mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-18 15:48:59 +00:00
ebab89909e
The regression was caused by: commit[a32ea1e1f925399e0d81ca3f7394a44a6dafa12c] Fix read/truncate race This causes ntfs_readpage() to be called for a zero i_size inode, which failed when the file was compressed and non-resident. Thanks a lot to Mike Galbraith for reporting the issue and tracking down the commit that caused the regression. Looking into it I found three bugs which the patch fixes. Signed-off-by: Anton Altaparmakov <aia21@cantab.net> Tested-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2615 lines
90 KiB
C
2615 lines
90 KiB
C
/**
|
|
* attrib.c - NTFS attribute operations. Part of the Linux-NTFS project.
|
|
*
|
|
* Copyright (c) 2001-2007 Anton Altaparmakov
|
|
* Copyright (c) 2002 Richard Russon
|
|
*
|
|
* This program/include file is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published
|
|
* by the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program/include file is distributed in the hope that it will be
|
|
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
|
|
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program (in the main directory of the Linux-NTFS
|
|
* distribution in the file COPYING); if not, write to the Free Software
|
|
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/writeback.h>
|
|
|
|
#include "attrib.h"
|
|
#include "debug.h"
|
|
#include "layout.h"
|
|
#include "lcnalloc.h"
|
|
#include "malloc.h"
|
|
#include "mft.h"
|
|
#include "ntfs.h"
|
|
#include "types.h"
|
|
|
|
/**
|
|
* ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode
|
|
* @ni: ntfs inode for which to map (part of) a runlist
|
|
* @vcn: map runlist part containing this vcn
|
|
* @ctx: active attribute search context if present or NULL if not
|
|
*
|
|
* Map the part of a runlist containing the @vcn of the ntfs inode @ni.
|
|
*
|
|
* If @ctx is specified, it is an active search context of @ni and its base mft
|
|
* record. This is needed when ntfs_map_runlist_nolock() encounters unmapped
|
|
* runlist fragments and allows their mapping. If you do not have the mft
|
|
* record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock()
|
|
* will perform the necessary mapping and unmapping.
|
|
*
|
|
* Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and
|
|
* restores it before returning. Thus, @ctx will be left pointing to the same
|
|
* attribute on return as on entry. However, the actual pointers in @ctx may
|
|
* point to different memory locations on return, so you must remember to reset
|
|
* any cached pointers from the @ctx, i.e. after the call to
|
|
* ntfs_map_runlist_nolock(), you will probably want to do:
|
|
* m = ctx->mrec;
|
|
* a = ctx->attr;
|
|
* Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
|
|
* you cache ctx->mrec in a variable @m of type MFT_RECORD *.
|
|
*
|
|
* Return 0 on success and -errno on error. There is one special error code
|
|
* which is not an error as such. This is -ENOENT. It means that @vcn is out
|
|
* of bounds of the runlist.
|
|
*
|
|
* Note the runlist can be NULL after this function returns if @vcn is zero and
|
|
* the attribute has zero allocated size, i.e. there simply is no runlist.
|
|
*
|
|
* WARNING: If @ctx is supplied, regardless of whether success or failure is
|
|
* returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
|
|
* is no longer valid, i.e. you need to either call
|
|
* ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
|
|
* In that case PTR_ERR(@ctx->mrec) will give you the error code for
|
|
* why the mapping of the old inode failed.
|
|
*
|
|
* Locking: - The runlist described by @ni must be locked for writing on entry
|
|
* and is locked on return. Note the runlist will be modified.
|
|
* - If @ctx is NULL, the base mft record of @ni must not be mapped on
|
|
* entry and it will be left unmapped on return.
|
|
* - If @ctx is not NULL, the base mft record must be mapped on entry
|
|
* and it will be left mapped on return.
|
|
*/
|
|
int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
|
|
{
|
|
VCN end_vcn;
|
|
unsigned long flags;
|
|
ntfs_inode *base_ni;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
runlist_element *rl;
|
|
struct page *put_this_page = NULL;
|
|
int err = 0;
|
|
bool ctx_is_temporary, ctx_needs_reset;
|
|
ntfs_attr_search_ctx old_ctx = { NULL, };
|
|
|
|
ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
|
|
(unsigned long long)vcn);
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
if (!ctx) {
|
|
ctx_is_temporary = ctx_needs_reset = true;
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m))
|
|
return PTR_ERR(m);
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
} else {
|
|
VCN allocated_size_vcn;
|
|
|
|
BUG_ON(IS_ERR(ctx->mrec));
|
|
a = ctx->attr;
|
|
BUG_ON(!a->non_resident);
|
|
ctx_is_temporary = false;
|
|
end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
allocated_size_vcn = ni->allocated_size >>
|
|
ni->vol->cluster_size_bits;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
|
|
end_vcn = allocated_size_vcn - 1;
|
|
/*
|
|
* If we already have the attribute extent containing @vcn in
|
|
* @ctx, no need to look it up again. We slightly cheat in
|
|
* that if vcn exceeds the allocated size, we will refuse to
|
|
* map the runlist below, so there is definitely no need to get
|
|
* the right attribute extent.
|
|
*/
|
|
if (vcn >= allocated_size_vcn || (a->type == ni->type &&
|
|
a->name_length == ni->name_len &&
|
|
!memcmp((u8*)a + le16_to_cpu(a->name_offset),
|
|
ni->name, ni->name_len) &&
|
|
sle64_to_cpu(a->data.non_resident.lowest_vcn)
|
|
<= vcn && end_vcn >= vcn))
|
|
ctx_needs_reset = false;
|
|
else {
|
|
/* Save the old search context. */
|
|
old_ctx = *ctx;
|
|
/*
|
|
* If the currently mapped (extent) inode is not the
|
|
* base inode we will unmap it when we reinitialize the
|
|
* search context which means we need to get a
|
|
* reference to the page containing the mapped mft
|
|
* record so we do not accidentally drop changes to the
|
|
* mft record when it has not been marked dirty yet.
|
|
*/
|
|
if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
|
|
old_ctx.base_ntfs_ino) {
|
|
put_this_page = old_ctx.ntfs_ino->page;
|
|
page_cache_get(put_this_page);
|
|
}
|
|
/*
|
|
* Reinitialize the search context so we can lookup the
|
|
* needed attribute extent.
|
|
*/
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
ctx_needs_reset = true;
|
|
}
|
|
}
|
|
if (ctx_needs_reset) {
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, vcn, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
BUG_ON(!ctx->attr->non_resident);
|
|
}
|
|
a = ctx->attr;
|
|
/*
|
|
* Only decompress the mapping pairs if @vcn is inside it. Otherwise
|
|
* we get into problems when we try to map an out of bounds vcn because
|
|
* we then try to map the already mapped runlist fragment and
|
|
* ntfs_mapping_pairs_decompress() fails.
|
|
*/
|
|
end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
|
|
if (unlikely(vcn && vcn >= end_vcn)) {
|
|
err = -ENOENT;
|
|
goto err_out;
|
|
}
|
|
rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl);
|
|
if (IS_ERR(rl))
|
|
err = PTR_ERR(rl);
|
|
else
|
|
ni->runlist.rl = rl;
|
|
err_out:
|
|
if (ctx_is_temporary) {
|
|
if (likely(ctx))
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
} else if (ctx_needs_reset) {
|
|
/*
|
|
* If there is no attribute list, restoring the search context
|
|
* is acomplished simply by copying the saved context back over
|
|
* the caller supplied context. If there is an attribute list,
|
|
* things are more complicated as we need to deal with mapping
|
|
* of mft records and resulting potential changes in pointers.
|
|
*/
|
|
if (NInoAttrList(base_ni)) {
|
|
/*
|
|
* If the currently mapped (extent) inode is not the
|
|
* one we had before, we need to unmap it and map the
|
|
* old one.
|
|
*/
|
|
if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
|
|
/*
|
|
* If the currently mapped inode is not the
|
|
* base inode, unmap it.
|
|
*/
|
|
if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
|
|
ctx->base_ntfs_ino) {
|
|
unmap_extent_mft_record(ctx->ntfs_ino);
|
|
ctx->mrec = ctx->base_mrec;
|
|
BUG_ON(!ctx->mrec);
|
|
}
|
|
/*
|
|
* If the old mapped inode is not the base
|
|
* inode, map it.
|
|
*/
|
|
if (old_ctx.base_ntfs_ino &&
|
|
old_ctx.ntfs_ino !=
|
|
old_ctx.base_ntfs_ino) {
|
|
retry_map:
|
|
ctx->mrec = map_mft_record(
|
|
old_ctx.ntfs_ino);
|
|
/*
|
|
* Something bad has happened. If out
|
|
* of memory retry till it succeeds.
|
|
* Any other errors are fatal and we
|
|
* return the error code in ctx->mrec.
|
|
* Let the caller deal with it... We
|
|
* just need to fudge things so the
|
|
* caller can reinit and/or put the
|
|
* search context safely.
|
|
*/
|
|
if (IS_ERR(ctx->mrec)) {
|
|
if (PTR_ERR(ctx->mrec) ==
|
|
-ENOMEM) {
|
|
schedule();
|
|
goto retry_map;
|
|
} else
|
|
old_ctx.ntfs_ino =
|
|
old_ctx.
|
|
base_ntfs_ino;
|
|
}
|
|
}
|
|
}
|
|
/* Update the changed pointers in the saved context. */
|
|
if (ctx->mrec != old_ctx.mrec) {
|
|
if (!IS_ERR(ctx->mrec))
|
|
old_ctx.attr = (ATTR_RECORD*)(
|
|
(u8*)ctx->mrec +
|
|
((u8*)old_ctx.attr -
|
|
(u8*)old_ctx.mrec));
|
|
old_ctx.mrec = ctx->mrec;
|
|
}
|
|
}
|
|
/* Restore the search context to the saved one. */
|
|
*ctx = old_ctx;
|
|
/*
|
|
* We drop the reference on the page we took earlier. In the
|
|
* case that IS_ERR(ctx->mrec) is true this means we might lose
|
|
* some changes to the mft record that had been made between
|
|
* the last time it was marked dirty/written out and now. This
|
|
* at this stage is not a problem as the mapping error is fatal
|
|
* enough that the mft record cannot be written out anyway and
|
|
* the caller is very likely to shutdown the whole inode
|
|
* immediately and mark the volume dirty for chkdsk to pick up
|
|
* the pieces anyway.
|
|
*/
|
|
if (put_this_page)
|
|
page_cache_release(put_this_page);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_map_runlist - map (a part of) a runlist of an ntfs inode
|
|
* @ni: ntfs inode for which to map (part of) a runlist
|
|
* @vcn: map runlist part containing this vcn
|
|
*
|
|
* Map the part of a runlist containing the @vcn of the ntfs inode @ni.
|
|
*
|
|
* Return 0 on success and -errno on error. There is one special error code
|
|
* which is not an error as such. This is -ENOENT. It means that @vcn is out
|
|
* of bounds of the runlist.
|
|
*
|
|
* Locking: - The runlist must be unlocked on entry and is unlocked on return.
|
|
* - This function takes the runlist lock for writing and may modify
|
|
* the runlist.
|
|
*/
|
|
int ntfs_map_runlist(ntfs_inode *ni, VCN vcn)
|
|
{
|
|
int err = 0;
|
|
|
|
down_write(&ni->runlist.lock);
|
|
/* Make sure someone else didn't do the work while we were sleeping. */
|
|
if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <=
|
|
LCN_RL_NOT_MAPPED))
|
|
err = ntfs_map_runlist_nolock(ni, vcn, NULL);
|
|
up_write(&ni->runlist.lock);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode
|
|
* @ni: ntfs inode of the attribute whose runlist to search
|
|
* @vcn: vcn to convert
|
|
* @write_locked: true if the runlist is locked for writing
|
|
*
|
|
* Find the virtual cluster number @vcn in the runlist of the ntfs attribute
|
|
* described by the ntfs inode @ni and return the corresponding logical cluster
|
|
* number (lcn).
|
|
*
|
|
* If the @vcn is not mapped yet, the attempt is made to map the attribute
|
|
* extent containing the @vcn and the vcn to lcn conversion is retried.
|
|
*
|
|
* If @write_locked is true the caller has locked the runlist for writing and
|
|
* if false for reading.
|
|
*
|
|
* Since lcns must be >= 0, we use negative return codes with special meaning:
|
|
*
|
|
* Return code Meaning / Description
|
|
* ==========================================
|
|
* LCN_HOLE Hole / not allocated on disk.
|
|
* LCN_ENOENT There is no such vcn in the runlist, i.e. @vcn is out of bounds.
|
|
* LCN_ENOMEM Not enough memory to map runlist.
|
|
* LCN_EIO Critical error (runlist/file is corrupt, i/o error, etc).
|
|
*
|
|
* Locking: - The runlist must be locked on entry and is left locked on return.
|
|
* - If @write_locked is 'false', i.e. the runlist is locked for reading,
|
|
* the lock may be dropped inside the function so you cannot rely on
|
|
* the runlist still being the same when this function returns.
|
|
*/
|
|
LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn,
|
|
const bool write_locked)
|
|
{
|
|
LCN lcn;
|
|
unsigned long flags;
|
|
bool is_retry = false;
|
|
|
|
ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.",
|
|
ni->mft_no, (unsigned long long)vcn,
|
|
write_locked ? "write" : "read");
|
|
BUG_ON(!ni);
|
|
BUG_ON(!NInoNonResident(ni));
|
|
BUG_ON(vcn < 0);
|
|
if (!ni->runlist.rl) {
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
if (!ni->allocated_size) {
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
return LCN_ENOENT;
|
|
}
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
}
|
|
retry_remap:
|
|
/* Convert vcn to lcn. If that fails map the runlist and retry once. */
|
|
lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn);
|
|
if (likely(lcn >= LCN_HOLE)) {
|
|
ntfs_debug("Done, lcn 0x%llx.", (long long)lcn);
|
|
return lcn;
|
|
}
|
|
if (lcn != LCN_RL_NOT_MAPPED) {
|
|
if (lcn != LCN_ENOENT)
|
|
lcn = LCN_EIO;
|
|
} else if (!is_retry) {
|
|
int err;
|
|
|
|
if (!write_locked) {
|
|
up_read(&ni->runlist.lock);
|
|
down_write(&ni->runlist.lock);
|
|
if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) !=
|
|
LCN_RL_NOT_MAPPED)) {
|
|
up_write(&ni->runlist.lock);
|
|
down_read(&ni->runlist.lock);
|
|
goto retry_remap;
|
|
}
|
|
}
|
|
err = ntfs_map_runlist_nolock(ni, vcn, NULL);
|
|
if (!write_locked) {
|
|
up_write(&ni->runlist.lock);
|
|
down_read(&ni->runlist.lock);
|
|
}
|
|
if (likely(!err)) {
|
|
is_retry = true;
|
|
goto retry_remap;
|
|
}
|
|
if (err == -ENOENT)
|
|
lcn = LCN_ENOENT;
|
|
else if (err == -ENOMEM)
|
|
lcn = LCN_ENOMEM;
|
|
else
|
|
lcn = LCN_EIO;
|
|
}
|
|
if (lcn != LCN_ENOENT)
|
|
ntfs_error(ni->vol->sb, "Failed with error code %lli.",
|
|
(long long)lcn);
|
|
return lcn;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode
|
|
* @ni: ntfs inode describing the runlist to search
|
|
* @vcn: vcn to find
|
|
* @ctx: active attribute search context if present or NULL if not
|
|
*
|
|
* Find the virtual cluster number @vcn in the runlist described by the ntfs
|
|
* inode @ni and return the address of the runlist element containing the @vcn.
|
|
*
|
|
* If the @vcn is not mapped yet, the attempt is made to map the attribute
|
|
* extent containing the @vcn and the vcn to lcn conversion is retried.
|
|
*
|
|
* If @ctx is specified, it is an active search context of @ni and its base mft
|
|
* record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped
|
|
* runlist fragments and allows their mapping. If you do not have the mft
|
|
* record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock()
|
|
* will perform the necessary mapping and unmapping.
|
|
*
|
|
* Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and
|
|
* restores it before returning. Thus, @ctx will be left pointing to the same
|
|
* attribute on return as on entry. However, the actual pointers in @ctx may
|
|
* point to different memory locations on return, so you must remember to reset
|
|
* any cached pointers from the @ctx, i.e. after the call to
|
|
* ntfs_attr_find_vcn_nolock(), you will probably want to do:
|
|
* m = ctx->mrec;
|
|
* a = ctx->attr;
|
|
* Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
|
|
* you cache ctx->mrec in a variable @m of type MFT_RECORD *.
|
|
* Note you need to distinguish between the lcn of the returned runlist element
|
|
* being >= 0 and LCN_HOLE. In the later case you have to return zeroes on
|
|
* read and allocate clusters on write.
|
|
*
|
|
* Return the runlist element containing the @vcn on success and
|
|
* ERR_PTR(-errno) on error. You need to test the return value with IS_ERR()
|
|
* to decide if the return is success or failure and PTR_ERR() to get to the
|
|
* error code if IS_ERR() is true.
|
|
*
|
|
* The possible error return codes are:
|
|
* -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds.
|
|
* -ENOMEM - Not enough memory to map runlist.
|
|
* -EIO - Critical error (runlist/file is corrupt, i/o error, etc).
|
|
*
|
|
* WARNING: If @ctx is supplied, regardless of whether success or failure is
|
|
* returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
|
|
* is no longer valid, i.e. you need to either call
|
|
* ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
|
|
* In that case PTR_ERR(@ctx->mrec) will give you the error code for
|
|
* why the mapping of the old inode failed.
|
|
*
|
|
* Locking: - The runlist described by @ni must be locked for writing on entry
|
|
* and is locked on return. Note the runlist may be modified when
|
|
* needed runlist fragments need to be mapped.
|
|
* - If @ctx is NULL, the base mft record of @ni must not be mapped on
|
|
* entry and it will be left unmapped on return.
|
|
* - If @ctx is not NULL, the base mft record must be mapped on entry
|
|
* and it will be left mapped on return.
|
|
*/
|
|
runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn,
|
|
ntfs_attr_search_ctx *ctx)
|
|
{
|
|
unsigned long flags;
|
|
runlist_element *rl;
|
|
int err = 0;
|
|
bool is_retry = false;
|
|
|
|
ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.",
|
|
ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out");
|
|
BUG_ON(!ni);
|
|
BUG_ON(!NInoNonResident(ni));
|
|
BUG_ON(vcn < 0);
|
|
if (!ni->runlist.rl) {
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
if (!ni->allocated_size) {
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
}
|
|
retry_remap:
|
|
rl = ni->runlist.rl;
|
|
if (likely(rl && vcn >= rl[0].vcn)) {
|
|
while (likely(rl->length)) {
|
|
if (unlikely(vcn < rl[1].vcn)) {
|
|
if (likely(rl->lcn >= LCN_HOLE)) {
|
|
ntfs_debug("Done.");
|
|
return rl;
|
|
}
|
|
break;
|
|
}
|
|
rl++;
|
|
}
|
|
if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) {
|
|
if (likely(rl->lcn == LCN_ENOENT))
|
|
err = -ENOENT;
|
|
else
|
|
err = -EIO;
|
|
}
|
|
}
|
|
if (!err && !is_retry) {
|
|
/*
|
|
* If the search context is invalid we cannot map the unmapped
|
|
* region.
|
|
*/
|
|
if (IS_ERR(ctx->mrec))
|
|
err = PTR_ERR(ctx->mrec);
|
|
else {
|
|
/*
|
|
* The @vcn is in an unmapped region, map the runlist
|
|
* and retry.
|
|
*/
|
|
err = ntfs_map_runlist_nolock(ni, vcn, ctx);
|
|
if (likely(!err)) {
|
|
is_retry = true;
|
|
goto retry_remap;
|
|
}
|
|
}
|
|
if (err == -EINVAL)
|
|
err = -EIO;
|
|
} else if (!err)
|
|
err = -EIO;
|
|
if (err != -ENOENT)
|
|
ntfs_error(ni->vol->sb, "Failed with error code %i.", err);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_find - find (next) attribute in mft record
|
|
* @type: attribute type to find
|
|
* @name: attribute name to find (optional, i.e. NULL means don't care)
|
|
* @name_len: attribute name length (only needed if @name present)
|
|
* @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
|
|
* @val: attribute value to find (optional, resident attributes only)
|
|
* @val_len: attribute value length
|
|
* @ctx: search context with mft record and attribute to search from
|
|
*
|
|
* You should not need to call this function directly. Use ntfs_attr_lookup()
|
|
* instead.
|
|
*
|
|
* ntfs_attr_find() takes a search context @ctx as parameter and searches the
|
|
* mft record specified by @ctx->mrec, beginning at @ctx->attr, for an
|
|
* attribute of @type, optionally @name and @val.
|
|
*
|
|
* If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will
|
|
* point to the found attribute.
|
|
*
|
|
* If the attribute is not found, ntfs_attr_find() returns -ENOENT and
|
|
* @ctx->attr will point to the attribute before which the attribute being
|
|
* searched for would need to be inserted if such an action were to be desired.
|
|
*
|
|
* On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is
|
|
* undefined and in particular do not rely on it not changing.
|
|
*
|
|
* If @ctx->is_first is 'true', the search begins with @ctx->attr itself. If it
|
|
* is 'false', the search begins after @ctx->attr.
|
|
*
|
|
* If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and
|
|
* @ctx->ntfs_ino must be set to the ntfs inode to which the mft record
|
|
* @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at
|
|
* the upcase table. If @ic is CASE_SENSITIVE, the comparison is case
|
|
* sensitive. When @name is present, @name_len is the @name length in Unicode
|
|
* characters.
|
|
*
|
|
* If @name is not present (NULL), we assume that the unnamed attribute is
|
|
* being searched for.
|
|
*
|
|
* Finally, the resident attribute value @val is looked for, if present. If
|
|
* @val is not present (NULL), @val_len is ignored.
|
|
*
|
|
* ntfs_attr_find() only searches the specified mft record and it ignores the
|
|
* presence of an attribute list attribute (unless it is the one being searched
|
|
* for, obviously). If you need to take attribute lists into consideration,
|
|
* use ntfs_attr_lookup() instead (see below). This also means that you cannot
|
|
* use ntfs_attr_find() to search for extent records of non-resident
|
|
* attributes, as extents with lowest_vcn != 0 are usually described by the
|
|
* attribute list attribute only. - Note that it is possible that the first
|
|
* extent is only in the attribute list while the last extent is in the base
|
|
* mft record, so do not rely on being able to find the first extent in the
|
|
* base mft record.
|
|
*
|
|
* Warning: Never use @val when looking for attribute types which can be
|
|
* non-resident as this most likely will result in a crash!
|
|
*/
|
|
static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name,
|
|
const u32 name_len, const IGNORE_CASE_BOOL ic,
|
|
const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
|
|
{
|
|
ATTR_RECORD *a;
|
|
ntfs_volume *vol = ctx->ntfs_ino->vol;
|
|
ntfschar *upcase = vol->upcase;
|
|
u32 upcase_len = vol->upcase_len;
|
|
|
|
/*
|
|
* Iterate over attributes in mft record starting at @ctx->attr, or the
|
|
* attribute following that, if @ctx->is_first is 'true'.
|
|
*/
|
|
if (ctx->is_first) {
|
|
a = ctx->attr;
|
|
ctx->is_first = false;
|
|
} else
|
|
a = (ATTR_RECORD*)((u8*)ctx->attr +
|
|
le32_to_cpu(ctx->attr->length));
|
|
for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) {
|
|
if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
|
|
le32_to_cpu(ctx->mrec->bytes_allocated))
|
|
break;
|
|
ctx->attr = a;
|
|
if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) ||
|
|
a->type == AT_END))
|
|
return -ENOENT;
|
|
if (unlikely(!a->length))
|
|
break;
|
|
if (a->type != type)
|
|
continue;
|
|
/*
|
|
* If @name is present, compare the two names. If @name is
|
|
* missing, assume we want an unnamed attribute.
|
|
*/
|
|
if (!name) {
|
|
/* The search failed if the found attribute is named. */
|
|
if (a->name_length)
|
|
return -ENOENT;
|
|
} else if (!ntfs_are_names_equal(name, name_len,
|
|
(ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
|
|
a->name_length, ic, upcase, upcase_len)) {
|
|
register int rc;
|
|
|
|
rc = ntfs_collate_names(name, name_len,
|
|
(ntfschar*)((u8*)a +
|
|
le16_to_cpu(a->name_offset)),
|
|
a->name_length, 1, IGNORE_CASE,
|
|
upcase, upcase_len);
|
|
/*
|
|
* If @name collates before a->name, there is no
|
|
* matching attribute.
|
|
*/
|
|
if (rc == -1)
|
|
return -ENOENT;
|
|
/* If the strings are not equal, continue search. */
|
|
if (rc)
|
|
continue;
|
|
rc = ntfs_collate_names(name, name_len,
|
|
(ntfschar*)((u8*)a +
|
|
le16_to_cpu(a->name_offset)),
|
|
a->name_length, 1, CASE_SENSITIVE,
|
|
upcase, upcase_len);
|
|
if (rc == -1)
|
|
return -ENOENT;
|
|
if (rc)
|
|
continue;
|
|
}
|
|
/*
|
|
* The names match or @name not present and attribute is
|
|
* unnamed. If no @val specified, we have found the attribute
|
|
* and are done.
|
|
*/
|
|
if (!val)
|
|
return 0;
|
|
/* @val is present; compare values. */
|
|
else {
|
|
register int rc;
|
|
|
|
rc = memcmp(val, (u8*)a + le16_to_cpu(
|
|
a->data.resident.value_offset),
|
|
min_t(u32, val_len, le32_to_cpu(
|
|
a->data.resident.value_length)));
|
|
/*
|
|
* If @val collates before the current attribute's
|
|
* value, there is no matching attribute.
|
|
*/
|
|
if (!rc) {
|
|
register u32 avl;
|
|
|
|
avl = le32_to_cpu(
|
|
a->data.resident.value_length);
|
|
if (val_len == avl)
|
|
return 0;
|
|
if (val_len < avl)
|
|
return -ENOENT;
|
|
} else if (rc < 0)
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk.");
|
|
NVolSetErrors(vol);
|
|
return -EIO;
|
|
}
|
|
|
|
/**
|
|
* load_attribute_list - load an attribute list into memory
|
|
* @vol: ntfs volume from which to read
|
|
* @runlist: runlist of the attribute list
|
|
* @al_start: destination buffer
|
|
* @size: size of the destination buffer in bytes
|
|
* @initialized_size: initialized size of the attribute list
|
|
*
|
|
* Walk the runlist @runlist and load all clusters from it copying them into
|
|
* the linear buffer @al. The maximum number of bytes copied to @al is @size
|
|
* bytes. Note, @size does not need to be a multiple of the cluster size. If
|
|
* @initialized_size is less than @size, the region in @al between
|
|
* @initialized_size and @size will be zeroed and not read from disk.
|
|
*
|
|
* Return 0 on success or -errno on error.
|
|
*/
|
|
int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start,
|
|
const s64 size, const s64 initialized_size)
|
|
{
|
|
LCN lcn;
|
|
u8 *al = al_start;
|
|
u8 *al_end = al + initialized_size;
|
|
runlist_element *rl;
|
|
struct buffer_head *bh;
|
|
struct super_block *sb;
|
|
unsigned long block_size;
|
|
unsigned long block, max_block;
|
|
int err = 0;
|
|
unsigned char block_size_bits;
|
|
|
|
ntfs_debug("Entering.");
|
|
if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 ||
|
|
initialized_size > size)
|
|
return -EINVAL;
|
|
if (!initialized_size) {
|
|
memset(al, 0, size);
|
|
return 0;
|
|
}
|
|
sb = vol->sb;
|
|
block_size = sb->s_blocksize;
|
|
block_size_bits = sb->s_blocksize_bits;
|
|
down_read(&runlist->lock);
|
|
rl = runlist->rl;
|
|
if (!rl) {
|
|
ntfs_error(sb, "Cannot read attribute list since runlist is "
|
|
"missing.");
|
|
goto err_out;
|
|
}
|
|
/* Read all clusters specified by the runlist one run at a time. */
|
|
while (rl->length) {
|
|
lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn);
|
|
ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
|
|
(unsigned long long)rl->vcn,
|
|
(unsigned long long)lcn);
|
|
/* The attribute list cannot be sparse. */
|
|
if (lcn < 0) {
|
|
ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot "
|
|
"read attribute list.");
|
|
goto err_out;
|
|
}
|
|
block = lcn << vol->cluster_size_bits >> block_size_bits;
|
|
/* Read the run from device in chunks of block_size bytes. */
|
|
max_block = block + (rl->length << vol->cluster_size_bits >>
|
|
block_size_bits);
|
|
ntfs_debug("max_block = 0x%lx.", max_block);
|
|
do {
|
|
ntfs_debug("Reading block = 0x%lx.", block);
|
|
bh = sb_bread(sb, block);
|
|
if (!bh) {
|
|
ntfs_error(sb, "sb_bread() failed. Cannot "
|
|
"read attribute list.");
|
|
goto err_out;
|
|
}
|
|
if (al + block_size >= al_end)
|
|
goto do_final;
|
|
memcpy(al, bh->b_data, block_size);
|
|
brelse(bh);
|
|
al += block_size;
|
|
} while (++block < max_block);
|
|
rl++;
|
|
}
|
|
if (initialized_size < size) {
|
|
initialize:
|
|
memset(al_start + initialized_size, 0, size - initialized_size);
|
|
}
|
|
done:
|
|
up_read(&runlist->lock);
|
|
return err;
|
|
do_final:
|
|
if (al < al_end) {
|
|
/*
|
|
* Partial block.
|
|
*
|
|
* Note: The attribute list can be smaller than its allocation
|
|
* by multiple clusters. This has been encountered by at least
|
|
* two people running Windows XP, thus we cannot do any
|
|
* truncation sanity checking here. (AIA)
|
|
*/
|
|
memcpy(al, bh->b_data, al_end - al);
|
|
brelse(bh);
|
|
if (initialized_size < size)
|
|
goto initialize;
|
|
goto done;
|
|
}
|
|
brelse(bh);
|
|
/* Real overflow! */
|
|
ntfs_error(sb, "Attribute list buffer overflow. Read attribute list "
|
|
"is truncated.");
|
|
err_out:
|
|
err = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
/**
|
|
* ntfs_external_attr_find - find an attribute in the attribute list of an inode
|
|
* @type: attribute type to find
|
|
* @name: attribute name to find (optional, i.e. NULL means don't care)
|
|
* @name_len: attribute name length (only needed if @name present)
|
|
* @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
|
|
* @lowest_vcn: lowest vcn to find (optional, non-resident attributes only)
|
|
* @val: attribute value to find (optional, resident attributes only)
|
|
* @val_len: attribute value length
|
|
* @ctx: search context with mft record and attribute to search from
|
|
*
|
|
* You should not need to call this function directly. Use ntfs_attr_lookup()
|
|
* instead.
|
|
*
|
|
* Find an attribute by searching the attribute list for the corresponding
|
|
* attribute list entry. Having found the entry, map the mft record if the
|
|
* attribute is in a different mft record/inode, ntfs_attr_find() the attribute
|
|
* in there and return it.
|
|
*
|
|
* On first search @ctx->ntfs_ino must be the base mft record and @ctx must
|
|
* have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent
|
|
* calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is
|
|
* then the base inode).
|
|
*
|
|
* After finishing with the attribute/mft record you need to call
|
|
* ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
|
|
* mapped inodes, etc).
|
|
*
|
|
* If the attribute is found, ntfs_external_attr_find() returns 0 and
|
|
* @ctx->attr will point to the found attribute. @ctx->mrec will point to the
|
|
* mft record in which @ctx->attr is located and @ctx->al_entry will point to
|
|
* the attribute list entry for the attribute.
|
|
*
|
|
* If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and
|
|
* @ctx->attr will point to the attribute in the base mft record before which
|
|
* the attribute being searched for would need to be inserted if such an action
|
|
* were to be desired. @ctx->mrec will point to the mft record in which
|
|
* @ctx->attr is located and @ctx->al_entry will point to the attribute list
|
|
* entry of the attribute before which the attribute being searched for would
|
|
* need to be inserted if such an action were to be desired.
|
|
*
|
|
* Thus to insert the not found attribute, one wants to add the attribute to
|
|
* @ctx->mrec (the base mft record) and if there is not enough space, the
|
|
* attribute should be placed in a newly allocated extent mft record. The
|
|
* attribute list entry for the inserted attribute should be inserted in the
|
|
* attribute list attribute at @ctx->al_entry.
|
|
*
|
|
* On actual error, ntfs_external_attr_find() returns -EIO. In this case
|
|
* @ctx->attr is undefined and in particular do not rely on it not changing.
|
|
*/
|
|
static int ntfs_external_attr_find(const ATTR_TYPE type,
|
|
const ntfschar *name, const u32 name_len,
|
|
const IGNORE_CASE_BOOL ic, const VCN lowest_vcn,
|
|
const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
|
|
{
|
|
ntfs_inode *base_ni, *ni;
|
|
ntfs_volume *vol;
|
|
ATTR_LIST_ENTRY *al_entry, *next_al_entry;
|
|
u8 *al_start, *al_end;
|
|
ATTR_RECORD *a;
|
|
ntfschar *al_name;
|
|
u32 al_name_len;
|
|
int err = 0;
|
|
static const char *es = " Unmount and run chkdsk.";
|
|
|
|
ni = ctx->ntfs_ino;
|
|
base_ni = ctx->base_ntfs_ino;
|
|
ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type);
|
|
if (!base_ni) {
|
|
/* First call happens with the base mft record. */
|
|
base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino;
|
|
ctx->base_mrec = ctx->mrec;
|
|
}
|
|
if (ni == base_ni)
|
|
ctx->base_attr = ctx->attr;
|
|
if (type == AT_END)
|
|
goto not_found;
|
|
vol = base_ni->vol;
|
|
al_start = base_ni->attr_list;
|
|
al_end = al_start + base_ni->attr_list_size;
|
|
if (!ctx->al_entry)
|
|
ctx->al_entry = (ATTR_LIST_ENTRY*)al_start;
|
|
/*
|
|
* Iterate over entries in attribute list starting at @ctx->al_entry,
|
|
* or the entry following that, if @ctx->is_first is 'true'.
|
|
*/
|
|
if (ctx->is_first) {
|
|
al_entry = ctx->al_entry;
|
|
ctx->is_first = false;
|
|
} else
|
|
al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
|
|
le16_to_cpu(ctx->al_entry->length));
|
|
for (;; al_entry = next_al_entry) {
|
|
/* Out of bounds check. */
|
|
if ((u8*)al_entry < base_ni->attr_list ||
|
|
(u8*)al_entry > al_end)
|
|
break; /* Inode is corrupt. */
|
|
ctx->al_entry = al_entry;
|
|
/* Catch the end of the attribute list. */
|
|
if ((u8*)al_entry == al_end)
|
|
goto not_found;
|
|
if (!al_entry->length)
|
|
break;
|
|
if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
|
|
le16_to_cpu(al_entry->length) > al_end)
|
|
break;
|
|
next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
|
|
le16_to_cpu(al_entry->length));
|
|
if (le32_to_cpu(al_entry->type) > le32_to_cpu(type))
|
|
goto not_found;
|
|
if (type != al_entry->type)
|
|
continue;
|
|
/*
|
|
* If @name is present, compare the two names. If @name is
|
|
* missing, assume we want an unnamed attribute.
|
|
*/
|
|
al_name_len = al_entry->name_length;
|
|
al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset);
|
|
if (!name) {
|
|
if (al_name_len)
|
|
goto not_found;
|
|
} else if (!ntfs_are_names_equal(al_name, al_name_len, name,
|
|
name_len, ic, vol->upcase, vol->upcase_len)) {
|
|
register int rc;
|
|
|
|
rc = ntfs_collate_names(name, name_len, al_name,
|
|
al_name_len, 1, IGNORE_CASE,
|
|
vol->upcase, vol->upcase_len);
|
|
/*
|
|
* If @name collates before al_name, there is no
|
|
* matching attribute.
|
|
*/
|
|
if (rc == -1)
|
|
goto not_found;
|
|
/* If the strings are not equal, continue search. */
|
|
if (rc)
|
|
continue;
|
|
/*
|
|
* FIXME: Reverse engineering showed 0, IGNORE_CASE but
|
|
* that is inconsistent with ntfs_attr_find(). The
|
|
* subsequent rc checks were also different. Perhaps I
|
|
* made a mistake in one of the two. Need to recheck
|
|
* which is correct or at least see what is going on...
|
|
* (AIA)
|
|
*/
|
|
rc = ntfs_collate_names(name, name_len, al_name,
|
|
al_name_len, 1, CASE_SENSITIVE,
|
|
vol->upcase, vol->upcase_len);
|
|
if (rc == -1)
|
|
goto not_found;
|
|
if (rc)
|
|
continue;
|
|
}
|
|
/*
|
|
* The names match or @name not present and attribute is
|
|
* unnamed. Now check @lowest_vcn. Continue search if the
|
|
* next attribute list entry still fits @lowest_vcn. Otherwise
|
|
* we have reached the right one or the search has failed.
|
|
*/
|
|
if (lowest_vcn && (u8*)next_al_entry >= al_start &&
|
|
(u8*)next_al_entry + 6 < al_end &&
|
|
(u8*)next_al_entry + le16_to_cpu(
|
|
next_al_entry->length) <= al_end &&
|
|
sle64_to_cpu(next_al_entry->lowest_vcn) <=
|
|
lowest_vcn &&
|
|
next_al_entry->type == al_entry->type &&
|
|
next_al_entry->name_length == al_name_len &&
|
|
ntfs_are_names_equal((ntfschar*)((u8*)
|
|
next_al_entry +
|
|
next_al_entry->name_offset),
|
|
next_al_entry->name_length,
|
|
al_name, al_name_len, CASE_SENSITIVE,
|
|
vol->upcase, vol->upcase_len))
|
|
continue;
|
|
if (MREF_LE(al_entry->mft_reference) == ni->mft_no) {
|
|
if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) {
|
|
ntfs_error(vol->sb, "Found stale mft "
|
|
"reference in attribute list "
|
|
"of base inode 0x%lx.%s",
|
|
base_ni->mft_no, es);
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
} else { /* Mft references do not match. */
|
|
/* If there is a mapped record unmap it first. */
|
|
if (ni != base_ni)
|
|
unmap_extent_mft_record(ni);
|
|
/* Do we want the base record back? */
|
|
if (MREF_LE(al_entry->mft_reference) ==
|
|
base_ni->mft_no) {
|
|
ni = ctx->ntfs_ino = base_ni;
|
|
ctx->mrec = ctx->base_mrec;
|
|
} else {
|
|
/* We want an extent record. */
|
|
ctx->mrec = map_extent_mft_record(base_ni,
|
|
le64_to_cpu(
|
|
al_entry->mft_reference), &ni);
|
|
if (IS_ERR(ctx->mrec)) {
|
|
ntfs_error(vol->sb, "Failed to map "
|
|
"extent mft record "
|
|
"0x%lx of base inode "
|
|
"0x%lx.%s",
|
|
MREF_LE(al_entry->
|
|
mft_reference),
|
|
base_ni->mft_no, es);
|
|
err = PTR_ERR(ctx->mrec);
|
|
if (err == -ENOENT)
|
|
err = -EIO;
|
|
/* Cause @ctx to be sanitized below. */
|
|
ni = NULL;
|
|
break;
|
|
}
|
|
ctx->ntfs_ino = ni;
|
|
}
|
|
ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
|
|
le16_to_cpu(ctx->mrec->attrs_offset));
|
|
}
|
|
/*
|
|
* ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the
|
|
* mft record containing the attribute represented by the
|
|
* current al_entry.
|
|
*/
|
|
/*
|
|
* We could call into ntfs_attr_find() to find the right
|
|
* attribute in this mft record but this would be less
|
|
* efficient and not quite accurate as ntfs_attr_find() ignores
|
|
* the attribute instance numbers for example which become
|
|
* important when one plays with attribute lists. Also,
|
|
* because a proper match has been found in the attribute list
|
|
* entry above, the comparison can now be optimized. So it is
|
|
* worth re-implementing a simplified ntfs_attr_find() here.
|
|
*/
|
|
a = ctx->attr;
|
|
/*
|
|
* Use a manual loop so we can still use break and continue
|
|
* with the same meanings as above.
|
|
*/
|
|
do_next_attr_loop:
|
|
if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
|
|
le32_to_cpu(ctx->mrec->bytes_allocated))
|
|
break;
|
|
if (a->type == AT_END)
|
|
break;
|
|
if (!a->length)
|
|
break;
|
|
if (al_entry->instance != a->instance)
|
|
goto do_next_attr;
|
|
/*
|
|
* If the type and/or the name are mismatched between the
|
|
* attribute list entry and the attribute record, there is
|
|
* corruption so we break and return error EIO.
|
|
*/
|
|
if (al_entry->type != a->type)
|
|
break;
|
|
if (!ntfs_are_names_equal((ntfschar*)((u8*)a +
|
|
le16_to_cpu(a->name_offset)), a->name_length,
|
|
al_name, al_name_len, CASE_SENSITIVE,
|
|
vol->upcase, vol->upcase_len))
|
|
break;
|
|
ctx->attr = a;
|
|
/*
|
|
* If no @val specified or @val specified and it matches, we
|
|
* have found it!
|
|
*/
|
|
if (!val || (!a->non_resident && le32_to_cpu(
|
|
a->data.resident.value_length) == val_len &&
|
|
!memcmp((u8*)a +
|
|
le16_to_cpu(a->data.resident.value_offset),
|
|
val, val_len))) {
|
|
ntfs_debug("Done, found.");
|
|
return 0;
|
|
}
|
|
do_next_attr:
|
|
/* Proceed to the next attribute in the current mft record. */
|
|
a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length));
|
|
goto do_next_attr_loop;
|
|
}
|
|
if (!err) {
|
|
ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt "
|
|
"attribute list attribute.%s", base_ni->mft_no,
|
|
es);
|
|
err = -EIO;
|
|
}
|
|
if (ni != base_ni) {
|
|
if (ni)
|
|
unmap_extent_mft_record(ni);
|
|
ctx->ntfs_ino = base_ni;
|
|
ctx->mrec = ctx->base_mrec;
|
|
ctx->attr = ctx->base_attr;
|
|
}
|
|
if (err != -ENOMEM)
|
|
NVolSetErrors(vol);
|
|
return err;
|
|
not_found:
|
|
/*
|
|
* If we were looking for AT_END, we reset the search context @ctx and
|
|
* use ntfs_attr_find() to seek to the end of the base mft record.
|
|
*/
|
|
if (type == AT_END) {
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len,
|
|
ctx);
|
|
}
|
|
/*
|
|
* The attribute was not found. Before we return, we want to ensure
|
|
* @ctx->mrec and @ctx->attr indicate the position at which the
|
|
* attribute should be inserted in the base mft record. Since we also
|
|
* want to preserve @ctx->al_entry we cannot reinitialize the search
|
|
* context using ntfs_attr_reinit_search_ctx() as this would set
|
|
* @ctx->al_entry to NULL. Thus we do the necessary bits manually (see
|
|
* ntfs_attr_init_search_ctx() below). Note, we _only_ preserve
|
|
* @ctx->al_entry as the remaining fields (base_*) are identical to
|
|
* their non base_ counterparts and we cannot set @ctx->base_attr
|
|
* correctly yet as we do not know what @ctx->attr will be set to by
|
|
* the call to ntfs_attr_find() below.
|
|
*/
|
|
if (ni != base_ni)
|
|
unmap_extent_mft_record(ni);
|
|
ctx->mrec = ctx->base_mrec;
|
|
ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
|
|
le16_to_cpu(ctx->mrec->attrs_offset));
|
|
ctx->is_first = true;
|
|
ctx->ntfs_ino = base_ni;
|
|
ctx->base_ntfs_ino = NULL;
|
|
ctx->base_mrec = NULL;
|
|
ctx->base_attr = NULL;
|
|
/*
|
|
* In case there are multiple matches in the base mft record, need to
|
|
* keep enumerating until we get an attribute not found response (or
|
|
* another error), otherwise we would keep returning the same attribute
|
|
* over and over again and all programs using us for enumeration would
|
|
* lock up in a tight loop.
|
|
*/
|
|
do {
|
|
err = ntfs_attr_find(type, name, name_len, ic, val, val_len,
|
|
ctx);
|
|
} while (!err);
|
|
ntfs_debug("Done, not found.");
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_lookup - find an attribute in an ntfs inode
|
|
* @type: attribute type to find
|
|
* @name: attribute name to find (optional, i.e. NULL means don't care)
|
|
* @name_len: attribute name length (only needed if @name present)
|
|
* @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
|
|
* @lowest_vcn: lowest vcn to find (optional, non-resident attributes only)
|
|
* @val: attribute value to find (optional, resident attributes only)
|
|
* @val_len: attribute value length
|
|
* @ctx: search context with mft record and attribute to search from
|
|
*
|
|
* Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must
|
|
* be the base mft record and @ctx must have been obtained from a call to
|
|
* ntfs_attr_get_search_ctx().
|
|
*
|
|
* This function transparently handles attribute lists and @ctx is used to
|
|
* continue searches where they were left off at.
|
|
*
|
|
* After finishing with the attribute/mft record you need to call
|
|
* ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
|
|
* mapped inodes, etc).
|
|
*
|
|
* Return 0 if the search was successful and -errno if not.
|
|
*
|
|
* When 0, @ctx->attr is the found attribute and it is in mft record
|
|
* @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is
|
|
* the attribute list entry of the found attribute.
|
|
*
|
|
* When -ENOENT, @ctx->attr is the attribute which collates just after the
|
|
* attribute being searched for, i.e. if one wants to add the attribute to the
|
|
* mft record this is the correct place to insert it into. If an attribute
|
|
* list attribute is present, @ctx->al_entry is the attribute list entry which
|
|
* collates just after the attribute list entry of the attribute being searched
|
|
* for, i.e. if one wants to add the attribute to the mft record this is the
|
|
* correct place to insert its attribute list entry into.
|
|
*
|
|
* When -errno != -ENOENT, an error occured during the lookup. @ctx->attr is
|
|
* then undefined and in particular you should not rely on it not changing.
|
|
*/
|
|
int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name,
|
|
const u32 name_len, const IGNORE_CASE_BOOL ic,
|
|
const VCN lowest_vcn, const u8 *val, const u32 val_len,
|
|
ntfs_attr_search_ctx *ctx)
|
|
{
|
|
ntfs_inode *base_ni;
|
|
|
|
ntfs_debug("Entering.");
|
|
BUG_ON(IS_ERR(ctx->mrec));
|
|
if (ctx->base_ntfs_ino)
|
|
base_ni = ctx->base_ntfs_ino;
|
|
else
|
|
base_ni = ctx->ntfs_ino;
|
|
/* Sanity check, just for debugging really. */
|
|
BUG_ON(!base_ni);
|
|
if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST)
|
|
return ntfs_attr_find(type, name, name_len, ic, val, val_len,
|
|
ctx);
|
|
return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn,
|
|
val, val_len, ctx);
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_init_search_ctx - initialize an attribute search context
|
|
* @ctx: attribute search context to initialize
|
|
* @ni: ntfs inode with which to initialize the search context
|
|
* @mrec: mft record with which to initialize the search context
|
|
*
|
|
* Initialize the attribute search context @ctx with @ni and @mrec.
|
|
*/
|
|
static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx,
|
|
ntfs_inode *ni, MFT_RECORD *mrec)
|
|
{
|
|
*ctx = (ntfs_attr_search_ctx) {
|
|
.mrec = mrec,
|
|
/* Sanity checks are performed elsewhere. */
|
|
.attr = (ATTR_RECORD*)((u8*)mrec +
|
|
le16_to_cpu(mrec->attrs_offset)),
|
|
.is_first = true,
|
|
.ntfs_ino = ni,
|
|
};
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_reinit_search_ctx - reinitialize an attribute search context
|
|
* @ctx: attribute search context to reinitialize
|
|
*
|
|
* Reinitialize the attribute search context @ctx, unmapping an associated
|
|
* extent mft record if present, and initialize the search context again.
|
|
*
|
|
* This is used when a search for a new attribute is being started to reset
|
|
* the search context to the beginning.
|
|
*/
|
|
void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx)
|
|
{
|
|
if (likely(!ctx->base_ntfs_ino)) {
|
|
/* No attribute list. */
|
|
ctx->is_first = true;
|
|
/* Sanity checks are performed elsewhere. */
|
|
ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
|
|
le16_to_cpu(ctx->mrec->attrs_offset));
|
|
/*
|
|
* This needs resetting due to ntfs_external_attr_find() which
|
|
* can leave it set despite having zeroed ctx->base_ntfs_ino.
|
|
*/
|
|
ctx->al_entry = NULL;
|
|
return;
|
|
} /* Attribute list. */
|
|
if (ctx->ntfs_ino != ctx->base_ntfs_ino)
|
|
unmap_extent_mft_record(ctx->ntfs_ino);
|
|
ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context
|
|
* @ni: ntfs inode with which to initialize the search context
|
|
* @mrec: mft record with which to initialize the search context
|
|
*
|
|
* Allocate a new attribute search context, initialize it with @ni and @mrec,
|
|
* and return it. Return NULL if allocation failed.
|
|
*/
|
|
ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec)
|
|
{
|
|
ntfs_attr_search_ctx *ctx;
|
|
|
|
ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS);
|
|
if (ctx)
|
|
ntfs_attr_init_search_ctx(ctx, ni, mrec);
|
|
return ctx;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_put_search_ctx - release an attribute search context
|
|
* @ctx: attribute search context to free
|
|
*
|
|
* Release the attribute search context @ctx, unmapping an associated extent
|
|
* mft record if present.
|
|
*/
|
|
void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx)
|
|
{
|
|
if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino)
|
|
unmap_extent_mft_record(ctx->ntfs_ino);
|
|
kmem_cache_free(ntfs_attr_ctx_cache, ctx);
|
|
return;
|
|
}
|
|
|
|
#ifdef NTFS_RW
|
|
|
|
/**
|
|
* ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file
|
|
* @vol: ntfs volume to which the attribute belongs
|
|
* @type: attribute type which to find
|
|
*
|
|
* Search for the attribute definition record corresponding to the attribute
|
|
* @type in the $AttrDef system file.
|
|
*
|
|
* Return the attribute type definition record if found and NULL if not found.
|
|
*/
|
|
static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
|
|
const ATTR_TYPE type)
|
|
{
|
|
ATTR_DEF *ad;
|
|
|
|
BUG_ON(!vol->attrdef);
|
|
BUG_ON(!type);
|
|
for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef <
|
|
vol->attrdef_size && ad->type; ++ad) {
|
|
/* We have not found it yet, carry on searching. */
|
|
if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type)))
|
|
continue;
|
|
/* We found the attribute; return it. */
|
|
if (likely(ad->type == type))
|
|
return ad;
|
|
/* We have gone too far already. No point in continuing. */
|
|
break;
|
|
}
|
|
/* Attribute not found. */
|
|
ntfs_debug("Attribute type 0x%x not found in $AttrDef.",
|
|
le32_to_cpu(type));
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_size_bounds_check - check a size of an attribute type for validity
|
|
* @vol: ntfs volume to which the attribute belongs
|
|
* @type: attribute type which to check
|
|
* @size: size which to check
|
|
*
|
|
* Check whether the @size in bytes is valid for an attribute of @type on the
|
|
* ntfs volume @vol. This information is obtained from $AttrDef system file.
|
|
*
|
|
* Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not
|
|
* listed in $AttrDef.
|
|
*/
|
|
int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type,
|
|
const s64 size)
|
|
{
|
|
ATTR_DEF *ad;
|
|
|
|
BUG_ON(size < 0);
|
|
/*
|
|
* $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not
|
|
* listed in $AttrDef.
|
|
*/
|
|
if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024))
|
|
return -ERANGE;
|
|
/* Get the $AttrDef entry for the attribute @type. */
|
|
ad = ntfs_attr_find_in_attrdef(vol, type);
|
|
if (unlikely(!ad))
|
|
return -ENOENT;
|
|
/* Do the bounds check. */
|
|
if (((sle64_to_cpu(ad->min_size) > 0) &&
|
|
size < sle64_to_cpu(ad->min_size)) ||
|
|
((sle64_to_cpu(ad->max_size) > 0) && size >
|
|
sle64_to_cpu(ad->max_size)))
|
|
return -ERANGE;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_can_be_non_resident - check if an attribute can be non-resident
|
|
* @vol: ntfs volume to which the attribute belongs
|
|
* @type: attribute type which to check
|
|
*
|
|
* Check whether the attribute of @type on the ntfs volume @vol is allowed to
|
|
* be non-resident. This information is obtained from $AttrDef system file.
|
|
*
|
|
* Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and
|
|
* -ENOENT if the attribute is not listed in $AttrDef.
|
|
*/
|
|
int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type)
|
|
{
|
|
ATTR_DEF *ad;
|
|
|
|
/* Find the attribute definition record in $AttrDef. */
|
|
ad = ntfs_attr_find_in_attrdef(vol, type);
|
|
if (unlikely(!ad))
|
|
return -ENOENT;
|
|
/* Check the flags and return the result. */
|
|
if (ad->flags & ATTR_DEF_RESIDENT)
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_can_be_resident - check if an attribute can be resident
|
|
* @vol: ntfs volume to which the attribute belongs
|
|
* @type: attribute type which to check
|
|
*
|
|
* Check whether the attribute of @type on the ntfs volume @vol is allowed to
|
|
* be resident. This information is derived from our ntfs knowledge and may
|
|
* not be completely accurate, especially when user defined attributes are
|
|
* present. Basically we allow everything to be resident except for index
|
|
* allocation and $EA attributes.
|
|
*
|
|
* Return 0 if the attribute is allowed to be non-resident and -EPERM if not.
|
|
*
|
|
* Warning: In the system file $MFT the attribute $Bitmap must be non-resident
|
|
* otherwise windows will not boot (blue screen of death)! We cannot
|
|
* check for this here as we do not know which inode's $Bitmap is
|
|
* being asked about so the caller needs to special case this.
|
|
*/
|
|
int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type)
|
|
{
|
|
if (type == AT_INDEX_ALLOCATION)
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_record_resize - resize an attribute record
|
|
* @m: mft record containing attribute record
|
|
* @a: attribute record to resize
|
|
* @new_size: new size in bytes to which to resize the attribute record @a
|
|
*
|
|
* Resize the attribute record @a, i.e. the resident part of the attribute, in
|
|
* the mft record @m to @new_size bytes.
|
|
*
|
|
* Return 0 on success and -errno on error. The following error codes are
|
|
* defined:
|
|
* -ENOSPC - Not enough space in the mft record @m to perform the resize.
|
|
*
|
|
* Note: On error, no modifications have been performed whatsoever.
|
|
*
|
|
* Warning: If you make a record smaller without having copied all the data you
|
|
* are interested in the data may be overwritten.
|
|
*/
|
|
int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size)
|
|
{
|
|
ntfs_debug("Entering for new_size %u.", new_size);
|
|
/* Align to 8 bytes if it is not already done. */
|
|
if (new_size & 7)
|
|
new_size = (new_size + 7) & ~7;
|
|
/* If the actual attribute length has changed, move things around. */
|
|
if (new_size != le32_to_cpu(a->length)) {
|
|
u32 new_muse = le32_to_cpu(m->bytes_in_use) -
|
|
le32_to_cpu(a->length) + new_size;
|
|
/* Not enough space in this mft record. */
|
|
if (new_muse > le32_to_cpu(m->bytes_allocated))
|
|
return -ENOSPC;
|
|
/* Move attributes following @a to their new location. */
|
|
memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length),
|
|
le32_to_cpu(m->bytes_in_use) - ((u8*)a -
|
|
(u8*)m) - le32_to_cpu(a->length));
|
|
/* Adjust @m to reflect the change in used space. */
|
|
m->bytes_in_use = cpu_to_le32(new_muse);
|
|
/* Adjust @a to reflect the new size. */
|
|
if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length))
|
|
a->length = cpu_to_le32(new_size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ntfs_resident_attr_value_resize - resize the value of a resident attribute
|
|
* @m: mft record containing attribute record
|
|
* @a: attribute record whose value to resize
|
|
* @new_size: new size in bytes to which to resize the attribute value of @a
|
|
*
|
|
* Resize the value of the attribute @a in the mft record @m to @new_size bytes.
|
|
* If the value is made bigger, the newly allocated space is cleared.
|
|
*
|
|
* Return 0 on success and -errno on error. The following error codes are
|
|
* defined:
|
|
* -ENOSPC - Not enough space in the mft record @m to perform the resize.
|
|
*
|
|
* Note: On error, no modifications have been performed whatsoever.
|
|
*
|
|
* Warning: If you make a record smaller without having copied all the data you
|
|
* are interested in the data may be overwritten.
|
|
*/
|
|
int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
|
|
const u32 new_size)
|
|
{
|
|
u32 old_size;
|
|
|
|
/* Resize the resident part of the attribute record. */
|
|
if (ntfs_attr_record_resize(m, a,
|
|
le16_to_cpu(a->data.resident.value_offset) + new_size))
|
|
return -ENOSPC;
|
|
/*
|
|
* The resize succeeded! If we made the attribute value bigger, clear
|
|
* the area between the old size and @new_size.
|
|
*/
|
|
old_size = le32_to_cpu(a->data.resident.value_length);
|
|
if (new_size > old_size)
|
|
memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
|
|
old_size, 0, new_size - old_size);
|
|
/* Finally update the length of the attribute value. */
|
|
a->data.resident.value_length = cpu_to_le32(new_size);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_make_non_resident - convert a resident to a non-resident attribute
|
|
* @ni: ntfs inode describing the attribute to convert
|
|
* @data_size: size of the resident data to copy to the non-resident attribute
|
|
*
|
|
* Convert the resident ntfs attribute described by the ntfs inode @ni to a
|
|
* non-resident one.
|
|
*
|
|
* @data_size must be equal to the attribute value size. This is needed since
|
|
* we need to know the size before we can map the mft record and our callers
|
|
* always know it. The reason we cannot simply read the size from the vfs
|
|
* inode i_size is that this is not necessarily uptodate. This happens when
|
|
* ntfs_attr_make_non_resident() is called in the ->truncate call path(s).
|
|
*
|
|
* Return 0 on success and -errno on error. The following error return codes
|
|
* are defined:
|
|
* -EPERM - The attribute is not allowed to be non-resident.
|
|
* -ENOMEM - Not enough memory.
|
|
* -ENOSPC - Not enough disk space.
|
|
* -EINVAL - Attribute not defined on the volume.
|
|
* -EIO - I/o error or other error.
|
|
* Note that -ENOSPC is also returned in the case that there is not enough
|
|
* space in the mft record to do the conversion. This can happen when the mft
|
|
* record is already very full. The caller is responsible for trying to make
|
|
* space in the mft record and trying again. FIXME: Do we need a separate
|
|
* error return code for this kind of -ENOSPC or is it always worth trying
|
|
* again in case the attribute may then fit in a resident state so no need to
|
|
* make it non-resident at all? Ho-hum... (AIA)
|
|
*
|
|
* NOTE to self: No changes in the attribute list are required to move from
|
|
* a resident to a non-resident attribute.
|
|
*
|
|
* Locking: - The caller must hold i_mutex on the inode.
|
|
*/
|
|
int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size)
|
|
{
|
|
s64 new_size;
|
|
struct inode *vi = VFS_I(ni);
|
|
ntfs_volume *vol = ni->vol;
|
|
ntfs_inode *base_ni;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
ntfs_attr_search_ctx *ctx;
|
|
struct page *page;
|
|
runlist_element *rl;
|
|
u8 *kaddr;
|
|
unsigned long flags;
|
|
int mp_size, mp_ofs, name_ofs, arec_size, err, err2;
|
|
u32 attr_size;
|
|
u8 old_res_attr_flags;
|
|
|
|
/* Check that the attribute is allowed to be non-resident. */
|
|
err = ntfs_attr_can_be_non_resident(vol, ni->type);
|
|
if (unlikely(err)) {
|
|
if (err == -EPERM)
|
|
ntfs_debug("Attribute is not allowed to be "
|
|
"non-resident.");
|
|
else
|
|
ntfs_debug("Attribute not defined on the NTFS "
|
|
"volume!");
|
|
return err;
|
|
}
|
|
/*
|
|
* FIXME: Compressed and encrypted attributes are not supported when
|
|
* writing and we should never have gotten here for them.
|
|
*/
|
|
BUG_ON(NInoCompressed(ni));
|
|
BUG_ON(NInoEncrypted(ni));
|
|
/*
|
|
* The size needs to be aligned to a cluster boundary for allocation
|
|
* purposes.
|
|
*/
|
|
new_size = (data_size + vol->cluster_size - 1) &
|
|
~(vol->cluster_size - 1);
|
|
if (new_size > 0) {
|
|
/*
|
|
* Will need the page later and since the page lock nests
|
|
* outside all ntfs locks, we need to get the page now.
|
|
*/
|
|
page = find_or_create_page(vi->i_mapping, 0,
|
|
mapping_gfp_mask(vi->i_mapping));
|
|
if (unlikely(!page))
|
|
return -ENOMEM;
|
|
/* Start by allocating clusters to hold the attribute value. */
|
|
rl = ntfs_cluster_alloc(vol, 0, new_size >>
|
|
vol->cluster_size_bits, -1, DATA_ZONE, true);
|
|
if (IS_ERR(rl)) {
|
|
err = PTR_ERR(rl);
|
|
ntfs_debug("Failed to allocate cluster%s, error code "
|
|
"%i.", (new_size >>
|
|
vol->cluster_size_bits) > 1 ? "s" : "",
|
|
err);
|
|
goto page_err_out;
|
|
}
|
|
} else {
|
|
rl = NULL;
|
|
page = NULL;
|
|
}
|
|
/* Determine the size of the mapping pairs array. */
|
|
mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1);
|
|
if (unlikely(mp_size < 0)) {
|
|
err = mp_size;
|
|
ntfs_debug("Failed to get size for mapping pairs array, error "
|
|
"code %i.", err);
|
|
goto rl_err_out;
|
|
}
|
|
down_write(&ni->runlist.lock);
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
m = ctx->mrec;
|
|
a = ctx->attr;
|
|
BUG_ON(NInoNonResident(ni));
|
|
BUG_ON(a->non_resident);
|
|
/*
|
|
* Calculate new offsets for the name and the mapping pairs array.
|
|
*/
|
|
if (NInoSparse(ni) || NInoCompressed(ni))
|
|
name_ofs = (offsetof(ATTR_REC,
|
|
data.non_resident.compressed_size) +
|
|
sizeof(a->data.non_resident.compressed_size) +
|
|
7) & ~7;
|
|
else
|
|
name_ofs = (offsetof(ATTR_REC,
|
|
data.non_resident.compressed_size) + 7) & ~7;
|
|
mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
|
|
/*
|
|
* Determine the size of the resident part of the now non-resident
|
|
* attribute record.
|
|
*/
|
|
arec_size = (mp_ofs + mp_size + 7) & ~7;
|
|
/*
|
|
* If the page is not uptodate bring it uptodate by copying from the
|
|
* attribute value.
|
|
*/
|
|
attr_size = le32_to_cpu(a->data.resident.value_length);
|
|
BUG_ON(attr_size != data_size);
|
|
if (page && !PageUptodate(page)) {
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memcpy(kaddr, (u8*)a +
|
|
le16_to_cpu(a->data.resident.value_offset),
|
|
attr_size);
|
|
memset(kaddr + attr_size, 0, PAGE_CACHE_SIZE - attr_size);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
flush_dcache_page(page);
|
|
SetPageUptodate(page);
|
|
}
|
|
/* Backup the attribute flag. */
|
|
old_res_attr_flags = a->data.resident.flags;
|
|
/* Resize the resident part of the attribute record. */
|
|
err = ntfs_attr_record_resize(m, a, arec_size);
|
|
if (unlikely(err))
|
|
goto err_out;
|
|
/*
|
|
* Convert the resident part of the attribute record to describe a
|
|
* non-resident attribute.
|
|
*/
|
|
a->non_resident = 1;
|
|
/* Move the attribute name if it exists and update the offset. */
|
|
if (a->name_length)
|
|
memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
|
|
a->name_length * sizeof(ntfschar));
|
|
a->name_offset = cpu_to_le16(name_ofs);
|
|
/* Setup the fields specific to non-resident attributes. */
|
|
a->data.non_resident.lowest_vcn = 0;
|
|
a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >>
|
|
vol->cluster_size_bits);
|
|
a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs);
|
|
memset(&a->data.non_resident.reserved, 0,
|
|
sizeof(a->data.non_resident.reserved));
|
|
a->data.non_resident.allocated_size = cpu_to_sle64(new_size);
|
|
a->data.non_resident.data_size =
|
|
a->data.non_resident.initialized_size =
|
|
cpu_to_sle64(attr_size);
|
|
if (NInoSparse(ni) || NInoCompressed(ni)) {
|
|
a->data.non_resident.compression_unit = 0;
|
|
if (NInoCompressed(ni) || vol->major_ver < 3)
|
|
a->data.non_resident.compression_unit = 4;
|
|
a->data.non_resident.compressed_size =
|
|
a->data.non_resident.allocated_size;
|
|
} else
|
|
a->data.non_resident.compression_unit = 0;
|
|
/* Generate the mapping pairs array into the attribute record. */
|
|
err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs,
|
|
arec_size - mp_ofs, rl, 0, -1, NULL);
|
|
if (unlikely(err)) {
|
|
ntfs_debug("Failed to build mapping pairs, error code %i.",
|
|
err);
|
|
goto undo_err_out;
|
|
}
|
|
/* Setup the in-memory attribute structure to be non-resident. */
|
|
ni->runlist.rl = rl;
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->allocated_size = new_size;
|
|
if (NInoSparse(ni) || NInoCompressed(ni)) {
|
|
ni->itype.compressed.size = ni->allocated_size;
|
|
if (a->data.non_resident.compression_unit) {
|
|
ni->itype.compressed.block_size = 1U << (a->data.
|
|
non_resident.compression_unit +
|
|
vol->cluster_size_bits);
|
|
ni->itype.compressed.block_size_bits =
|
|
ffs(ni->itype.compressed.block_size) -
|
|
1;
|
|
ni->itype.compressed.block_clusters = 1U <<
|
|
a->data.non_resident.compression_unit;
|
|
} else {
|
|
ni->itype.compressed.block_size = 0;
|
|
ni->itype.compressed.block_size_bits = 0;
|
|
ni->itype.compressed.block_clusters = 0;
|
|
}
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
} else
|
|
vi->i_blocks = ni->allocated_size >> 9;
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
/*
|
|
* This needs to be last since the address space operations ->readpage
|
|
* and ->writepage can run concurrently with us as they are not
|
|
* serialized on i_mutex. Note, we are not allowed to fail once we flip
|
|
* this switch, which is another reason to do this last.
|
|
*/
|
|
NInoSetNonResident(ni);
|
|
/* Mark the mft record dirty, so it gets written back. */
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
if (page) {
|
|
set_page_dirty(page);
|
|
unlock_page(page);
|
|
mark_page_accessed(page);
|
|
page_cache_release(page);
|
|
}
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
undo_err_out:
|
|
/* Convert the attribute back into a resident attribute. */
|
|
a->non_resident = 0;
|
|
/* Move the attribute name if it exists and update the offset. */
|
|
name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) +
|
|
sizeof(a->data.resident.reserved) + 7) & ~7;
|
|
if (a->name_length)
|
|
memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
|
|
a->name_length * sizeof(ntfschar));
|
|
mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
|
|
a->name_offset = cpu_to_le16(name_ofs);
|
|
arec_size = (mp_ofs + attr_size + 7) & ~7;
|
|
/* Resize the resident part of the attribute record. */
|
|
err2 = ntfs_attr_record_resize(m, a, arec_size);
|
|
if (unlikely(err2)) {
|
|
/*
|
|
* This cannot happen (well if memory corruption is at work it
|
|
* could happen in theory), but deal with it as well as we can.
|
|
* If the old size is too small, truncate the attribute,
|
|
* otherwise simply give it a larger allocated size.
|
|
* FIXME: Should check whether chkdsk complains when the
|
|
* allocated size is much bigger than the resident value size.
|
|
*/
|
|
arec_size = le32_to_cpu(a->length);
|
|
if ((mp_ofs + attr_size) > arec_size) {
|
|
err2 = attr_size;
|
|
attr_size = arec_size - mp_ofs;
|
|
ntfs_error(vol->sb, "Failed to undo partial resident "
|
|
"to non-resident attribute "
|
|
"conversion. Truncating inode 0x%lx, "
|
|
"attribute type 0x%x from %i bytes to "
|
|
"%i bytes to maintain metadata "
|
|
"consistency. THIS MEANS YOU ARE "
|
|
"LOSING %i BYTES DATA FROM THIS %s.",
|
|
vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type),
|
|
err2, attr_size, err2 - attr_size,
|
|
((ni->type == AT_DATA) &&
|
|
!ni->name_len) ? "FILE": "ATTRIBUTE");
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->initialized_size = attr_size;
|
|
i_size_write(vi, attr_size);
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
}
|
|
}
|
|
/* Setup the fields specific to resident attributes. */
|
|
a->data.resident.value_length = cpu_to_le32(attr_size);
|
|
a->data.resident.value_offset = cpu_to_le16(mp_ofs);
|
|
a->data.resident.flags = old_res_attr_flags;
|
|
memset(&a->data.resident.reserved, 0,
|
|
sizeof(a->data.resident.reserved));
|
|
/* Copy the data from the page back to the attribute value. */
|
|
if (page) {
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memcpy((u8*)a + mp_ofs, kaddr, attr_size);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
}
|
|
/* Setup the allocated size in the ntfs inode in case it changed. */
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->allocated_size = arec_size - mp_ofs;
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
/* Mark the mft record dirty, so it gets written back. */
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
err_out:
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
ni->runlist.rl = NULL;
|
|
up_write(&ni->runlist.lock);
|
|
rl_err_out:
|
|
if (rl) {
|
|
if (ntfs_cluster_free_from_rl(vol, rl) < 0) {
|
|
ntfs_error(vol->sb, "Failed to release allocated "
|
|
"cluster(s) in error code path. Run "
|
|
"chkdsk to recover the lost "
|
|
"cluster(s).");
|
|
NVolSetErrors(vol);
|
|
}
|
|
ntfs_free(rl);
|
|
page_err_out:
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
}
|
|
if (err == -EINVAL)
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_extend_allocation - extend the allocated space of an attribute
|
|
* @ni: ntfs inode of the attribute whose allocation to extend
|
|
* @new_alloc_size: new size in bytes to which to extend the allocation to
|
|
* @new_data_size: new size in bytes to which to extend the data to
|
|
* @data_start: beginning of region which is required to be non-sparse
|
|
*
|
|
* Extend the allocated space of an attribute described by the ntfs inode @ni
|
|
* to @new_alloc_size bytes. If @data_start is -1, the whole extension may be
|
|
* implemented as a hole in the file (as long as both the volume and the ntfs
|
|
* inode @ni have sparse support enabled). If @data_start is >= 0, then the
|
|
* region between the old allocated size and @data_start - 1 may be made sparse
|
|
* but the regions between @data_start and @new_alloc_size must be backed by
|
|
* actual clusters.
|
|
*
|
|
* If @new_data_size is -1, it is ignored. If it is >= 0, then the data size
|
|
* of the attribute is extended to @new_data_size. Note that the i_size of the
|
|
* vfs inode is not updated. Only the data size in the base attribute record
|
|
* is updated. The caller has to update i_size separately if this is required.
|
|
* WARNING: It is a BUG() for @new_data_size to be smaller than the old data
|
|
* size as well as for @new_data_size to be greater than @new_alloc_size.
|
|
*
|
|
* For resident attributes this involves resizing the attribute record and if
|
|
* necessary moving it and/or other attributes into extent mft records and/or
|
|
* converting the attribute to a non-resident attribute which in turn involves
|
|
* extending the allocation of a non-resident attribute as described below.
|
|
*
|
|
* For non-resident attributes this involves allocating clusters in the data
|
|
* zone on the volume (except for regions that are being made sparse) and
|
|
* extending the run list to describe the allocated clusters as well as
|
|
* updating the mapping pairs array of the attribute. This in turn involves
|
|
* resizing the attribute record and if necessary moving it and/or other
|
|
* attributes into extent mft records and/or splitting the attribute record
|
|
* into multiple extent attribute records.
|
|
*
|
|
* Also, the attribute list attribute is updated if present and in some of the
|
|
* above cases (the ones where extent mft records/attributes come into play),
|
|
* an attribute list attribute is created if not already present.
|
|
*
|
|
* Return the new allocated size on success and -errno on error. In the case
|
|
* that an error is encountered but a partial extension at least up to
|
|
* @data_start (if present) is possible, the allocation is partially extended
|
|
* and this is returned. This means the caller must check the returned size to
|
|
* determine if the extension was partial. If @data_start is -1 then partial
|
|
* allocations are not performed.
|
|
*
|
|
* WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA.
|
|
*
|
|
* Locking: This function takes the runlist lock of @ni for writing as well as
|
|
* locking the mft record of the base ntfs inode. These locks are maintained
|
|
* throughout execution of the function. These locks are required so that the
|
|
* attribute can be resized safely and so that it can for example be converted
|
|
* from resident to non-resident safely.
|
|
*
|
|
* TODO: At present attribute list attribute handling is not implemented.
|
|
*
|
|
* TODO: At present it is not safe to call this function for anything other
|
|
* than the $DATA attribute(s) of an uncompressed and unencrypted file.
|
|
*/
|
|
s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
|
|
const s64 new_data_size, const s64 data_start)
|
|
{
|
|
VCN vcn;
|
|
s64 ll, allocated_size, start = data_start;
|
|
struct inode *vi = VFS_I(ni);
|
|
ntfs_volume *vol = ni->vol;
|
|
ntfs_inode *base_ni;
|
|
MFT_RECORD *m;
|
|
ATTR_RECORD *a;
|
|
ntfs_attr_search_ctx *ctx;
|
|
runlist_element *rl, *rl2;
|
|
unsigned long flags;
|
|
int err, mp_size;
|
|
u32 attr_len = 0; /* Silence stupid gcc warning. */
|
|
bool mp_rebuilt;
|
|
|
|
#ifdef DEBUG
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
allocated_size = ni->allocated_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
|
|
"old_allocated_size 0x%llx, "
|
|
"new_allocated_size 0x%llx, new_data_size 0x%llx, "
|
|
"data_start 0x%llx.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type),
|
|
(unsigned long long)allocated_size,
|
|
(unsigned long long)new_alloc_size,
|
|
(unsigned long long)new_data_size,
|
|
(unsigned long long)start);
|
|
#endif
|
|
retry_extend:
|
|
/*
|
|
* For non-resident attributes, @start and @new_size need to be aligned
|
|
* to cluster boundaries for allocation purposes.
|
|
*/
|
|
if (NInoNonResident(ni)) {
|
|
if (start > 0)
|
|
start &= ~(s64)vol->cluster_size_mask;
|
|
new_alloc_size = (new_alloc_size + vol->cluster_size - 1) &
|
|
~(s64)vol->cluster_size_mask;
|
|
}
|
|
BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size);
|
|
/* Check if new size is allowed in $AttrDef. */
|
|
err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size);
|
|
if (unlikely(err)) {
|
|
/* Only emit errors when the write will fail completely. */
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
allocated_size = ni->allocated_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
if (start < 0 || start >= allocated_size) {
|
|
if (err == -ERANGE) {
|
|
ntfs_error(vol->sb, "Cannot extend allocation "
|
|
"of inode 0x%lx, attribute "
|
|
"type 0x%x, because the new "
|
|
"allocation would exceed the "
|
|
"maximum allowed size for "
|
|
"this attribute type.",
|
|
vi->i_ino, (unsigned)
|
|
le32_to_cpu(ni->type));
|
|
} else {
|
|
ntfs_error(vol->sb, "Cannot extend allocation "
|
|
"of inode 0x%lx, attribute "
|
|
"type 0x%x, because this "
|
|
"attribute type is not "
|
|
"defined on the NTFS volume. "
|
|
"Possible corruption! You "
|
|
"should run chkdsk!",
|
|
vi->i_ino, (unsigned)
|
|
le32_to_cpu(ni->type));
|
|
}
|
|
}
|
|
/* Translate error code to be POSIX conformant for write(2). */
|
|
if (err == -ERANGE)
|
|
err = -EFBIG;
|
|
else
|
|
err = -EIO;
|
|
return err;
|
|
}
|
|
if (!NInoAttr(ni))
|
|
base_ni = ni;
|
|
else
|
|
base_ni = ni->ext.base_ntfs_ino;
|
|
/*
|
|
* We will be modifying both the runlist (if non-resident) and the mft
|
|
* record so lock them both down.
|
|
*/
|
|
down_write(&ni->runlist.lock);
|
|
m = map_mft_record(base_ni);
|
|
if (IS_ERR(m)) {
|
|
err = PTR_ERR(m);
|
|
m = NULL;
|
|
ctx = NULL;
|
|
goto err_out;
|
|
}
|
|
ctx = ntfs_attr_get_search_ctx(base_ni, m);
|
|
if (unlikely(!ctx)) {
|
|
err = -ENOMEM;
|
|
goto err_out;
|
|
}
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
allocated_size = ni->allocated_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
/*
|
|
* If non-resident, seek to the last extent. If resident, there is
|
|
* only one extent, so seek to that.
|
|
*/
|
|
vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits :
|
|
0;
|
|
/*
|
|
* Abort if someone did the work whilst we waited for the locks. If we
|
|
* just converted the attribute from resident to non-resident it is
|
|
* likely that exactly this has happened already. We cannot quite
|
|
* abort if we need to update the data size.
|
|
*/
|
|
if (unlikely(new_alloc_size <= allocated_size)) {
|
|
ntfs_debug("Allocated size already exceeds requested size.");
|
|
new_alloc_size = allocated_size;
|
|
if (new_data_size < 0)
|
|
goto done;
|
|
/*
|
|
* We want the first attribute extent so that we can update the
|
|
* data size.
|
|
*/
|
|
vcn = 0;
|
|
}
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, vcn, NULL, 0, ctx);
|
|
if (unlikely(err)) {
|
|
if (err == -ENOENT)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
m = ctx->mrec;
|
|
a = ctx->attr;
|
|
/* Use goto to reduce indentation. */
|
|
if (a->non_resident)
|
|
goto do_non_resident_extend;
|
|
BUG_ON(NInoNonResident(ni));
|
|
/* The total length of the attribute value. */
|
|
attr_len = le32_to_cpu(a->data.resident.value_length);
|
|
/*
|
|
* Extend the attribute record to be able to store the new attribute
|
|
* size. ntfs_attr_record_resize() will not do anything if the size is
|
|
* not changing.
|
|
*/
|
|
if (new_alloc_size < vol->mft_record_size &&
|
|
!ntfs_attr_record_resize(m, a,
|
|
le16_to_cpu(a->data.resident.value_offset) +
|
|
new_alloc_size)) {
|
|
/* The resize succeeded! */
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->allocated_size = le32_to_cpu(a->length) -
|
|
le16_to_cpu(a->data.resident.value_offset);
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
if (new_data_size >= 0) {
|
|
BUG_ON(new_data_size < attr_len);
|
|
a->data.resident.value_length =
|
|
cpu_to_le32((u32)new_data_size);
|
|
}
|
|
goto flush_done;
|
|
}
|
|
/*
|
|
* We have to drop all the locks so we can call
|
|
* ntfs_attr_make_non_resident(). This could be optimised by try-
|
|
* locking the first page cache page and only if that fails dropping
|
|
* the locks, locking the page, and redoing all the locking and
|
|
* lookups. While this would be a huge optimisation, it is not worth
|
|
* it as this is definitely a slow code path.
|
|
*/
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
/*
|
|
* Not enough space in the mft record, try to make the attribute
|
|
* non-resident and if successful restart the extension process.
|
|
*/
|
|
err = ntfs_attr_make_non_resident(ni, attr_len);
|
|
if (likely(!err))
|
|
goto retry_extend;
|
|
/*
|
|
* Could not make non-resident. If this is due to this not being
|
|
* permitted for this attribute type or there not being enough space,
|
|
* try to make other attributes non-resident. Otherwise fail.
|
|
*/
|
|
if (unlikely(err != -EPERM && err != -ENOSPC)) {
|
|
/* Only emit errors when the write will fail completely. */
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
allocated_size = ni->allocated_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
if (start < 0 || start >= allocated_size)
|
|
ntfs_error(vol->sb, "Cannot extend allocation of "
|
|
"inode 0x%lx, attribute type 0x%x, "
|
|
"because the conversion from resident "
|
|
"to non-resident attribute failed "
|
|
"with error code %i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), err);
|
|
if (err != -ENOMEM)
|
|
err = -EIO;
|
|
goto conv_err_out;
|
|
}
|
|
/* TODO: Not implemented from here, abort. */
|
|
read_lock_irqsave(&ni->size_lock, flags);
|
|
allocated_size = ni->allocated_size;
|
|
read_unlock_irqrestore(&ni->size_lock, flags);
|
|
if (start < 0 || start >= allocated_size) {
|
|
if (err == -ENOSPC)
|
|
ntfs_error(vol->sb, "Not enough space in the mft "
|
|
"record/on disk for the non-resident "
|
|
"attribute value. This case is not "
|
|
"implemented yet.");
|
|
else /* if (err == -EPERM) */
|
|
ntfs_error(vol->sb, "This attribute type may not be "
|
|
"non-resident. This case is not "
|
|
"implemented yet.");
|
|
}
|
|
err = -EOPNOTSUPP;
|
|
goto conv_err_out;
|
|
#if 0
|
|
// TODO: Attempt to make other attributes non-resident.
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
/*
|
|
* Both the attribute list attribute and the standard information
|
|
* attribute must remain in the base inode. Thus, if this is one of
|
|
* these attributes, we have to try to move other attributes out into
|
|
* extent mft records instead.
|
|
*/
|
|
if (ni->type == AT_ATTRIBUTE_LIST ||
|
|
ni->type == AT_STANDARD_INFORMATION) {
|
|
// TODO: Attempt to move other attributes into extent mft
|
|
// records.
|
|
err = -EOPNOTSUPP;
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
goto err_out;
|
|
}
|
|
// TODO: Attempt to move this attribute to an extent mft record, but
|
|
// only if it is not already the only attribute in an mft record in
|
|
// which case there would be nothing to gain.
|
|
err = -EOPNOTSUPP;
|
|
if (!err)
|
|
goto do_resident_extend;
|
|
/* There is nothing we can do to make enough space. )-: */
|
|
goto err_out;
|
|
#endif
|
|
do_non_resident_extend:
|
|
BUG_ON(!NInoNonResident(ni));
|
|
if (new_alloc_size == allocated_size) {
|
|
BUG_ON(vcn);
|
|
goto alloc_done;
|
|
}
|
|
/*
|
|
* If the data starts after the end of the old allocation, this is a
|
|
* $DATA attribute and sparse attributes are enabled on the volume and
|
|
* for this inode, then create a sparse region between the old
|
|
* allocated size and the start of the data. Otherwise simply proceed
|
|
* with filling the whole space between the old allocated size and the
|
|
* new allocated size with clusters.
|
|
*/
|
|
if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA ||
|
|
!NVolSparseEnabled(vol) || NInoSparseDisabled(ni))
|
|
goto skip_sparse;
|
|
// TODO: This is not implemented yet. We just fill in with real
|
|
// clusters for now...
|
|
ntfs_debug("Inserting holes is not-implemented yet. Falling back to "
|
|
"allocating real clusters instead.");
|
|
skip_sparse:
|
|
rl = ni->runlist.rl;
|
|
if (likely(rl)) {
|
|
/* Seek to the end of the runlist. */
|
|
while (rl->length)
|
|
rl++;
|
|
}
|
|
/* If this attribute extent is not mapped, map it now. */
|
|
if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED ||
|
|
(rl->lcn == LCN_ENOENT && rl > ni->runlist.rl &&
|
|
(rl-1)->lcn == LCN_RL_NOT_MAPPED))) {
|
|
if (!rl && !allocated_size)
|
|
goto first_alloc;
|
|
rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
|
|
if (IS_ERR(rl)) {
|
|
err = PTR_ERR(rl);
|
|
if (start < 0 || start >= allocated_size)
|
|
ntfs_error(vol->sb, "Cannot extend allocation "
|
|
"of inode 0x%lx, attribute "
|
|
"type 0x%x, because the "
|
|
"mapping of a runlist "
|
|
"fragment failed with error "
|
|
"code %i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type),
|
|
err);
|
|
if (err != -ENOMEM)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
ni->runlist.rl = rl;
|
|
/* Seek to the end of the runlist. */
|
|
while (rl->length)
|
|
rl++;
|
|
}
|
|
/*
|
|
* We now know the runlist of the last extent is mapped and @rl is at
|
|
* the end of the runlist. We want to begin allocating clusters
|
|
* starting at the last allocated cluster to reduce fragmentation. If
|
|
* there are no valid LCNs in the attribute we let the cluster
|
|
* allocator choose the starting cluster.
|
|
*/
|
|
/* If the last LCN is a hole or simillar seek back to last real LCN. */
|
|
while (rl->lcn < 0 && rl > ni->runlist.rl)
|
|
rl--;
|
|
first_alloc:
|
|
// FIXME: Need to implement partial allocations so at least part of the
|
|
// write can be performed when start >= 0. (Needed for POSIX write(2)
|
|
// conformance.)
|
|
rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits,
|
|
(new_alloc_size - allocated_size) >>
|
|
vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ?
|
|
rl->lcn + rl->length : -1, DATA_ZONE, true);
|
|
if (IS_ERR(rl2)) {
|
|
err = PTR_ERR(rl2);
|
|
if (start < 0 || start >= allocated_size)
|
|
ntfs_error(vol->sb, "Cannot extend allocation of "
|
|
"inode 0x%lx, attribute type 0x%x, "
|
|
"because the allocation of clusters "
|
|
"failed with error code %i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), err);
|
|
if (err != -ENOMEM && err != -ENOSPC)
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
|
|
if (IS_ERR(rl)) {
|
|
err = PTR_ERR(rl);
|
|
if (start < 0 || start >= allocated_size)
|
|
ntfs_error(vol->sb, "Cannot extend allocation of "
|
|
"inode 0x%lx, attribute type 0x%x, "
|
|
"because the runlist merge failed "
|
|
"with error code %i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), err);
|
|
if (err != -ENOMEM)
|
|
err = -EIO;
|
|
if (ntfs_cluster_free_from_rl(vol, rl2)) {
|
|
ntfs_error(vol->sb, "Failed to release allocated "
|
|
"cluster(s) in error code path. Run "
|
|
"chkdsk to recover the lost "
|
|
"cluster(s).");
|
|
NVolSetErrors(vol);
|
|
}
|
|
ntfs_free(rl2);
|
|
goto err_out;
|
|
}
|
|
ni->runlist.rl = rl;
|
|
ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size -
|
|
allocated_size) >> vol->cluster_size_bits);
|
|
/* Find the runlist element with which the attribute extent starts. */
|
|
ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
|
|
rl2 = ntfs_rl_find_vcn_nolock(rl, ll);
|
|
BUG_ON(!rl2);
|
|
BUG_ON(!rl2->length);
|
|
BUG_ON(rl2->lcn < LCN_HOLE);
|
|
mp_rebuilt = false;
|
|
/* Get the size for the new mapping pairs array for this extent. */
|
|
mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
|
|
if (unlikely(mp_size <= 0)) {
|
|
err = mp_size;
|
|
if (start < 0 || start >= allocated_size)
|
|
ntfs_error(vol->sb, "Cannot extend allocation of "
|
|
"inode 0x%lx, attribute type 0x%x, "
|
|
"because determining the size for the "
|
|
"mapping pairs failed with error code "
|
|
"%i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), err);
|
|
err = -EIO;
|
|
goto undo_alloc;
|
|
}
|
|
/* Extend the attribute record to fit the bigger mapping pairs array. */
|
|
attr_len = le32_to_cpu(a->length);
|
|
err = ntfs_attr_record_resize(m, a, mp_size +
|
|
le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
|
|
if (unlikely(err)) {
|
|
BUG_ON(err != -ENOSPC);
|
|
// TODO: Deal with this by moving this extent to a new mft
|
|
// record or by starting a new extent in a new mft record,
|
|
// possibly by extending this extent partially and filling it
|
|
// and creating a new extent for the remainder, or by making
|
|
// other attributes non-resident and/or by moving other
|
|
// attributes out of this mft record.
|
|
if (start < 0 || start >= allocated_size)
|
|
ntfs_error(vol->sb, "Not enough space in the mft "
|
|
"record for the extended attribute "
|
|
"record. This case is not "
|
|
"implemented yet.");
|
|
err = -EOPNOTSUPP;
|
|
goto undo_alloc;
|
|
}
|
|
mp_rebuilt = true;
|
|
/* Generate the mapping pairs array directly into the attr record. */
|
|
err = ntfs_mapping_pairs_build(vol, (u8*)a +
|
|
le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
|
|
mp_size, rl2, ll, -1, NULL);
|
|
if (unlikely(err)) {
|
|
if (start < 0 || start >= allocated_size)
|
|
ntfs_error(vol->sb, "Cannot extend allocation of "
|
|
"inode 0x%lx, attribute type 0x%x, "
|
|
"because building the mapping pairs "
|
|
"failed with error code %i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), err);
|
|
err = -EIO;
|
|
goto undo_alloc;
|
|
}
|
|
/* Update the highest_vcn. */
|
|
a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
|
|
vol->cluster_size_bits) - 1);
|
|
/*
|
|
* We now have extended the allocated size of the attribute. Reflect
|
|
* this in the ntfs_inode structure and the attribute record.
|
|
*/
|
|
if (a->data.non_resident.lowest_vcn) {
|
|
/*
|
|
* We are not in the first attribute extent, switch to it, but
|
|
* first ensure the changes will make it to disk later.
|
|
*/
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
|
|
CASE_SENSITIVE, 0, NULL, 0, ctx);
|
|
if (unlikely(err))
|
|
goto restore_undo_alloc;
|
|
/* @m is not used any more so no need to set it. */
|
|
a = ctx->attr;
|
|
}
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->allocated_size = new_alloc_size;
|
|
a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
|
|
/*
|
|
* FIXME: This would fail if @ni is a directory, $MFT, or an index,
|
|
* since those can have sparse/compressed set. For example can be
|
|
* set compressed even though it is not compressed itself and in that
|
|
* case the bit means that files are to be created compressed in the
|
|
* directory... At present this is ok as this code is only called for
|
|
* regular files, and only for their $DATA attribute(s).
|
|
* FIXME: The calculation is wrong if we created a hole above. For now
|
|
* it does not matter as we never create holes.
|
|
*/
|
|
if (NInoSparse(ni) || NInoCompressed(ni)) {
|
|
ni->itype.compressed.size += new_alloc_size - allocated_size;
|
|
a->data.non_resident.compressed_size =
|
|
cpu_to_sle64(ni->itype.compressed.size);
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
} else
|
|
vi->i_blocks = new_alloc_size >> 9;
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
alloc_done:
|
|
if (new_data_size >= 0) {
|
|
BUG_ON(new_data_size <
|
|
sle64_to_cpu(a->data.non_resident.data_size));
|
|
a->data.non_resident.data_size = cpu_to_sle64(new_data_size);
|
|
}
|
|
flush_done:
|
|
/* Ensure the changes make it to disk. */
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
done:
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
ntfs_debug("Done, new_allocated_size 0x%llx.",
|
|
(unsigned long long)new_alloc_size);
|
|
return new_alloc_size;
|
|
restore_undo_alloc:
|
|
if (start < 0 || start >= allocated_size)
|
|
ntfs_error(vol->sb, "Cannot complete extension of allocation "
|
|
"of inode 0x%lx, attribute type 0x%x, because "
|
|
"lookup of first attribute extent failed with "
|
|
"error code %i.", vi->i_ino,
|
|
(unsigned)le32_to_cpu(ni->type), err);
|
|
if (err == -ENOENT)
|
|
err = -EIO;
|
|
ntfs_attr_reinit_search_ctx(ctx);
|
|
if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE,
|
|
allocated_size >> vol->cluster_size_bits, NULL, 0,
|
|
ctx)) {
|
|
ntfs_error(vol->sb, "Failed to find last attribute extent of "
|
|
"attribute in error code path. Run chkdsk to "
|
|
"recover.");
|
|
write_lock_irqsave(&ni->size_lock, flags);
|
|
ni->allocated_size = new_alloc_size;
|
|
/*
|
|
* FIXME: This would fail if @ni is a directory... See above.
|
|
* FIXME: The calculation is wrong if we created a hole above.
|
|
* For now it does not matter as we never create holes.
|
|
*/
|
|
if (NInoSparse(ni) || NInoCompressed(ni)) {
|
|
ni->itype.compressed.size += new_alloc_size -
|
|
allocated_size;
|
|
vi->i_blocks = ni->itype.compressed.size >> 9;
|
|
} else
|
|
vi->i_blocks = new_alloc_size >> 9;
|
|
write_unlock_irqrestore(&ni->size_lock, flags);
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
/*
|
|
* The only thing that is now wrong is the allocated size of the
|
|
* base attribute extent which chkdsk should be able to fix.
|
|
*/
|
|
NVolSetErrors(vol);
|
|
return err;
|
|
}
|
|
ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64(
|
|
(allocated_size >> vol->cluster_size_bits) - 1);
|
|
undo_alloc:
|
|
ll = allocated_size >> vol->cluster_size_bits;
|
|
if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) {
|
|
ntfs_error(vol->sb, "Failed to release allocated cluster(s) "
|
|
"in error code path. Run chkdsk to recover "
|
|
"the lost cluster(s).");
|
|
NVolSetErrors(vol);
|
|
}
|
|
m = ctx->mrec;
|
|
a = ctx->attr;
|
|
/*
|
|
* If the runlist truncation fails and/or the search context is no
|
|
* longer valid, we cannot resize the attribute record or build the
|
|
* mapping pairs array thus we mark the inode bad so that no access to
|
|
* the freed clusters can happen.
|
|
*/
|
|
if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) {
|
|
ntfs_error(vol->sb, "Failed to %s in error code path. Run "
|
|
"chkdsk to recover.", IS_ERR(m) ?
|
|
"restore attribute search context" :
|
|
"truncate attribute runlist");
|
|
NVolSetErrors(vol);
|
|
} else if (mp_rebuilt) {
|
|
if (ntfs_attr_record_resize(m, a, attr_len)) {
|
|
ntfs_error(vol->sb, "Failed to restore attribute "
|
|
"record in error code path. Run "
|
|
"chkdsk to recover.");
|
|
NVolSetErrors(vol);
|
|
} else /* if (success) */ {
|
|
if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
|
|
a->data.non_resident.
|
|
mapping_pairs_offset), attr_len -
|
|
le16_to_cpu(a->data.non_resident.
|
|
mapping_pairs_offset), rl2, ll, -1,
|
|
NULL)) {
|
|
ntfs_error(vol->sb, "Failed to restore "
|
|
"mapping pairs array in error "
|
|
"code path. Run chkdsk to "
|
|
"recover.");
|
|
NVolSetErrors(vol);
|
|
}
|
|
flush_dcache_mft_record_page(ctx->ntfs_ino);
|
|
mark_mft_record_dirty(ctx->ntfs_ino);
|
|
}
|
|
}
|
|
err_out:
|
|
if (ctx)
|
|
ntfs_attr_put_search_ctx(ctx);
|
|
if (m)
|
|
unmap_mft_record(base_ni);
|
|
up_write(&ni->runlist.lock);
|
|
conv_err_out:
|
|
ntfs_debug("Failed. Returning error code %i.", err);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ntfs_attr_set - fill (a part of) an attribute with a byte
|
|
* @ni: ntfs inode describing the attribute to fill
|
|
* @ofs: offset inside the attribute at which to start to fill
|
|
* @cnt: number of bytes to fill
|
|
* @val: the unsigned 8-bit value with which to fill the attribute
|
|
*
|
|
* Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at
|
|
* byte offset @ofs inside the attribute with the constant byte @val.
|
|
*
|
|
* This function is effectively like memset() applied to an ntfs attribute.
|
|
* Note thie function actually only operates on the page cache pages belonging
|
|
* to the ntfs attribute and it marks them dirty after doing the memset().
|
|
* Thus it relies on the vm dirty page write code paths to cause the modified
|
|
* pages to be written to the mft record/disk.
|
|
*
|
|
* Return 0 on success and -errno on error. An error code of -ESPIPE means
|
|
* that @ofs + @cnt were outside the end of the attribute and no write was
|
|
* performed.
|
|
*/
|
|
int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val)
|
|
{
|
|
ntfs_volume *vol = ni->vol;
|
|
struct address_space *mapping;
|
|
struct page *page;
|
|
u8 *kaddr;
|
|
pgoff_t idx, end;
|
|
unsigned start_ofs, end_ofs, size;
|
|
|
|
ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.",
|
|
(long long)ofs, (long long)cnt, val);
|
|
BUG_ON(ofs < 0);
|
|
BUG_ON(cnt < 0);
|
|
if (!cnt)
|
|
goto done;
|
|
/*
|
|
* FIXME: Compressed and encrypted attributes are not supported when
|
|
* writing and we should never have gotten here for them.
|
|
*/
|
|
BUG_ON(NInoCompressed(ni));
|
|
BUG_ON(NInoEncrypted(ni));
|
|
mapping = VFS_I(ni)->i_mapping;
|
|
/* Work out the starting index and page offset. */
|
|
idx = ofs >> PAGE_CACHE_SHIFT;
|
|
start_ofs = ofs & ~PAGE_CACHE_MASK;
|
|
/* Work out the ending index and page offset. */
|
|
end = ofs + cnt;
|
|
end_ofs = end & ~PAGE_CACHE_MASK;
|
|
/* If the end is outside the inode size return -ESPIPE. */
|
|
if (unlikely(end > i_size_read(VFS_I(ni)))) {
|
|
ntfs_error(vol->sb, "Request exceeds end of attribute.");
|
|
return -ESPIPE;
|
|
}
|
|
end >>= PAGE_CACHE_SHIFT;
|
|
/* If there is a first partial page, need to do it the slow way. */
|
|
if (start_ofs) {
|
|
page = read_mapping_page(mapping, idx, NULL);
|
|
if (IS_ERR(page)) {
|
|
ntfs_error(vol->sb, "Failed to read first partial "
|
|
"page (error, index 0x%lx).", idx);
|
|
return PTR_ERR(page);
|
|
}
|
|
/*
|
|
* If the last page is the same as the first page, need to
|
|
* limit the write to the end offset.
|
|
*/
|
|
size = PAGE_CACHE_SIZE;
|
|
if (idx == end)
|
|
size = end_ofs;
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr + start_ofs, val, size - start_ofs);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
set_page_dirty(page);
|
|
page_cache_release(page);
|
|
balance_dirty_pages_ratelimited(mapping);
|
|
cond_resched();
|
|
if (idx == end)
|
|
goto done;
|
|
idx++;
|
|
}
|
|
/* Do the whole pages the fast way. */
|
|
for (; idx < end; idx++) {
|
|
/* Find or create the current page. (The page is locked.) */
|
|
page = grab_cache_page(mapping, idx);
|
|
if (unlikely(!page)) {
|
|
ntfs_error(vol->sb, "Insufficient memory to grab "
|
|
"page (index 0x%lx).", idx);
|
|
return -ENOMEM;
|
|
}
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr, val, PAGE_CACHE_SIZE);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
/*
|
|
* If the page has buffers, mark them uptodate since buffer
|
|
* state and not page state is definitive in 2.6 kernels.
|
|
*/
|
|
if (page_has_buffers(page)) {
|
|
struct buffer_head *bh, *head;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
set_buffer_uptodate(bh);
|
|
} while ((bh = bh->b_this_page) != head);
|
|
}
|
|
/* Now that buffers are uptodate, set the page uptodate, too. */
|
|
SetPageUptodate(page);
|
|
/*
|
|
* Set the page and all its buffers dirty and mark the inode
|
|
* dirty, too. The VM will write the page later on.
|
|
*/
|
|
set_page_dirty(page);
|
|
/* Finally unlock and release the page. */
|
|
unlock_page(page);
|
|
page_cache_release(page);
|
|
balance_dirty_pages_ratelimited(mapping);
|
|
cond_resched();
|
|
}
|
|
/* If there is a last partial page, need to do it the slow way. */
|
|
if (end_ofs) {
|
|
page = read_mapping_page(mapping, idx, NULL);
|
|
if (IS_ERR(page)) {
|
|
ntfs_error(vol->sb, "Failed to read last partial page "
|
|
"(error, index 0x%lx).", idx);
|
|
return PTR_ERR(page);
|
|
}
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memset(kaddr, val, end_ofs);
|
|
flush_dcache_page(page);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
set_page_dirty(page);
|
|
page_cache_release(page);
|
|
balance_dirty_pages_ratelimited(mapping);
|
|
cond_resched();
|
|
}
|
|
done:
|
|
ntfs_debug("Done.");
|
|
return 0;
|
|
}
|
|
|
|
#endif /* NTFS_RW */
|