|
|
}
|
|
return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
|
|
}
|
|
|
|
#define define_one_ro(_name) \
|
|
static struct freq_attr _name = \
|
|
__ATTR(_name, 0444, show_##_name, NULL)
|
|
|
|
define_one_ro(sampling_rate_max);
|
|
define_one_ro(sampling_rate_min);
|
|
|
|
/* cpufreq_ondemand Governor Tunables */
|
|
#define show_one(file_name, object) \
|
|
static ssize_t show_##file_name \
|
|
(struct cpufreq_policy *unused, char *buf) \
|
|
{ \
|
|
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
|
|
}
|
|
show_one(sampling_rate, sampling_rate);
|
|
show_one(up_threshold, up_threshold);
|
|
show_one(ignore_nice_load, ignore_nice);
|
|
show_one(powersave_bias, powersave_bias);
|
|
|
|
static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if (ret != 1) {
|
|
mutex_unlock(&dbs_mutex);
|
|
return -EINVAL;
|
|
}
|
|
dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_up_threshold(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
|
|
input < MIN_FREQUENCY_UP_THRESHOLD) {
|
|
mutex_unlock(&dbs_mutex);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dbs_tuners_ins.up_threshold = input;
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
unsigned int j;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1)
|
|
input = 1;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
|
|
mutex_unlock(&dbs_mutex);
|
|
return count;
|
|
}
|
|
dbs_tuners_ins.ignore_nice = input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle */
|
|
for_each_online_cpu(j) {
|
|
struct cpu_dbs_info_s *dbs_info;
|
|
dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
|
|
&dbs_info->prev_cpu_wall);
|
|
if (dbs_tuners_ins.ignore_nice)
|
|
dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
|
|
|
|
}
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1000)
|
|
input = 1000;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
dbs_tuners_ins.powersave_bias = input;
|
|
ondemand_powersave_bias_init();
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
#define define_one_rw(_name) \
|
|
static struct freq_attr _name = \
|
|
__ATTR(_name, 0644, show_##_name, store_##_name)
|
|
|
|
define_one_rw(sampling_rate);
|
|
define_one_rw(up_threshold);
|
|
define_one_rw(ignore_nice_load);
|
|
define_one_rw(powersave_bias);
|
|
|
|
static struct attribute *dbs_attributes[] = {
|
|
&sampling_rate_max.attr,
|
|
&sampling_rate_min.attr,
|
|
&sampling_rate.attr,
|
|
&up_threshold.attr,
|
|
&ignore_nice_load.attr,
|
|
&powersave_bias.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group dbs_attr_group = {
|
|
.attrs = dbs_attributes,
|
|
.name = "ondemand",
|
|
};
|
|
|
|
/************************** sysfs end ************************/
|
|
|
|
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
|
|
{
|
|
unsigned int max_load_freq;
|
|
|
|
struct cpufreq_policy *policy;
|
|
unsigned int j;
|
|
|
|
if (!this_dbs_info->enable)
|
|
return;
|
|
|
|
this_dbs_info->freq_lo = 0;
|
|
policy = this_dbs_info->cur_policy;
|
|
|
|
/*
|
|
* Every sampling_rate, we check, if current idle time is less
|
|
* than 20% (default), then we try to increase frequency
|
|
* Every sampling_rate, we look for a the lowest
|
|
* frequency which can sustain the load while keeping idle time over
|
|
* 30%. If such a frequency exist, we try to decrease to this frequency.
|
|
*
|
|
* Any frequency increase takes it to the maximum frequency.
|
|
* Frequency reduction happens at minimum steps of
|
|
* 5% (default) of current frequency
|
|
*/
|
|
|
|
/* Get Absolute Load - in terms of freq */
|
|
max_load_freq = 0;
|
|
|
|
for_each_cpu(j, policy->cpus) {
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
cputime64_t cur_wall_time, cur_idle_time;
|
|
unsigned int idle_time, wall_time;
|
|
unsigned int load, load_freq;
|
|
int freq_avg;
|
|
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
|
|
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
|
|
|
|
wall_time = (unsigned int) cputime64_sub(cur_wall_time,
|
|
j_dbs_info->prev_cpu_wall);
|
|
j_dbs_info->prev_cpu_wall = cur_wall_time;
|
|
|
|
idle_time = (unsigned int) cputime64_sub(cur_idle_time,
|
|
j_dbs_info->prev_cpu_idle);
|
|
j_dbs_info->prev_cpu_idle = cur_idle_time;
|
|
|
|
if (dbs_tuners_ins.ignore_nice) {
|
|
cputime64_t cur_nice;
|
|
unsigned long cur_nice_jiffies;
|
|
|
|
cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
|
|
j_dbs_info->prev_cpu_nice);
|
|
/*
|
|
* Assumption: nice time between sampling periods will
|
|
* be less than 2^32 jiffies for 32 bit sys
|
|
*/
|
|
cur_nice_jiffies = (unsigned long)
|
|
cputime64_to_jiffies64(cur_nice);
|
|
|
|
j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
|
|
idle_time += jiffies_to_usecs(cur_nice_jiffies);
|
|
}
|
|
|
|
if (unlikely(!wall_time || wall_time < idle_time))
|
|
continue;
|
|
|
|
load = 100 * (wall_time - idle_time) / wall_time;
|
|
|
|
freq_avg = __cpufreq_driver_getavg(policy, j);
|
|
if (freq_avg <= 0)
|
|
freq_avg = policy->cur;
|
|
|
|
load_freq = load * freq_avg;
|
|
if (load_freq > max_load_freq)
|
|
max_load_freq = load_freq;
|
|
}
|
|
|
|
/* Check for frequency increase */
|
|
if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
|
|
/* if we are already at full speed then break out early */
|
|
if (!dbs_tuners_ins.powersave_bias) {
|
|
if (policy->cur == policy->max)
|
|
return;
|
|
|
|
__cpufreq_driver_target(policy, policy->max,
|
|
CPUFREQ_RELATION_H);
|
|
} else {
|
|
int freq = powersave_bias_target(policy, policy->max,
|
|
CPUFREQ_RELATION_H);
|
|
__cpufreq_driver_target(policy, freq,
|
|
CPUFREQ_RELATION_L);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Check for frequency decrease */
|
|
/* if we cannot reduce the frequency anymore, break out early */
|
|
if (policy->cur == policy->min)
|
|
return;
|
|
|
|
/*
|
|
* The optimal frequency is the frequency that is the lowest that
|
|
* can support the current CPU usage without triggering the up
|
|
* policy. To be safe, we focus 10 points under the threshold.
|
|
*/
|
|
if (max_load_freq <
|
|
(dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
|
|
policy->cur) {
|
|
unsigned int freq_next;
|
|
freq_next = max_load_freq /
|
|
(dbs_tuners_ins.up_threshold -
|
|
dbs_tuners_ins.down_differential);
|
|
|
|
if (!dbs_tuners_ins.powersave_bias) {
|
|
__cpufreq_driver_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
} else {
|
|
int freq = powersave_bias_target(policy, freq_next,
|
|
CPUFREQ_RELATION_L);
|
|
__cpufreq_driver_target(policy, freq,
|
|
CPUFREQ_RELATION_L);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_dbs_timer(struct work_struct *work)
|
|
{
|
|
struct cpu_dbs_info_s *dbs_info =
|
|
container_of(work, struct cpu_dbs_info_s, work.work);
|
|
unsigned int cpu = dbs_info->cpu;
|
|
int sample_type = dbs_info->sample_type;
|
|
|
|
/* We want all CPUs to do sampling nearly on same jiffy */
|
|
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
|
|
delay -= jiffies % delay;
|
|
|
|
if (lock_policy_rwsem_write(cpu) < 0)
|
|
return;
|
|
|
|
if (!dbs_info->enable) {
|
|
unlock_policy_rwsem_write(cpu);
|
|
return;
|
|
}
|
|
|
|
/* Common NORMAL_SAMPLE setup */
|
|
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
|
|
if (!dbs_tuners_ins.powersave_bias ||
|
|
sample_type == DBS_NORMAL_SAMPLE) {
|
|
dbs_check_cpu(dbs_info);
|
|
if (dbs_info->freq_lo) {
|
|
/* Setup timer for SUB_SAMPLE */
|
|
dbs_info->sample_type = DBS_SUB_SAMPLE;
|
|
delay = dbs_info->freq_hi_jiffies;
|
|
}
|
|
} else {
|
|
__cpufreq_driver_target(dbs_info->cur_policy,
|
|
dbs_info->freq_lo, CPUFREQ_RELATION_H);
|
|
}
|
|
queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
|
|
unlock_policy_rwsem_write(cpu);
|
|
}
|
|
|
|
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
|
|
{
|
|
/* We want all CPUs to do sampling nearly on same jiffy */
|
|
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
delay -= jiffies % delay;
|
|
|
|
dbs_info->enable = 1;
|
|
ondemand_powersave_bias_init();
|
|
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
|
|
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
|
|
queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
|
|
delay);
|
|
}
|
|
|
|
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
|
|
{
|
|
dbs_info->enable = 0;
|
|
cancel_delayed_work(&dbs_info->work);
|
|
}
|
|
|
|
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
unsigned int cpu = policy->cpu;
|
|
struct cpu_dbs_info_s *this_dbs_info;
|
|
unsigned int j;
|
|
int rc;
|
|
|
|
this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
|
|
|
|
switch (event) {
|
|
case CPUFREQ_GOV_START:
|
|
if ((!cpu_online(cpu)) || (!policy->cur))
|
|
return -EINVAL;
|
|
|
|
if (this_dbs_info->enable) /* Already enabled */
|
|
break;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
dbs_enable++;
|
|
|
|
rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
|
|
if (rc) {
|
|
dbs_enable--;
|
|
mutex_unlock(&dbs_mutex);
|
|
return rc;
|
|
}
|
|
|
|
for_each_cpu(j, policy->cpus) {
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
j_dbs_info = &per_cpu(cpu_dbs_info, j);
|
|
j_dbs_info->cur_policy = policy;
|
|
|
|
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
|
|
&j_dbs_info->prev_cpu_wall);
|
|
if (dbs_tuners_ins.ignore_nice) {
|
|
j_dbs_info->prev_cpu_nice =
|
|
kstat_cpu(j).cpustat.nice;
|
|
}
|
|
}
|
|
this_dbs_info->cpu = cpu;
|
|
/*
|
|
* Start the timerschedule work, when this governor
|
|
* is used for first time
|
|
*/
|
|
if (dbs_enable == 1) {
|
|
unsigned int latency;
|
|
/* policy latency is in nS. Convert it to uS first */
|
|
latency = policy->cpuinfo.transition_latency / 1000;
|
|
if (latency == 0)
|
|
latency = 1;
|
|
|
|
def_sampling_rate =
|
|
max(latency * LATENCY_MULTIPLIER,
|
|
MIN_STAT_SAMPLING_RATE);
|
|
|
|
dbs_tuners_ins.sampling_rate = def_sampling_rate;
|
|
}
|
|
dbs_timer_init(this_dbs_info);
|
|
|
|
mutex_unlock(&dbs_mutex);
|
|
break;
|
|
|
|
case CPUFREQ_GOV_STOP:
|
|
mutex_lock(&dbs_mutex);
|
|
dbs_timer_exit(this_dbs_info);
|
|
sysfs_remove_group(&policy->kobj, &dbs_attr_group);
|
|
dbs_enable--;
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
break;
|
|
|
|
case CPUFREQ_GOV_LIMITS:
|
|
mutex_lock(&dbs_mutex);
|
|
if (policy->max < this_dbs_info->cur_policy->cur)
|
|
__cpufreq_driver_target(this_dbs_info->cur_policy,
|
|
policy->max, CPUFREQ_RELATION_H);
|
|
else if (policy->min > this_dbs_info->cur_policy->cur)
|
|
__cpufreq_driver_target(this_dbs_info->cur_policy,
|
|
policy->min, CPUFREQ_RELATION_L);
|
|
mutex_unlock(&dbs_mutex);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_ondemand = {
|
|
.name = "ondemand",
|
|
.governor = cpufreq_governor_dbs,
|
|
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cpufreq_gov_dbs_init(void)
|
|
{
|
|
int err;
|
|
cputime64_t wall;
|
|
u64 idle_time;
|
|
int cpu = get_cpu();
|
|
|
|
idle_time = get_cpu_idle_time_us(cpu, &wall);
|
|
put_cpu();
|
|
if (idle_time != -1ULL) {
|
|
/* Idle micro accounting is supported. Use finer thresholds */
|
|
dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
|
|
dbs_tuners_ins.down_differential =
|
|
MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
|
|
}
|
|
|
|
kondemand_wq = create_workqueue("kondemand");
|
|
if (!kondemand_wq) {
|
|
printk(KERN_ERR "Creation of kondemand failed\n");
|
|
return -EFAULT;
|
|
}
|
|
err = cpufreq_register_governor(&cpufreq_gov_ondemand);
|
|
if (err)
|
|
destroy_workqueue(kondemand_wq);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void __exit cpufreq_gov_dbs_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
|
|
destroy_workqueue(kondemand_wq);
|
|
}
|
|
|
|
|
|
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
|
|
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
|
|
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
|
|
"Low Latency Frequency Transition capable processors");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
|
|
fs_initcall(cpufreq_gov_dbs_init);
|
|
#else
|
|
module_init(cpufreq_gov_dbs_init);
|
|
#endif
|
|
module_exit(cpufreq_gov_dbs_exit);
|