mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 12:22:42 +00:00
ba230c3f6d
To prepare for a direct I/O write, we need to split the unwritten extents before submitting the I/O. When no extents needed to be split, ext4_split_unwritten_extents() was incorrectly returning 0 instead of the size of uninitialized extents. This bug caused the wrong return value sent back to VFS code when it gets called from async IO path, leading to an unnecessary fall back to buffered IO. This bug also hid the fact that the check to see whether or not a split would be necessary was incorrect; we can only skip splitting the extent if the write completely covers the uninitialized extent. Signed-off-by: Mingming Cao <cmm@us.ibm.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
3732 lines
97 KiB
C
3732 lines
97 KiB
C
/*
|
|
* Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
|
|
* Written by Alex Tomas <alex@clusterfs.com>
|
|
*
|
|
* Architecture independence:
|
|
* Copyright (c) 2005, Bull S.A.
|
|
* Written by Pierre Peiffer <pierre.peiffer@bull.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public Licens
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
|
|
*/
|
|
|
|
/*
|
|
* Extents support for EXT4
|
|
*
|
|
* TODO:
|
|
* - ext4*_error() should be used in some situations
|
|
* - analyze all BUG()/BUG_ON(), use -EIO where appropriate
|
|
* - smart tree reduction
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/time.h>
|
|
#include <linux/jbd2.h>
|
|
#include <linux/highuid.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/falloc.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/fiemap.h>
|
|
#include "ext4_jbd2.h"
|
|
#include "ext4_extents.h"
|
|
|
|
|
|
/*
|
|
* ext_pblock:
|
|
* combine low and high parts of physical block number into ext4_fsblk_t
|
|
*/
|
|
ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
|
|
{
|
|
ext4_fsblk_t block;
|
|
|
|
block = le32_to_cpu(ex->ee_start_lo);
|
|
block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
* idx_pblock:
|
|
* combine low and high parts of a leaf physical block number into ext4_fsblk_t
|
|
*/
|
|
ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
|
|
{
|
|
ext4_fsblk_t block;
|
|
|
|
block = le32_to_cpu(ix->ei_leaf_lo);
|
|
block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
|
|
return block;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_store_pblock:
|
|
* stores a large physical block number into an extent struct,
|
|
* breaking it into parts
|
|
*/
|
|
void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
|
|
{
|
|
ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
|
|
ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
|
|
}
|
|
|
|
/*
|
|
* ext4_idx_store_pblock:
|
|
* stores a large physical block number into an index struct,
|
|
* breaking it into parts
|
|
*/
|
|
static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
|
|
{
|
|
ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
|
|
ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
|
|
}
|
|
|
|
static int ext4_ext_truncate_extend_restart(handle_t *handle,
|
|
struct inode *inode,
|
|
int needed)
|
|
{
|
|
int err;
|
|
|
|
if (!ext4_handle_valid(handle))
|
|
return 0;
|
|
if (handle->h_buffer_credits > needed)
|
|
return 0;
|
|
err = ext4_journal_extend(handle, needed);
|
|
if (err <= 0)
|
|
return err;
|
|
err = ext4_truncate_restart_trans(handle, inode, needed);
|
|
/*
|
|
* We have dropped i_data_sem so someone might have cached again
|
|
* an extent we are going to truncate.
|
|
*/
|
|
ext4_ext_invalidate_cache(inode);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* could return:
|
|
* - EROFS
|
|
* - ENOMEM
|
|
*/
|
|
static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
if (path->p_bh) {
|
|
/* path points to block */
|
|
return ext4_journal_get_write_access(handle, path->p_bh);
|
|
}
|
|
/* path points to leaf/index in inode body */
|
|
/* we use in-core data, no need to protect them */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* could return:
|
|
* - EROFS
|
|
* - ENOMEM
|
|
* - EIO
|
|
*/
|
|
static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
int err;
|
|
if (path->p_bh) {
|
|
/* path points to block */
|
|
err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
|
|
} else {
|
|
/* path points to leaf/index in inode body */
|
|
err = ext4_mark_inode_dirty(handle, inode);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t block)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
ext4_fsblk_t bg_start;
|
|
ext4_fsblk_t last_block;
|
|
ext4_grpblk_t colour;
|
|
ext4_group_t block_group;
|
|
int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
|
|
int depth;
|
|
|
|
if (path) {
|
|
struct ext4_extent *ex;
|
|
depth = path->p_depth;
|
|
|
|
/* try to predict block placement */
|
|
ex = path[depth].p_ext;
|
|
if (ex)
|
|
return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
|
|
|
|
/* it looks like index is empty;
|
|
* try to find starting block from index itself */
|
|
if (path[depth].p_bh)
|
|
return path[depth].p_bh->b_blocknr;
|
|
}
|
|
|
|
/* OK. use inode's group */
|
|
block_group = ei->i_block_group;
|
|
if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
|
|
/*
|
|
* If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
|
|
* block groups per flexgroup, reserve the first block
|
|
* group for directories and special files. Regular
|
|
* files will start at the second block group. This
|
|
* tends to speed up directory access and improves
|
|
* fsck times.
|
|
*/
|
|
block_group &= ~(flex_size-1);
|
|
if (S_ISREG(inode->i_mode))
|
|
block_group++;
|
|
}
|
|
bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
|
|
le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
|
|
last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
|
|
|
|
/*
|
|
* If we are doing delayed allocation, we don't need take
|
|
* colour into account.
|
|
*/
|
|
if (test_opt(inode->i_sb, DELALLOC))
|
|
return bg_start;
|
|
|
|
if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
|
|
colour = (current->pid % 16) *
|
|
(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
|
|
else
|
|
colour = (current->pid % 16) * ((last_block - bg_start) / 16);
|
|
return bg_start + colour + block;
|
|
}
|
|
|
|
/*
|
|
* Allocation for a meta data block
|
|
*/
|
|
static ext4_fsblk_t
|
|
ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *ex, int *err)
|
|
{
|
|
ext4_fsblk_t goal, newblock;
|
|
|
|
goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
|
|
newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
|
|
return newblock;
|
|
}
|
|
|
|
static inline int ext4_ext_space_block(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent);
|
|
if (!check) {
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (size > 6)
|
|
size = 6;
|
|
#endif
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent_idx);
|
|
if (!check) {
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (size > 5)
|
|
size = 5;
|
|
#endif
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_root(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = sizeof(EXT4_I(inode)->i_data);
|
|
size -= sizeof(struct ext4_extent_header);
|
|
size /= sizeof(struct ext4_extent);
|
|
if (!check) {
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (size > 3)
|
|
size = 3;
|
|
#endif
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = sizeof(EXT4_I(inode)->i_data);
|
|
size -= sizeof(struct ext4_extent_header);
|
|
size /= sizeof(struct ext4_extent_idx);
|
|
if (!check) {
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (size > 4)
|
|
size = 4;
|
|
#endif
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of metadata blocks needed
|
|
* to allocate @blocks
|
|
* Worse case is one block per extent
|
|
*/
|
|
int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
|
|
{
|
|
int lcap, icap, rcap, leafs, idxs, num;
|
|
int newextents = blocks;
|
|
|
|
rcap = ext4_ext_space_root_idx(inode, 0);
|
|
lcap = ext4_ext_space_block(inode, 0);
|
|
icap = ext4_ext_space_block_idx(inode, 0);
|
|
|
|
/* number of new leaf blocks needed */
|
|
num = leafs = (newextents + lcap - 1) / lcap;
|
|
|
|
/*
|
|
* Worse case, we need separate index block(s)
|
|
* to link all new leaf blocks
|
|
*/
|
|
idxs = (leafs + icap - 1) / icap;
|
|
do {
|
|
num += idxs;
|
|
idxs = (idxs + icap - 1) / icap;
|
|
} while (idxs > rcap);
|
|
|
|
return num;
|
|
}
|
|
|
|
static int
|
|
ext4_ext_max_entries(struct inode *inode, int depth)
|
|
{
|
|
int max;
|
|
|
|
if (depth == ext_depth(inode)) {
|
|
if (depth == 0)
|
|
max = ext4_ext_space_root(inode, 1);
|
|
else
|
|
max = ext4_ext_space_root_idx(inode, 1);
|
|
} else {
|
|
if (depth == 0)
|
|
max = ext4_ext_space_block(inode, 1);
|
|
else
|
|
max = ext4_ext_space_block_idx(inode, 1);
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
|
|
{
|
|
ext4_fsblk_t block = ext_pblock(ext);
|
|
int len = ext4_ext_get_actual_len(ext);
|
|
|
|
return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
|
|
}
|
|
|
|
static int ext4_valid_extent_idx(struct inode *inode,
|
|
struct ext4_extent_idx *ext_idx)
|
|
{
|
|
ext4_fsblk_t block = idx_pblock(ext_idx);
|
|
|
|
return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
|
|
}
|
|
|
|
static int ext4_valid_extent_entries(struct inode *inode,
|
|
struct ext4_extent_header *eh,
|
|
int depth)
|
|
{
|
|
struct ext4_extent *ext;
|
|
struct ext4_extent_idx *ext_idx;
|
|
unsigned short entries;
|
|
if (eh->eh_entries == 0)
|
|
return 1;
|
|
|
|
entries = le16_to_cpu(eh->eh_entries);
|
|
|
|
if (depth == 0) {
|
|
/* leaf entries */
|
|
ext = EXT_FIRST_EXTENT(eh);
|
|
while (entries) {
|
|
if (!ext4_valid_extent(inode, ext))
|
|
return 0;
|
|
ext++;
|
|
entries--;
|
|
}
|
|
} else {
|
|
ext_idx = EXT_FIRST_INDEX(eh);
|
|
while (entries) {
|
|
if (!ext4_valid_extent_idx(inode, ext_idx))
|
|
return 0;
|
|
ext_idx++;
|
|
entries--;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int __ext4_ext_check(const char *function, struct inode *inode,
|
|
struct ext4_extent_header *eh,
|
|
int depth)
|
|
{
|
|
const char *error_msg;
|
|
int max = 0;
|
|
|
|
if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
|
|
error_msg = "invalid magic";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
|
|
error_msg = "unexpected eh_depth";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(eh->eh_max == 0)) {
|
|
error_msg = "invalid eh_max";
|
|
goto corrupted;
|
|
}
|
|
max = ext4_ext_max_entries(inode, depth);
|
|
if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
|
|
error_msg = "too large eh_max";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
|
|
error_msg = "invalid eh_entries";
|
|
goto corrupted;
|
|
}
|
|
if (!ext4_valid_extent_entries(inode, eh, depth)) {
|
|
error_msg = "invalid extent entries";
|
|
goto corrupted;
|
|
}
|
|
return 0;
|
|
|
|
corrupted:
|
|
ext4_error(inode->i_sb, function,
|
|
"bad header/extent in inode #%lu: %s - magic %x, "
|
|
"entries %u, max %u(%u), depth %u(%u)",
|
|
inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
|
|
le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
|
|
max, le16_to_cpu(eh->eh_depth), depth);
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
#define ext4_ext_check(inode, eh, depth) \
|
|
__ext4_ext_check(__func__, inode, eh, depth)
|
|
|
|
int ext4_ext_check_inode(struct inode *inode)
|
|
{
|
|
return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
|
|
}
|
|
|
|
#ifdef EXT_DEBUG
|
|
static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
|
|
{
|
|
int k, l = path->p_depth;
|
|
|
|
ext_debug("path:");
|
|
for (k = 0; k <= l; k++, path++) {
|
|
if (path->p_idx) {
|
|
ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
|
|
idx_pblock(path->p_idx));
|
|
} else if (path->p_ext) {
|
|
ext_debug(" %d:[%d]%d:%llu ",
|
|
le32_to_cpu(path->p_ext->ee_block),
|
|
ext4_ext_is_uninitialized(path->p_ext),
|
|
ext4_ext_get_actual_len(path->p_ext),
|
|
ext_pblock(path->p_ext));
|
|
} else
|
|
ext_debug(" []");
|
|
}
|
|
ext_debug("\n");
|
|
}
|
|
|
|
static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
|
|
{
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent *ex;
|
|
int i;
|
|
|
|
if (!path)
|
|
return;
|
|
|
|
eh = path[depth].p_hdr;
|
|
ex = EXT_FIRST_EXTENT(eh);
|
|
|
|
ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
|
|
|
|
for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
|
|
ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
|
|
ext4_ext_is_uninitialized(ex),
|
|
ext4_ext_get_actual_len(ex), ext_pblock(ex));
|
|
}
|
|
ext_debug("\n");
|
|
}
|
|
#else
|
|
#define ext4_ext_show_path(inode, path)
|
|
#define ext4_ext_show_leaf(inode, path)
|
|
#endif
|
|
|
|
void ext4_ext_drop_refs(struct ext4_ext_path *path)
|
|
{
|
|
int depth = path->p_depth;
|
|
int i;
|
|
|
|
for (i = 0; i <= depth; i++, path++)
|
|
if (path->p_bh) {
|
|
brelse(path->p_bh);
|
|
path->p_bh = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_binsearch_idx:
|
|
* binary search for the closest index of the given block
|
|
* the header must be checked before calling this
|
|
*/
|
|
static void
|
|
ext4_ext_binsearch_idx(struct inode *inode,
|
|
struct ext4_ext_path *path, ext4_lblk_t block)
|
|
{
|
|
struct ext4_extent_header *eh = path->p_hdr;
|
|
struct ext4_extent_idx *r, *l, *m;
|
|
|
|
|
|
ext_debug("binsearch for %u(idx): ", block);
|
|
|
|
l = EXT_FIRST_INDEX(eh) + 1;
|
|
r = EXT_LAST_INDEX(eh);
|
|
while (l <= r) {
|
|
m = l + (r - l) / 2;
|
|
if (block < le32_to_cpu(m->ei_block))
|
|
r = m - 1;
|
|
else
|
|
l = m + 1;
|
|
ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
|
|
m, le32_to_cpu(m->ei_block),
|
|
r, le32_to_cpu(r->ei_block));
|
|
}
|
|
|
|
path->p_idx = l - 1;
|
|
ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
|
|
idx_pblock(path->p_idx));
|
|
|
|
#ifdef CHECK_BINSEARCH
|
|
{
|
|
struct ext4_extent_idx *chix, *ix;
|
|
int k;
|
|
|
|
chix = ix = EXT_FIRST_INDEX(eh);
|
|
for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
|
|
if (k != 0 &&
|
|
le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
|
|
printk(KERN_DEBUG "k=%d, ix=0x%p, "
|
|
"first=0x%p\n", k,
|
|
ix, EXT_FIRST_INDEX(eh));
|
|
printk(KERN_DEBUG "%u <= %u\n",
|
|
le32_to_cpu(ix->ei_block),
|
|
le32_to_cpu(ix[-1].ei_block));
|
|
}
|
|
BUG_ON(k && le32_to_cpu(ix->ei_block)
|
|
<= le32_to_cpu(ix[-1].ei_block));
|
|
if (block < le32_to_cpu(ix->ei_block))
|
|
break;
|
|
chix = ix;
|
|
}
|
|
BUG_ON(chix != path->p_idx);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_binsearch:
|
|
* binary search for closest extent of the given block
|
|
* the header must be checked before calling this
|
|
*/
|
|
static void
|
|
ext4_ext_binsearch(struct inode *inode,
|
|
struct ext4_ext_path *path, ext4_lblk_t block)
|
|
{
|
|
struct ext4_extent_header *eh = path->p_hdr;
|
|
struct ext4_extent *r, *l, *m;
|
|
|
|
if (eh->eh_entries == 0) {
|
|
/*
|
|
* this leaf is empty:
|
|
* we get such a leaf in split/add case
|
|
*/
|
|
return;
|
|
}
|
|
|
|
ext_debug("binsearch for %u: ", block);
|
|
|
|
l = EXT_FIRST_EXTENT(eh) + 1;
|
|
r = EXT_LAST_EXTENT(eh);
|
|
|
|
while (l <= r) {
|
|
m = l + (r - l) / 2;
|
|
if (block < le32_to_cpu(m->ee_block))
|
|
r = m - 1;
|
|
else
|
|
l = m + 1;
|
|
ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
|
|
m, le32_to_cpu(m->ee_block),
|
|
r, le32_to_cpu(r->ee_block));
|
|
}
|
|
|
|
path->p_ext = l - 1;
|
|
ext_debug(" -> %d:%llu:[%d]%d ",
|
|
le32_to_cpu(path->p_ext->ee_block),
|
|
ext_pblock(path->p_ext),
|
|
ext4_ext_is_uninitialized(path->p_ext),
|
|
ext4_ext_get_actual_len(path->p_ext));
|
|
|
|
#ifdef CHECK_BINSEARCH
|
|
{
|
|
struct ext4_extent *chex, *ex;
|
|
int k;
|
|
|
|
chex = ex = EXT_FIRST_EXTENT(eh);
|
|
for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
|
|
BUG_ON(k && le32_to_cpu(ex->ee_block)
|
|
<= le32_to_cpu(ex[-1].ee_block));
|
|
if (block < le32_to_cpu(ex->ee_block))
|
|
break;
|
|
chex = ex;
|
|
}
|
|
BUG_ON(chex != path->p_ext);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
|
|
eh = ext_inode_hdr(inode);
|
|
eh->eh_depth = 0;
|
|
eh->eh_entries = 0;
|
|
eh->eh_magic = EXT4_EXT_MAGIC;
|
|
eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ext4_ext_invalidate_cache(inode);
|
|
return 0;
|
|
}
|
|
|
|
struct ext4_ext_path *
|
|
ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
struct buffer_head *bh;
|
|
short int depth, i, ppos = 0, alloc = 0;
|
|
|
|
eh = ext_inode_hdr(inode);
|
|
depth = ext_depth(inode);
|
|
|
|
/* account possible depth increase */
|
|
if (!path) {
|
|
path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
|
|
GFP_NOFS);
|
|
if (!path)
|
|
return ERR_PTR(-ENOMEM);
|
|
alloc = 1;
|
|
}
|
|
path[0].p_hdr = eh;
|
|
path[0].p_bh = NULL;
|
|
|
|
i = depth;
|
|
/* walk through the tree */
|
|
while (i) {
|
|
int need_to_validate = 0;
|
|
|
|
ext_debug("depth %d: num %d, max %d\n",
|
|
ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
|
|
|
|
ext4_ext_binsearch_idx(inode, path + ppos, block);
|
|
path[ppos].p_block = idx_pblock(path[ppos].p_idx);
|
|
path[ppos].p_depth = i;
|
|
path[ppos].p_ext = NULL;
|
|
|
|
bh = sb_getblk(inode->i_sb, path[ppos].p_block);
|
|
if (unlikely(!bh))
|
|
goto err;
|
|
if (!bh_uptodate_or_lock(bh)) {
|
|
if (bh_submit_read(bh) < 0) {
|
|
put_bh(bh);
|
|
goto err;
|
|
}
|
|
/* validate the extent entries */
|
|
need_to_validate = 1;
|
|
}
|
|
eh = ext_block_hdr(bh);
|
|
ppos++;
|
|
BUG_ON(ppos > depth);
|
|
path[ppos].p_bh = bh;
|
|
path[ppos].p_hdr = eh;
|
|
i--;
|
|
|
|
if (need_to_validate && ext4_ext_check(inode, eh, i))
|
|
goto err;
|
|
}
|
|
|
|
path[ppos].p_depth = i;
|
|
path[ppos].p_ext = NULL;
|
|
path[ppos].p_idx = NULL;
|
|
|
|
/* find extent */
|
|
ext4_ext_binsearch(inode, path + ppos, block);
|
|
/* if not an empty leaf */
|
|
if (path[ppos].p_ext)
|
|
path[ppos].p_block = ext_pblock(path[ppos].p_ext);
|
|
|
|
ext4_ext_show_path(inode, path);
|
|
|
|
return path;
|
|
|
|
err:
|
|
ext4_ext_drop_refs(path);
|
|
if (alloc)
|
|
kfree(path);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_insert_index:
|
|
* insert new index [@logical;@ptr] into the block at @curp;
|
|
* check where to insert: before @curp or after @curp
|
|
*/
|
|
int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *curp,
|
|
int logical, ext4_fsblk_t ptr)
|
|
{
|
|
struct ext4_extent_idx *ix;
|
|
int len, err;
|
|
|
|
err = ext4_ext_get_access(handle, inode, curp);
|
|
if (err)
|
|
return err;
|
|
|
|
BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
|
|
len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
|
|
if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
|
|
/* insert after */
|
|
if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
|
|
len = (len - 1) * sizeof(struct ext4_extent_idx);
|
|
len = len < 0 ? 0 : len;
|
|
ext_debug("insert new index %d after: %llu. "
|
|
"move %d from 0x%p to 0x%p\n",
|
|
logical, ptr, len,
|
|
(curp->p_idx + 1), (curp->p_idx + 2));
|
|
memmove(curp->p_idx + 2, curp->p_idx + 1, len);
|
|
}
|
|
ix = curp->p_idx + 1;
|
|
} else {
|
|
/* insert before */
|
|
len = len * sizeof(struct ext4_extent_idx);
|
|
len = len < 0 ? 0 : len;
|
|
ext_debug("insert new index %d before: %llu. "
|
|
"move %d from 0x%p to 0x%p\n",
|
|
logical, ptr, len,
|
|
curp->p_idx, (curp->p_idx + 1));
|
|
memmove(curp->p_idx + 1, curp->p_idx, len);
|
|
ix = curp->p_idx;
|
|
}
|
|
|
|
ix->ei_block = cpu_to_le32(logical);
|
|
ext4_idx_store_pblock(ix, ptr);
|
|
le16_add_cpu(&curp->p_hdr->eh_entries, 1);
|
|
|
|
BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
|
|
> le16_to_cpu(curp->p_hdr->eh_max));
|
|
BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
|
|
|
|
err = ext4_ext_dirty(handle, inode, curp);
|
|
ext4_std_error(inode->i_sb, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_split:
|
|
* inserts new subtree into the path, using free index entry
|
|
* at depth @at:
|
|
* - allocates all needed blocks (new leaf and all intermediate index blocks)
|
|
* - makes decision where to split
|
|
* - moves remaining extents and index entries (right to the split point)
|
|
* into the newly allocated blocks
|
|
* - initializes subtree
|
|
*/
|
|
static int ext4_ext_split(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *newext, int at)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent_header *neh;
|
|
struct ext4_extent_idx *fidx;
|
|
struct ext4_extent *ex;
|
|
int i = at, k, m, a;
|
|
ext4_fsblk_t newblock, oldblock;
|
|
__le32 border;
|
|
ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
|
|
int err = 0;
|
|
|
|
/* make decision: where to split? */
|
|
/* FIXME: now decision is simplest: at current extent */
|
|
|
|
/* if current leaf will be split, then we should use
|
|
* border from split point */
|
|
BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
|
|
if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
|
|
border = path[depth].p_ext[1].ee_block;
|
|
ext_debug("leaf will be split."
|
|
" next leaf starts at %d\n",
|
|
le32_to_cpu(border));
|
|
} else {
|
|
border = newext->ee_block;
|
|
ext_debug("leaf will be added."
|
|
" next leaf starts at %d\n",
|
|
le32_to_cpu(border));
|
|
}
|
|
|
|
/*
|
|
* If error occurs, then we break processing
|
|
* and mark filesystem read-only. index won't
|
|
* be inserted and tree will be in consistent
|
|
* state. Next mount will repair buffers too.
|
|
*/
|
|
|
|
/*
|
|
* Get array to track all allocated blocks.
|
|
* We need this to handle errors and free blocks
|
|
* upon them.
|
|
*/
|
|
ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
|
|
if (!ablocks)
|
|
return -ENOMEM;
|
|
|
|
/* allocate all needed blocks */
|
|
ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
|
|
for (a = 0; a < depth - at; a++) {
|
|
newblock = ext4_ext_new_meta_block(handle, inode, path,
|
|
newext, &err);
|
|
if (newblock == 0)
|
|
goto cleanup;
|
|
ablocks[a] = newblock;
|
|
}
|
|
|
|
/* initialize new leaf */
|
|
newblock = ablocks[--a];
|
|
BUG_ON(newblock == 0);
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (!bh) {
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
neh = ext_block_hdr(bh);
|
|
neh->eh_entries = 0;
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
neh->eh_depth = 0;
|
|
ex = EXT_FIRST_EXTENT(neh);
|
|
|
|
/* move remainder of path[depth] to the new leaf */
|
|
BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
|
|
/* start copy from next extent */
|
|
/* TODO: we could do it by single memmove */
|
|
m = 0;
|
|
path[depth].p_ext++;
|
|
while (path[depth].p_ext <=
|
|
EXT_MAX_EXTENT(path[depth].p_hdr)) {
|
|
ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
|
|
le32_to_cpu(path[depth].p_ext->ee_block),
|
|
ext_pblock(path[depth].p_ext),
|
|
ext4_ext_is_uninitialized(path[depth].p_ext),
|
|
ext4_ext_get_actual_len(path[depth].p_ext),
|
|
newblock);
|
|
/*memmove(ex++, path[depth].p_ext++,
|
|
sizeof(struct ext4_extent));
|
|
neh->eh_entries++;*/
|
|
path[depth].p_ext++;
|
|
m++;
|
|
}
|
|
if (m) {
|
|
memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
|
|
le16_add_cpu(&neh->eh_entries, m);
|
|
}
|
|
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
brelse(bh);
|
|
bh = NULL;
|
|
|
|
/* correct old leaf */
|
|
if (m) {
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
/* create intermediate indexes */
|
|
k = depth - at - 1;
|
|
BUG_ON(k < 0);
|
|
if (k)
|
|
ext_debug("create %d intermediate indices\n", k);
|
|
/* insert new index into current index block */
|
|
/* current depth stored in i var */
|
|
i = depth - 1;
|
|
while (k--) {
|
|
oldblock = newblock;
|
|
newblock = ablocks[--a];
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (!bh) {
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
neh = ext_block_hdr(bh);
|
|
neh->eh_entries = cpu_to_le16(1);
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
|
|
neh->eh_depth = cpu_to_le16(depth - i);
|
|
fidx = EXT_FIRST_INDEX(neh);
|
|
fidx->ei_block = border;
|
|
ext4_idx_store_pblock(fidx, oldblock);
|
|
|
|
ext_debug("int.index at %d (block %llu): %u -> %llu\n",
|
|
i, newblock, le32_to_cpu(border), oldblock);
|
|
/* copy indexes */
|
|
m = 0;
|
|
path[i].p_idx++;
|
|
|
|
ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
|
|
EXT_MAX_INDEX(path[i].p_hdr));
|
|
BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
|
|
EXT_LAST_INDEX(path[i].p_hdr));
|
|
while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
|
|
ext_debug("%d: move %d:%llu in new index %llu\n", i,
|
|
le32_to_cpu(path[i].p_idx->ei_block),
|
|
idx_pblock(path[i].p_idx),
|
|
newblock);
|
|
/*memmove(++fidx, path[i].p_idx++,
|
|
sizeof(struct ext4_extent_idx));
|
|
neh->eh_entries++;
|
|
BUG_ON(neh->eh_entries > neh->eh_max);*/
|
|
path[i].p_idx++;
|
|
m++;
|
|
}
|
|
if (m) {
|
|
memmove(++fidx, path[i].p_idx - m,
|
|
sizeof(struct ext4_extent_idx) * m);
|
|
le16_add_cpu(&neh->eh_entries, m);
|
|
}
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
brelse(bh);
|
|
bh = NULL;
|
|
|
|
/* correct old index */
|
|
if (m) {
|
|
err = ext4_ext_get_access(handle, inode, path + i);
|
|
if (err)
|
|
goto cleanup;
|
|
le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
|
|
err = ext4_ext_dirty(handle, inode, path + i);
|
|
if (err)
|
|
goto cleanup;
|
|
}
|
|
|
|
i--;
|
|
}
|
|
|
|
/* insert new index */
|
|
err = ext4_ext_insert_index(handle, inode, path + at,
|
|
le32_to_cpu(border), newblock);
|
|
|
|
cleanup:
|
|
if (bh) {
|
|
if (buffer_locked(bh))
|
|
unlock_buffer(bh);
|
|
brelse(bh);
|
|
}
|
|
|
|
if (err) {
|
|
/* free all allocated blocks in error case */
|
|
for (i = 0; i < depth; i++) {
|
|
if (!ablocks[i])
|
|
continue;
|
|
ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
|
|
}
|
|
}
|
|
kfree(ablocks);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_grow_indepth:
|
|
* implements tree growing procedure:
|
|
* - allocates new block
|
|
* - moves top-level data (index block or leaf) into the new block
|
|
* - initializes new top-level, creating index that points to the
|
|
* just created block
|
|
*/
|
|
static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *newext)
|
|
{
|
|
struct ext4_ext_path *curp = path;
|
|
struct ext4_extent_header *neh;
|
|
struct ext4_extent_idx *fidx;
|
|
struct buffer_head *bh;
|
|
ext4_fsblk_t newblock;
|
|
int err = 0;
|
|
|
|
newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
|
|
if (newblock == 0)
|
|
return err;
|
|
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (!bh) {
|
|
err = -EIO;
|
|
ext4_std_error(inode->i_sb, err);
|
|
return err;
|
|
}
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err) {
|
|
unlock_buffer(bh);
|
|
goto out;
|
|
}
|
|
|
|
/* move top-level index/leaf into new block */
|
|
memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
|
|
|
|
/* set size of new block */
|
|
neh = ext_block_hdr(bh);
|
|
/* old root could have indexes or leaves
|
|
* so calculate e_max right way */
|
|
if (ext_depth(inode))
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
|
|
else
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* create index in new top-level index: num,max,pointer */
|
|
err = ext4_ext_get_access(handle, inode, curp);
|
|
if (err)
|
|
goto out;
|
|
|
|
curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
|
|
curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
|
|
curp->p_hdr->eh_entries = cpu_to_le16(1);
|
|
curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
|
|
|
|
if (path[0].p_hdr->eh_depth)
|
|
curp->p_idx->ei_block =
|
|
EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
|
|
else
|
|
curp->p_idx->ei_block =
|
|
EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
|
|
ext4_idx_store_pblock(curp->p_idx, newblock);
|
|
|
|
neh = ext_inode_hdr(inode);
|
|
fidx = EXT_FIRST_INDEX(neh);
|
|
ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
|
|
le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
|
|
le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
|
|
|
|
neh->eh_depth = cpu_to_le16(path->p_depth + 1);
|
|
err = ext4_ext_dirty(handle, inode, curp);
|
|
out:
|
|
brelse(bh);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_create_new_leaf:
|
|
* finds empty index and adds new leaf.
|
|
* if no free index is found, then it requests in-depth growing.
|
|
*/
|
|
static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *newext)
|
|
{
|
|
struct ext4_ext_path *curp;
|
|
int depth, i, err = 0;
|
|
|
|
repeat:
|
|
i = depth = ext_depth(inode);
|
|
|
|
/* walk up to the tree and look for free index entry */
|
|
curp = path + depth;
|
|
while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
|
|
i--;
|
|
curp--;
|
|
}
|
|
|
|
/* we use already allocated block for index block,
|
|
* so subsequent data blocks should be contiguous */
|
|
if (EXT_HAS_FREE_INDEX(curp)) {
|
|
/* if we found index with free entry, then use that
|
|
* entry: create all needed subtree and add new leaf */
|
|
err = ext4_ext_split(handle, inode, path, newext, i);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* refill path */
|
|
ext4_ext_drop_refs(path);
|
|
path = ext4_ext_find_extent(inode,
|
|
(ext4_lblk_t)le32_to_cpu(newext->ee_block),
|
|
path);
|
|
if (IS_ERR(path))
|
|
err = PTR_ERR(path);
|
|
} else {
|
|
/* tree is full, time to grow in depth */
|
|
err = ext4_ext_grow_indepth(handle, inode, path, newext);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* refill path */
|
|
ext4_ext_drop_refs(path);
|
|
path = ext4_ext_find_extent(inode,
|
|
(ext4_lblk_t)le32_to_cpu(newext->ee_block),
|
|
path);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* only first (depth 0 -> 1) produces free space;
|
|
* in all other cases we have to split the grown tree
|
|
*/
|
|
depth = ext_depth(inode);
|
|
if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
|
|
/* now we need to split */
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* search the closest allocated block to the left for *logical
|
|
* and returns it at @logical + it's physical address at @phys
|
|
* if *logical is the smallest allocated block, the function
|
|
* returns 0 at @phys
|
|
* return value contains 0 (success) or error code
|
|
*/
|
|
int
|
|
ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
|
|
ext4_lblk_t *logical, ext4_fsblk_t *phys)
|
|
{
|
|
struct ext4_extent_idx *ix;
|
|
struct ext4_extent *ex;
|
|
int depth, ee_len;
|
|
|
|
BUG_ON(path == NULL);
|
|
depth = path->p_depth;
|
|
*phys = 0;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return 0;
|
|
|
|
/* usually extent in the path covers blocks smaller
|
|
* then *logical, but it can be that extent is the
|
|
* first one in the file */
|
|
|
|
ex = path[depth].p_ext;
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
if (*logical < le32_to_cpu(ex->ee_block)) {
|
|
BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
|
|
|
|
*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
|
|
*phys = ext_pblock(ex) + ee_len - 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* search the closest allocated block to the right for *logical
|
|
* and returns it at @logical + it's physical address at @phys
|
|
* if *logical is the smallest allocated block, the function
|
|
* returns 0 at @phys
|
|
* return value contains 0 (success) or error code
|
|
*/
|
|
int
|
|
ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
|
|
ext4_lblk_t *logical, ext4_fsblk_t *phys)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent_idx *ix;
|
|
struct ext4_extent *ex;
|
|
ext4_fsblk_t block;
|
|
int depth; /* Note, NOT eh_depth; depth from top of tree */
|
|
int ee_len;
|
|
|
|
BUG_ON(path == NULL);
|
|
depth = path->p_depth;
|
|
*phys = 0;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return 0;
|
|
|
|
/* usually extent in the path covers blocks smaller
|
|
* then *logical, but it can be that extent is the
|
|
* first one in the file */
|
|
|
|
ex = path[depth].p_ext;
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
if (*logical < le32_to_cpu(ex->ee_block)) {
|
|
BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
|
|
}
|
|
*logical = le32_to_cpu(ex->ee_block);
|
|
*phys = ext_pblock(ex);
|
|
return 0;
|
|
}
|
|
|
|
BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
|
|
|
|
if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
|
|
/* next allocated block in this leaf */
|
|
ex++;
|
|
*logical = le32_to_cpu(ex->ee_block);
|
|
*phys = ext_pblock(ex);
|
|
return 0;
|
|
}
|
|
|
|
/* go up and search for index to the right */
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
|
|
goto got_index;
|
|
}
|
|
|
|
/* we've gone up to the root and found no index to the right */
|
|
return 0;
|
|
|
|
got_index:
|
|
/* we've found index to the right, let's
|
|
* follow it and find the closest allocated
|
|
* block to the right */
|
|
ix++;
|
|
block = idx_pblock(ix);
|
|
while (++depth < path->p_depth) {
|
|
bh = sb_bread(inode->i_sb, block);
|
|
if (bh == NULL)
|
|
return -EIO;
|
|
eh = ext_block_hdr(bh);
|
|
/* subtract from p_depth to get proper eh_depth */
|
|
if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
|
|
put_bh(bh);
|
|
return -EIO;
|
|
}
|
|
ix = EXT_FIRST_INDEX(eh);
|
|
block = idx_pblock(ix);
|
|
put_bh(bh);
|
|
}
|
|
|
|
bh = sb_bread(inode->i_sb, block);
|
|
if (bh == NULL)
|
|
return -EIO;
|
|
eh = ext_block_hdr(bh);
|
|
if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
|
|
put_bh(bh);
|
|
return -EIO;
|
|
}
|
|
ex = EXT_FIRST_EXTENT(eh);
|
|
*logical = le32_to_cpu(ex->ee_block);
|
|
*phys = ext_pblock(ex);
|
|
put_bh(bh);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_next_allocated_block:
|
|
* returns allocated block in subsequent extent or EXT_MAX_BLOCK.
|
|
* NOTE: it considers block number from index entry as
|
|
* allocated block. Thus, index entries have to be consistent
|
|
* with leaves.
|
|
*/
|
|
static ext4_lblk_t
|
|
ext4_ext_next_allocated_block(struct ext4_ext_path *path)
|
|
{
|
|
int depth;
|
|
|
|
BUG_ON(path == NULL);
|
|
depth = path->p_depth;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return EXT_MAX_BLOCK;
|
|
|
|
while (depth >= 0) {
|
|
if (depth == path->p_depth) {
|
|
/* leaf */
|
|
if (path[depth].p_ext !=
|
|
EXT_LAST_EXTENT(path[depth].p_hdr))
|
|
return le32_to_cpu(path[depth].p_ext[1].ee_block);
|
|
} else {
|
|
/* index */
|
|
if (path[depth].p_idx !=
|
|
EXT_LAST_INDEX(path[depth].p_hdr))
|
|
return le32_to_cpu(path[depth].p_idx[1].ei_block);
|
|
}
|
|
depth--;
|
|
}
|
|
|
|
return EXT_MAX_BLOCK;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_next_leaf_block:
|
|
* returns first allocated block from next leaf or EXT_MAX_BLOCK
|
|
*/
|
|
static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
int depth;
|
|
|
|
BUG_ON(path == NULL);
|
|
depth = path->p_depth;
|
|
|
|
/* zero-tree has no leaf blocks at all */
|
|
if (depth == 0)
|
|
return EXT_MAX_BLOCK;
|
|
|
|
/* go to index block */
|
|
depth--;
|
|
|
|
while (depth >= 0) {
|
|
if (path[depth].p_idx !=
|
|
EXT_LAST_INDEX(path[depth].p_hdr))
|
|
return (ext4_lblk_t)
|
|
le32_to_cpu(path[depth].p_idx[1].ei_block);
|
|
depth--;
|
|
}
|
|
|
|
return EXT_MAX_BLOCK;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_correct_indexes:
|
|
* if leaf gets modified and modified extent is first in the leaf,
|
|
* then we have to correct all indexes above.
|
|
* TODO: do we need to correct tree in all cases?
|
|
*/
|
|
static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent *ex;
|
|
__le32 border;
|
|
int k, err = 0;
|
|
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
BUG_ON(ex == NULL);
|
|
BUG_ON(eh == NULL);
|
|
|
|
if (depth == 0) {
|
|
/* there is no tree at all */
|
|
return 0;
|
|
}
|
|
|
|
if (ex != EXT_FIRST_EXTENT(eh)) {
|
|
/* we correct tree if first leaf got modified only */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* TODO: we need correction if border is smaller than current one
|
|
*/
|
|
k = depth - 1;
|
|
border = path[depth].p_ext->ee_block;
|
|
err = ext4_ext_get_access(handle, inode, path + k);
|
|
if (err)
|
|
return err;
|
|
path[k].p_idx->ei_block = border;
|
|
err = ext4_ext_dirty(handle, inode, path + k);
|
|
if (err)
|
|
return err;
|
|
|
|
while (k--) {
|
|
/* change all left-side indexes */
|
|
if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
|
|
break;
|
|
err = ext4_ext_get_access(handle, inode, path + k);
|
|
if (err)
|
|
break;
|
|
path[k].p_idx->ei_block = border;
|
|
err = ext4_ext_dirty(handle, inode, path + k);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
|
|
struct ext4_extent *ex2)
|
|
{
|
|
unsigned short ext1_ee_len, ext2_ee_len, max_len;
|
|
|
|
/*
|
|
* Make sure that either both extents are uninitialized, or
|
|
* both are _not_.
|
|
*/
|
|
if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
|
|
return 0;
|
|
|
|
if (ext4_ext_is_uninitialized(ex1))
|
|
max_len = EXT_UNINIT_MAX_LEN;
|
|
else
|
|
max_len = EXT_INIT_MAX_LEN;
|
|
|
|
ext1_ee_len = ext4_ext_get_actual_len(ex1);
|
|
ext2_ee_len = ext4_ext_get_actual_len(ex2);
|
|
|
|
if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
|
|
le32_to_cpu(ex2->ee_block))
|
|
return 0;
|
|
|
|
/*
|
|
* To allow future support for preallocated extents to be added
|
|
* as an RO_COMPAT feature, refuse to merge to extents if
|
|
* this can result in the top bit of ee_len being set.
|
|
*/
|
|
if (ext1_ee_len + ext2_ee_len > max_len)
|
|
return 0;
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (ext1_ee_len >= 4)
|
|
return 0;
|
|
#endif
|
|
|
|
if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function tries to merge the "ex" extent to the next extent in the tree.
|
|
* It always tries to merge towards right. If you want to merge towards
|
|
* left, pass "ex - 1" as argument instead of "ex".
|
|
* Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
|
|
* 1 if they got merged.
|
|
*/
|
|
int ext4_ext_try_to_merge(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *ex)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
unsigned int depth, len;
|
|
int merge_done = 0;
|
|
int uninitialized = 0;
|
|
|
|
depth = ext_depth(inode);
|
|
BUG_ON(path[depth].p_hdr == NULL);
|
|
eh = path[depth].p_hdr;
|
|
|
|
while (ex < EXT_LAST_EXTENT(eh)) {
|
|
if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
|
|
break;
|
|
/* merge with next extent! */
|
|
if (ext4_ext_is_uninitialized(ex))
|
|
uninitialized = 1;
|
|
ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
|
|
+ ext4_ext_get_actual_len(ex + 1));
|
|
if (uninitialized)
|
|
ext4_ext_mark_uninitialized(ex);
|
|
|
|
if (ex + 1 < EXT_LAST_EXTENT(eh)) {
|
|
len = (EXT_LAST_EXTENT(eh) - ex - 1)
|
|
* sizeof(struct ext4_extent);
|
|
memmove(ex + 1, ex + 2, len);
|
|
}
|
|
le16_add_cpu(&eh->eh_entries, -1);
|
|
merge_done = 1;
|
|
WARN_ON(eh->eh_entries == 0);
|
|
if (!eh->eh_entries)
|
|
ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
|
|
"inode#%lu, eh->eh_entries = 0!", inode->i_ino);
|
|
}
|
|
|
|
return merge_done;
|
|
}
|
|
|
|
/*
|
|
* check if a portion of the "newext" extent overlaps with an
|
|
* existing extent.
|
|
*
|
|
* If there is an overlap discovered, it updates the length of the newext
|
|
* such that there will be no overlap, and then returns 1.
|
|
* If there is no overlap found, it returns 0.
|
|
*/
|
|
unsigned int ext4_ext_check_overlap(struct inode *inode,
|
|
struct ext4_extent *newext,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
ext4_lblk_t b1, b2;
|
|
unsigned int depth, len1;
|
|
unsigned int ret = 0;
|
|
|
|
b1 = le32_to_cpu(newext->ee_block);
|
|
len1 = ext4_ext_get_actual_len(newext);
|
|
depth = ext_depth(inode);
|
|
if (!path[depth].p_ext)
|
|
goto out;
|
|
b2 = le32_to_cpu(path[depth].p_ext->ee_block);
|
|
|
|
/*
|
|
* get the next allocated block if the extent in the path
|
|
* is before the requested block(s)
|
|
*/
|
|
if (b2 < b1) {
|
|
b2 = ext4_ext_next_allocated_block(path);
|
|
if (b2 == EXT_MAX_BLOCK)
|
|
goto out;
|
|
}
|
|
|
|
/* check for wrap through zero on extent logical start block*/
|
|
if (b1 + len1 < b1) {
|
|
len1 = EXT_MAX_BLOCK - b1;
|
|
newext->ee_len = cpu_to_le16(len1);
|
|
ret = 1;
|
|
}
|
|
|
|
/* check for overlap */
|
|
if (b1 + len1 > b2) {
|
|
newext->ee_len = cpu_to_le16(b2 - b1);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_insert_extent:
|
|
* tries to merge requsted extent into the existing extent or
|
|
* inserts requested extent as new one into the tree,
|
|
* creating new leaf in the no-space case.
|
|
*/
|
|
int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *newext, int flag)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent *ex, *fex;
|
|
struct ext4_extent *nearex; /* nearest extent */
|
|
struct ext4_ext_path *npath = NULL;
|
|
int depth, len, err;
|
|
ext4_lblk_t next;
|
|
unsigned uninitialized = 0;
|
|
|
|
BUG_ON(ext4_ext_get_actual_len(newext) == 0);
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
BUG_ON(path[depth].p_hdr == NULL);
|
|
|
|
/* try to insert block into found extent and return */
|
|
if (ex && (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
|
|
&& ext4_can_extents_be_merged(inode, ex, newext)) {
|
|
ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_is_uninitialized(ex),
|
|
ext4_ext_get_actual_len(ex), ext_pblock(ex));
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* ext4_can_extents_be_merged should have checked that either
|
|
* both extents are uninitialized, or both aren't. Thus we
|
|
* need to check only one of them here.
|
|
*/
|
|
if (ext4_ext_is_uninitialized(ex))
|
|
uninitialized = 1;
|
|
ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
|
|
+ ext4_ext_get_actual_len(newext));
|
|
if (uninitialized)
|
|
ext4_ext_mark_uninitialized(ex);
|
|
eh = path[depth].p_hdr;
|
|
nearex = ex;
|
|
goto merge;
|
|
}
|
|
|
|
repeat:
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
|
|
goto has_space;
|
|
|
|
/* probably next leaf has space for us? */
|
|
fex = EXT_LAST_EXTENT(eh);
|
|
next = ext4_ext_next_leaf_block(inode, path);
|
|
if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
|
|
&& next != EXT_MAX_BLOCK) {
|
|
ext_debug("next leaf block - %d\n", next);
|
|
BUG_ON(npath != NULL);
|
|
npath = ext4_ext_find_extent(inode, next, NULL);
|
|
if (IS_ERR(npath))
|
|
return PTR_ERR(npath);
|
|
BUG_ON(npath->p_depth != path->p_depth);
|
|
eh = npath[depth].p_hdr;
|
|
if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
|
|
ext_debug("next leaf isnt full(%d)\n",
|
|
le16_to_cpu(eh->eh_entries));
|
|
path = npath;
|
|
goto repeat;
|
|
}
|
|
ext_debug("next leaf has no free space(%d,%d)\n",
|
|
le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
|
|
}
|
|
|
|
/*
|
|
* There is no free space in the found leaf.
|
|
* We're gonna add a new leaf in the tree.
|
|
*/
|
|
err = ext4_ext_create_new_leaf(handle, inode, path, newext);
|
|
if (err)
|
|
goto cleanup;
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
|
|
has_space:
|
|
nearex = path[depth].p_ext;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
if (!nearex) {
|
|
/* there is no extent in this leaf, create first one */
|
|
ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext_pblock(newext),
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext));
|
|
path[depth].p_ext = EXT_FIRST_EXTENT(eh);
|
|
} else if (le32_to_cpu(newext->ee_block)
|
|
> le32_to_cpu(nearex->ee_block)) {
|
|
/* BUG_ON(newext->ee_block == nearex->ee_block); */
|
|
if (nearex != EXT_LAST_EXTENT(eh)) {
|
|
len = EXT_MAX_EXTENT(eh) - nearex;
|
|
len = (len - 1) * sizeof(struct ext4_extent);
|
|
len = len < 0 ? 0 : len;
|
|
ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
|
|
"move %d from 0x%p to 0x%p\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext_pblock(newext),
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
nearex, len, nearex + 1, nearex + 2);
|
|
memmove(nearex + 2, nearex + 1, len);
|
|
}
|
|
path[depth].p_ext = nearex + 1;
|
|
} else {
|
|
BUG_ON(newext->ee_block == nearex->ee_block);
|
|
len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
|
|
len = len < 0 ? 0 : len;
|
|
ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
|
|
"move %d from 0x%p to 0x%p\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext_pblock(newext),
|
|
ext4_ext_is_uninitialized(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
nearex, len, nearex + 1, nearex + 2);
|
|
memmove(nearex + 1, nearex, len);
|
|
path[depth].p_ext = nearex;
|
|
}
|
|
|
|
le16_add_cpu(&eh->eh_entries, 1);
|
|
nearex = path[depth].p_ext;
|
|
nearex->ee_block = newext->ee_block;
|
|
ext4_ext_store_pblock(nearex, ext_pblock(newext));
|
|
nearex->ee_len = newext->ee_len;
|
|
|
|
merge:
|
|
/* try to merge extents to the right */
|
|
if (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
|
|
ext4_ext_try_to_merge(inode, path, nearex);
|
|
|
|
/* try to merge extents to the left */
|
|
|
|
/* time to correct all indexes above */
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
|
|
cleanup:
|
|
if (npath) {
|
|
ext4_ext_drop_refs(npath);
|
|
kfree(npath);
|
|
}
|
|
ext4_ext_invalidate_cache(inode);
|
|
return err;
|
|
}
|
|
|
|
int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
|
|
ext4_lblk_t num, ext_prepare_callback func,
|
|
void *cbdata)
|
|
{
|
|
struct ext4_ext_path *path = NULL;
|
|
struct ext4_ext_cache cbex;
|
|
struct ext4_extent *ex;
|
|
ext4_lblk_t next, start = 0, end = 0;
|
|
ext4_lblk_t last = block + num;
|
|
int depth, exists, err = 0;
|
|
|
|
BUG_ON(func == NULL);
|
|
BUG_ON(inode == NULL);
|
|
|
|
while (block < last && block != EXT_MAX_BLOCK) {
|
|
num = last - block;
|
|
/* find extent for this block */
|
|
path = ext4_ext_find_extent(inode, block, path);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
path = NULL;
|
|
break;
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
BUG_ON(path[depth].p_hdr == NULL);
|
|
ex = path[depth].p_ext;
|
|
next = ext4_ext_next_allocated_block(path);
|
|
|
|
exists = 0;
|
|
if (!ex) {
|
|
/* there is no extent yet, so try to allocate
|
|
* all requested space */
|
|
start = block;
|
|
end = block + num;
|
|
} else if (le32_to_cpu(ex->ee_block) > block) {
|
|
/* need to allocate space before found extent */
|
|
start = block;
|
|
end = le32_to_cpu(ex->ee_block);
|
|
if (block + num < end)
|
|
end = block + num;
|
|
} else if (block >= le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex)) {
|
|
/* need to allocate space after found extent */
|
|
start = block;
|
|
end = block + num;
|
|
if (end >= next)
|
|
end = next;
|
|
} else if (block >= le32_to_cpu(ex->ee_block)) {
|
|
/*
|
|
* some part of requested space is covered
|
|
* by found extent
|
|
*/
|
|
start = block;
|
|
end = le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex);
|
|
if (block + num < end)
|
|
end = block + num;
|
|
exists = 1;
|
|
} else {
|
|
BUG();
|
|
}
|
|
BUG_ON(end <= start);
|
|
|
|
if (!exists) {
|
|
cbex.ec_block = start;
|
|
cbex.ec_len = end - start;
|
|
cbex.ec_start = 0;
|
|
cbex.ec_type = EXT4_EXT_CACHE_GAP;
|
|
} else {
|
|
cbex.ec_block = le32_to_cpu(ex->ee_block);
|
|
cbex.ec_len = ext4_ext_get_actual_len(ex);
|
|
cbex.ec_start = ext_pblock(ex);
|
|
cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
|
|
}
|
|
|
|
BUG_ON(cbex.ec_len == 0);
|
|
err = func(inode, path, &cbex, ex, cbdata);
|
|
ext4_ext_drop_refs(path);
|
|
|
|
if (err < 0)
|
|
break;
|
|
|
|
if (err == EXT_REPEAT)
|
|
continue;
|
|
else if (err == EXT_BREAK) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
|
|
if (ext_depth(inode) != depth) {
|
|
/* depth was changed. we have to realloc path */
|
|
kfree(path);
|
|
path = NULL;
|
|
}
|
|
|
|
block = cbex.ec_block + cbex.ec_len;
|
|
}
|
|
|
|
if (path) {
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
|
|
__u32 len, ext4_fsblk_t start, int type)
|
|
{
|
|
struct ext4_ext_cache *cex;
|
|
BUG_ON(len == 0);
|
|
spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
cex = &EXT4_I(inode)->i_cached_extent;
|
|
cex->ec_type = type;
|
|
cex->ec_block = block;
|
|
cex->ec_len = len;
|
|
cex->ec_start = start;
|
|
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_put_gap_in_cache:
|
|
* calculate boundaries of the gap that the requested block fits into
|
|
* and cache this gap
|
|
*/
|
|
static void
|
|
ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
|
|
ext4_lblk_t block)
|
|
{
|
|
int depth = ext_depth(inode);
|
|
unsigned long len;
|
|
ext4_lblk_t lblock;
|
|
struct ext4_extent *ex;
|
|
|
|
ex = path[depth].p_ext;
|
|
if (ex == NULL) {
|
|
/* there is no extent yet, so gap is [0;-] */
|
|
lblock = 0;
|
|
len = EXT_MAX_BLOCK;
|
|
ext_debug("cache gap(whole file):");
|
|
} else if (block < le32_to_cpu(ex->ee_block)) {
|
|
lblock = block;
|
|
len = le32_to_cpu(ex->ee_block) - block;
|
|
ext_debug("cache gap(before): %u [%u:%u]",
|
|
block,
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_get_actual_len(ex));
|
|
} else if (block >= le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex)) {
|
|
ext4_lblk_t next;
|
|
lblock = le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex);
|
|
|
|
next = ext4_ext_next_allocated_block(path);
|
|
ext_debug("cache gap(after): [%u:%u] %u",
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_get_actual_len(ex),
|
|
block);
|
|
BUG_ON(next == lblock);
|
|
len = next - lblock;
|
|
} else {
|
|
lblock = len = 0;
|
|
BUG();
|
|
}
|
|
|
|
ext_debug(" -> %u:%lu\n", lblock, len);
|
|
ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
|
|
}
|
|
|
|
static int
|
|
ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
|
|
struct ext4_extent *ex)
|
|
{
|
|
struct ext4_ext_cache *cex;
|
|
int ret = EXT4_EXT_CACHE_NO;
|
|
|
|
/*
|
|
* We borrow i_block_reservation_lock to protect i_cached_extent
|
|
*/
|
|
spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
cex = &EXT4_I(inode)->i_cached_extent;
|
|
|
|
/* has cache valid data? */
|
|
if (cex->ec_type == EXT4_EXT_CACHE_NO)
|
|
goto errout;
|
|
|
|
BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
|
|
cex->ec_type != EXT4_EXT_CACHE_EXTENT);
|
|
if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
|
|
ex->ee_block = cpu_to_le32(cex->ec_block);
|
|
ext4_ext_store_pblock(ex, cex->ec_start);
|
|
ex->ee_len = cpu_to_le16(cex->ec_len);
|
|
ext_debug("%u cached by %u:%u:%llu\n",
|
|
block,
|
|
cex->ec_block, cex->ec_len, cex->ec_start);
|
|
ret = cex->ec_type;
|
|
}
|
|
errout:
|
|
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_rm_idx:
|
|
* removes index from the index block.
|
|
* It's used in truncate case only, thus all requests are for
|
|
* last index in the block only.
|
|
*/
|
|
static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct buffer_head *bh;
|
|
int err;
|
|
ext4_fsblk_t leaf;
|
|
|
|
/* free index block */
|
|
path--;
|
|
leaf = idx_pblock(path->p_idx);
|
|
BUG_ON(path->p_hdr->eh_entries == 0);
|
|
err = ext4_ext_get_access(handle, inode, path);
|
|
if (err)
|
|
return err;
|
|
le16_add_cpu(&path->p_hdr->eh_entries, -1);
|
|
err = ext4_ext_dirty(handle, inode, path);
|
|
if (err)
|
|
return err;
|
|
ext_debug("index is empty, remove it, free block %llu\n", leaf);
|
|
bh = sb_find_get_block(inode->i_sb, leaf);
|
|
ext4_forget(handle, 1, inode, bh, leaf);
|
|
ext4_free_blocks(handle, inode, leaf, 1, 1);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_calc_credits_for_single_extent:
|
|
* This routine returns max. credits that needed to insert an extent
|
|
* to the extent tree.
|
|
* When pass the actual path, the caller should calculate credits
|
|
* under i_data_sem.
|
|
*/
|
|
int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
if (path) {
|
|
int depth = ext_depth(inode);
|
|
int ret = 0;
|
|
|
|
/* probably there is space in leaf? */
|
|
if (le16_to_cpu(path[depth].p_hdr->eh_entries)
|
|
< le16_to_cpu(path[depth].p_hdr->eh_max)) {
|
|
|
|
/*
|
|
* There are some space in the leaf tree, no
|
|
* need to account for leaf block credit
|
|
*
|
|
* bitmaps and block group descriptor blocks
|
|
* and other metadat blocks still need to be
|
|
* accounted.
|
|
*/
|
|
/* 1 bitmap, 1 block group descriptor */
|
|
ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ext4_chunk_trans_blocks(inode, nrblocks);
|
|
}
|
|
|
|
/*
|
|
* How many index/leaf blocks need to change/allocate to modify nrblocks?
|
|
*
|
|
* if nrblocks are fit in a single extent (chunk flag is 1), then
|
|
* in the worse case, each tree level index/leaf need to be changed
|
|
* if the tree split due to insert a new extent, then the old tree
|
|
* index/leaf need to be updated too
|
|
*
|
|
* If the nrblocks are discontiguous, they could cause
|
|
* the whole tree split more than once, but this is really rare.
|
|
*/
|
|
int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
|
|
{
|
|
int index;
|
|
int depth = ext_depth(inode);
|
|
|
|
if (chunk)
|
|
index = depth * 2;
|
|
else
|
|
index = depth * 3;
|
|
|
|
return index;
|
|
}
|
|
|
|
static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
|
|
struct ext4_extent *ex,
|
|
ext4_lblk_t from, ext4_lblk_t to)
|
|
{
|
|
struct buffer_head *bh;
|
|
unsigned short ee_len = ext4_ext_get_actual_len(ex);
|
|
int i, metadata = 0;
|
|
|
|
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
|
|
metadata = 1;
|
|
#ifdef EXTENTS_STATS
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
spin_lock(&sbi->s_ext_stats_lock);
|
|
sbi->s_ext_blocks += ee_len;
|
|
sbi->s_ext_extents++;
|
|
if (ee_len < sbi->s_ext_min)
|
|
sbi->s_ext_min = ee_len;
|
|
if (ee_len > sbi->s_ext_max)
|
|
sbi->s_ext_max = ee_len;
|
|
if (ext_depth(inode) > sbi->s_depth_max)
|
|
sbi->s_depth_max = ext_depth(inode);
|
|
spin_unlock(&sbi->s_ext_stats_lock);
|
|
}
|
|
#endif
|
|
if (from >= le32_to_cpu(ex->ee_block)
|
|
&& to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
|
|
/* tail removal */
|
|
ext4_lblk_t num;
|
|
ext4_fsblk_t start;
|
|
|
|
num = le32_to_cpu(ex->ee_block) + ee_len - from;
|
|
start = ext_pblock(ex) + ee_len - num;
|
|
ext_debug("free last %u blocks starting %llu\n", num, start);
|
|
for (i = 0; i < num; i++) {
|
|
bh = sb_find_get_block(inode->i_sb, start + i);
|
|
ext4_forget(handle, 0, inode, bh, start + i);
|
|
}
|
|
ext4_free_blocks(handle, inode, start, num, metadata);
|
|
} else if (from == le32_to_cpu(ex->ee_block)
|
|
&& to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
|
|
printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
|
|
from, to, le32_to_cpu(ex->ee_block), ee_len);
|
|
} else {
|
|
printk(KERN_INFO "strange request: removal(2) "
|
|
"%u-%u from %u:%u\n",
|
|
from, to, le32_to_cpu(ex->ee_block), ee_len);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path, ext4_lblk_t start)
|
|
{
|
|
int err = 0, correct_index = 0;
|
|
int depth = ext_depth(inode), credits;
|
|
struct ext4_extent_header *eh;
|
|
ext4_lblk_t a, b, block;
|
|
unsigned num;
|
|
ext4_lblk_t ex_ee_block;
|
|
unsigned short ex_ee_len;
|
|
unsigned uninitialized = 0;
|
|
struct ext4_extent *ex;
|
|
|
|
/* the header must be checked already in ext4_ext_remove_space() */
|
|
ext_debug("truncate since %u in leaf\n", start);
|
|
if (!path[depth].p_hdr)
|
|
path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
|
|
eh = path[depth].p_hdr;
|
|
BUG_ON(eh == NULL);
|
|
|
|
/* find where to start removing */
|
|
ex = EXT_LAST_EXTENT(eh);
|
|
|
|
ex_ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
while (ex >= EXT_FIRST_EXTENT(eh) &&
|
|
ex_ee_block + ex_ee_len > start) {
|
|
|
|
if (ext4_ext_is_uninitialized(ex))
|
|
uninitialized = 1;
|
|
else
|
|
uninitialized = 0;
|
|
|
|
ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
|
|
uninitialized, ex_ee_len);
|
|
path[depth].p_ext = ex;
|
|
|
|
a = ex_ee_block > start ? ex_ee_block : start;
|
|
b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
|
|
ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
|
|
|
|
ext_debug(" border %u:%u\n", a, b);
|
|
|
|
if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
|
|
block = 0;
|
|
num = 0;
|
|
BUG();
|
|
} else if (a != ex_ee_block) {
|
|
/* remove tail of the extent */
|
|
block = ex_ee_block;
|
|
num = a - block;
|
|
} else if (b != ex_ee_block + ex_ee_len - 1) {
|
|
/* remove head of the extent */
|
|
block = a;
|
|
num = b - a;
|
|
/* there is no "make a hole" API yet */
|
|
BUG();
|
|
} else {
|
|
/* remove whole extent: excellent! */
|
|
block = ex_ee_block;
|
|
num = 0;
|
|
BUG_ON(a != ex_ee_block);
|
|
BUG_ON(b != ex_ee_block + ex_ee_len - 1);
|
|
}
|
|
|
|
/*
|
|
* 3 for leaf, sb, and inode plus 2 (bmap and group
|
|
* descriptor) for each block group; assume two block
|
|
* groups plus ex_ee_len/blocks_per_block_group for
|
|
* the worst case
|
|
*/
|
|
credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
|
|
if (ex == EXT_FIRST_EXTENT(eh)) {
|
|
correct_index = 1;
|
|
credits += (ext_depth(inode)) + 1;
|
|
}
|
|
credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
|
|
|
|
err = ext4_ext_truncate_extend_restart(handle, inode, credits);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ext4_remove_blocks(handle, inode, ex, a, b);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (num == 0) {
|
|
/* this extent is removed; mark slot entirely unused */
|
|
ext4_ext_store_pblock(ex, 0);
|
|
le16_add_cpu(&eh->eh_entries, -1);
|
|
}
|
|
|
|
ex->ee_block = cpu_to_le32(block);
|
|
ex->ee_len = cpu_to_le16(num);
|
|
/*
|
|
* Do not mark uninitialized if all the blocks in the
|
|
* extent have been removed.
|
|
*/
|
|
if (uninitialized && num)
|
|
ext4_ext_mark_uninitialized(ex);
|
|
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
ext_debug("new extent: %u:%u:%llu\n", block, num,
|
|
ext_pblock(ex));
|
|
ex--;
|
|
ex_ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_ee_len = ext4_ext_get_actual_len(ex);
|
|
}
|
|
|
|
if (correct_index && eh->eh_entries)
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
|
|
/* if this leaf is free, then we should
|
|
* remove it from index block above */
|
|
if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
|
|
err = ext4_ext_rm_idx(handle, inode, path + depth);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_more_to_rm:
|
|
* returns 1 if current index has to be freed (even partial)
|
|
*/
|
|
static int
|
|
ext4_ext_more_to_rm(struct ext4_ext_path *path)
|
|
{
|
|
BUG_ON(path->p_idx == NULL);
|
|
|
|
if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
|
|
return 0;
|
|
|
|
/*
|
|
* if truncate on deeper level happened, it wasn't partial,
|
|
* so we have to consider current index for truncation
|
|
*/
|
|
if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
int depth = ext_depth(inode);
|
|
struct ext4_ext_path *path;
|
|
handle_t *handle;
|
|
int i = 0, err = 0;
|
|
|
|
ext_debug("truncate since %u\n", start);
|
|
|
|
/* probably first extent we're gonna free will be last in block */
|
|
handle = ext4_journal_start(inode, depth + 1);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
|
|
ext4_ext_invalidate_cache(inode);
|
|
|
|
/*
|
|
* We start scanning from right side, freeing all the blocks
|
|
* after i_size and walking into the tree depth-wise.
|
|
*/
|
|
path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
|
|
if (path == NULL) {
|
|
ext4_journal_stop(handle);
|
|
return -ENOMEM;
|
|
}
|
|
path[0].p_hdr = ext_inode_hdr(inode);
|
|
if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
path[0].p_depth = depth;
|
|
|
|
while (i >= 0 && err == 0) {
|
|
if (i == depth) {
|
|
/* this is leaf block */
|
|
err = ext4_ext_rm_leaf(handle, inode, path, start);
|
|
/* root level has p_bh == NULL, brelse() eats this */
|
|
brelse(path[i].p_bh);
|
|
path[i].p_bh = NULL;
|
|
i--;
|
|
continue;
|
|
}
|
|
|
|
/* this is index block */
|
|
if (!path[i].p_hdr) {
|
|
ext_debug("initialize header\n");
|
|
path[i].p_hdr = ext_block_hdr(path[i].p_bh);
|
|
}
|
|
|
|
if (!path[i].p_idx) {
|
|
/* this level hasn't been touched yet */
|
|
path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
|
|
path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
|
|
ext_debug("init index ptr: hdr 0x%p, num %d\n",
|
|
path[i].p_hdr,
|
|
le16_to_cpu(path[i].p_hdr->eh_entries));
|
|
} else {
|
|
/* we were already here, see at next index */
|
|
path[i].p_idx--;
|
|
}
|
|
|
|
ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
|
|
i, EXT_FIRST_INDEX(path[i].p_hdr),
|
|
path[i].p_idx);
|
|
if (ext4_ext_more_to_rm(path + i)) {
|
|
struct buffer_head *bh;
|
|
/* go to the next level */
|
|
ext_debug("move to level %d (block %llu)\n",
|
|
i + 1, idx_pblock(path[i].p_idx));
|
|
memset(path + i + 1, 0, sizeof(*path));
|
|
bh = sb_bread(sb, idx_pblock(path[i].p_idx));
|
|
if (!bh) {
|
|
/* should we reset i_size? */
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
if (WARN_ON(i + 1 > depth)) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
if (ext4_ext_check(inode, ext_block_hdr(bh),
|
|
depth - i - 1)) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
path[i + 1].p_bh = bh;
|
|
|
|
/* save actual number of indexes since this
|
|
* number is changed at the next iteration */
|
|
path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
|
|
i++;
|
|
} else {
|
|
/* we finished processing this index, go up */
|
|
if (path[i].p_hdr->eh_entries == 0 && i > 0) {
|
|
/* index is empty, remove it;
|
|
* handle must be already prepared by the
|
|
* truncatei_leaf() */
|
|
err = ext4_ext_rm_idx(handle, inode, path + i);
|
|
}
|
|
/* root level has p_bh == NULL, brelse() eats this */
|
|
brelse(path[i].p_bh);
|
|
path[i].p_bh = NULL;
|
|
i--;
|
|
ext_debug("return to level %d\n", i);
|
|
}
|
|
}
|
|
|
|
/* TODO: flexible tree reduction should be here */
|
|
if (path->p_hdr->eh_entries == 0) {
|
|
/*
|
|
* truncate to zero freed all the tree,
|
|
* so we need to correct eh_depth
|
|
*/
|
|
err = ext4_ext_get_access(handle, inode, path);
|
|
if (err == 0) {
|
|
ext_inode_hdr(inode)->eh_depth = 0;
|
|
ext_inode_hdr(inode)->eh_max =
|
|
cpu_to_le16(ext4_ext_space_root(inode, 0));
|
|
err = ext4_ext_dirty(handle, inode, path);
|
|
}
|
|
}
|
|
out:
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
ext4_journal_stop(handle);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* called at mount time
|
|
*/
|
|
void ext4_ext_init(struct super_block *sb)
|
|
{
|
|
/*
|
|
* possible initialization would be here
|
|
*/
|
|
|
|
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
|
|
#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
|
|
printk(KERN_INFO "EXT4-fs: file extents enabled");
|
|
#ifdef AGGRESSIVE_TEST
|
|
printk(", aggressive tests");
|
|
#endif
|
|
#ifdef CHECK_BINSEARCH
|
|
printk(", check binsearch");
|
|
#endif
|
|
#ifdef EXTENTS_STATS
|
|
printk(", stats");
|
|
#endif
|
|
printk("\n");
|
|
#endif
|
|
#ifdef EXTENTS_STATS
|
|
spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
|
|
EXT4_SB(sb)->s_ext_min = 1 << 30;
|
|
EXT4_SB(sb)->s_ext_max = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* called at umount time
|
|
*/
|
|
void ext4_ext_release(struct super_block *sb)
|
|
{
|
|
if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
|
|
return;
|
|
|
|
#ifdef EXTENTS_STATS
|
|
if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
|
|
sbi->s_ext_blocks, sbi->s_ext_extents,
|
|
sbi->s_ext_blocks / sbi->s_ext_extents);
|
|
printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
|
|
sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void bi_complete(struct bio *bio, int error)
|
|
{
|
|
complete((struct completion *)bio->bi_private);
|
|
}
|
|
|
|
/* FIXME!! we need to try to merge to left or right after zero-out */
|
|
static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
|
|
{
|
|
int ret = -EIO;
|
|
struct bio *bio;
|
|
int blkbits, blocksize;
|
|
sector_t ee_pblock;
|
|
struct completion event;
|
|
unsigned int ee_len, len, done, offset;
|
|
|
|
|
|
blkbits = inode->i_blkbits;
|
|
blocksize = inode->i_sb->s_blocksize;
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
ee_pblock = ext_pblock(ex);
|
|
|
|
/* convert ee_pblock to 512 byte sectors */
|
|
ee_pblock = ee_pblock << (blkbits - 9);
|
|
|
|
while (ee_len > 0) {
|
|
|
|
if (ee_len > BIO_MAX_PAGES)
|
|
len = BIO_MAX_PAGES;
|
|
else
|
|
len = ee_len;
|
|
|
|
bio = bio_alloc(GFP_NOIO, len);
|
|
bio->bi_sector = ee_pblock;
|
|
bio->bi_bdev = inode->i_sb->s_bdev;
|
|
|
|
done = 0;
|
|
offset = 0;
|
|
while (done < len) {
|
|
ret = bio_add_page(bio, ZERO_PAGE(0),
|
|
blocksize, offset);
|
|
if (ret != blocksize) {
|
|
/*
|
|
* We can't add any more pages because of
|
|
* hardware limitations. Start a new bio.
|
|
*/
|
|
break;
|
|
}
|
|
done++;
|
|
offset += blocksize;
|
|
if (offset >= PAGE_CACHE_SIZE)
|
|
offset = 0;
|
|
}
|
|
|
|
init_completion(&event);
|
|
bio->bi_private = &event;
|
|
bio->bi_end_io = bi_complete;
|
|
submit_bio(WRITE, bio);
|
|
wait_for_completion(&event);
|
|
|
|
if (test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
ret = 0;
|
|
else {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
bio_put(bio);
|
|
ee_len -= done;
|
|
ee_pblock += done << (blkbits - 9);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define EXT4_EXT_ZERO_LEN 7
|
|
/*
|
|
* This function is called by ext4_ext_get_blocks() if someone tries to write
|
|
* to an uninitialized extent. It may result in splitting the uninitialized
|
|
* extent into multiple extents (upto three - one initialized and two
|
|
* uninitialized).
|
|
* There are three possibilities:
|
|
* a> There is no split required: Entire extent should be initialized
|
|
* b> Splits in two extents: Write is happening at either end of the extent
|
|
* c> Splits in three extents: Somone is writing in middle of the extent
|
|
*/
|
|
static int ext4_ext_convert_to_initialized(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t iblock,
|
|
unsigned int max_blocks)
|
|
{
|
|
struct ext4_extent *ex, newex, orig_ex;
|
|
struct ext4_extent *ex1 = NULL;
|
|
struct ext4_extent *ex2 = NULL;
|
|
struct ext4_extent *ex3 = NULL;
|
|
struct ext4_extent_header *eh;
|
|
ext4_lblk_t ee_block;
|
|
unsigned int allocated, ee_len, depth;
|
|
ext4_fsblk_t newblock;
|
|
int err = 0;
|
|
int ret = 0;
|
|
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
allocated = ee_len - (iblock - ee_block);
|
|
newblock = iblock - ee_block + ext_pblock(ex);
|
|
ex2 = ex;
|
|
orig_ex.ee_block = ex->ee_block;
|
|
orig_ex.ee_len = cpu_to_le16(ee_len);
|
|
ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
/* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
|
|
if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
/* update the extent length and mark as initialized */
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
/* zeroed the full extent */
|
|
return allocated;
|
|
}
|
|
|
|
/* ex1: ee_block to iblock - 1 : uninitialized */
|
|
if (iblock > ee_block) {
|
|
ex1 = ex;
|
|
ex1->ee_len = cpu_to_le16(iblock - ee_block);
|
|
ext4_ext_mark_uninitialized(ex1);
|
|
ex2 = &newex;
|
|
}
|
|
/*
|
|
* for sanity, update the length of the ex2 extent before
|
|
* we insert ex3, if ex1 is NULL. This is to avoid temporary
|
|
* overlap of blocks.
|
|
*/
|
|
if (!ex1 && allocated > max_blocks)
|
|
ex2->ee_len = cpu_to_le16(max_blocks);
|
|
/* ex3: to ee_block + ee_len : uninitialised */
|
|
if (allocated > max_blocks) {
|
|
unsigned int newdepth;
|
|
/* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
|
|
if (allocated <= EXT4_EXT_ZERO_LEN) {
|
|
/*
|
|
* iblock == ee_block is handled by the zerouout
|
|
* at the beginning.
|
|
* Mark first half uninitialized.
|
|
* Mark second half initialized and zero out the
|
|
* initialized extent
|
|
*/
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = cpu_to_le16(ee_len - allocated);
|
|
ext4_ext_mark_uninitialized(ex);
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
|
|
ex3 = &newex;
|
|
ex3->ee_block = cpu_to_le32(iblock);
|
|
ext4_ext_store_pblock(ex3, newblock);
|
|
ex3->ee_len = cpu_to_le16(allocated);
|
|
err = ext4_ext_insert_extent(handle, inode, path,
|
|
ex3, 0);
|
|
if (err == -ENOSPC) {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
/* blocks available from iblock */
|
|
return allocated;
|
|
|
|
} else if (err)
|
|
goto fix_extent_len;
|
|
|
|
/*
|
|
* We need to zero out the second half because
|
|
* an fallocate request can update file size and
|
|
* converting the second half to initialized extent
|
|
* implies that we can leak some junk data to user
|
|
* space.
|
|
*/
|
|
err = ext4_ext_zeroout(inode, ex3);
|
|
if (err) {
|
|
/*
|
|
* We should actually mark the
|
|
* second half as uninit and return error
|
|
* Insert would have changed the extent
|
|
*/
|
|
depth = ext_depth(inode);
|
|
ext4_ext_drop_refs(path);
|
|
path = ext4_ext_find_extent(inode,
|
|
iblock, path);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
return err;
|
|
}
|
|
/* get the second half extent details */
|
|
ex = path[depth].p_ext;
|
|
err = ext4_ext_get_access(handle, inode,
|
|
path + depth);
|
|
if (err)
|
|
return err;
|
|
ext4_ext_mark_uninitialized(ex);
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
return err;
|
|
}
|
|
|
|
/* zeroed the second half */
|
|
return allocated;
|
|
}
|
|
ex3 = &newex;
|
|
ex3->ee_block = cpu_to_le32(iblock + max_blocks);
|
|
ext4_ext_store_pblock(ex3, newblock + max_blocks);
|
|
ex3->ee_len = cpu_to_le16(allocated - max_blocks);
|
|
ext4_ext_mark_uninitialized(ex3);
|
|
err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
|
|
if (err == -ENOSPC) {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
/* update the extent length and mark as initialized */
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
/* zeroed the full extent */
|
|
/* blocks available from iblock */
|
|
return allocated;
|
|
|
|
} else if (err)
|
|
goto fix_extent_len;
|
|
/*
|
|
* The depth, and hence eh & ex might change
|
|
* as part of the insert above.
|
|
*/
|
|
newdepth = ext_depth(inode);
|
|
/*
|
|
* update the extent length after successful insert of the
|
|
* split extent
|
|
*/
|
|
orig_ex.ee_len = cpu_to_le16(ee_len -
|
|
ext4_ext_get_actual_len(ex3));
|
|
depth = newdepth;
|
|
ext4_ext_drop_refs(path);
|
|
path = ext4_ext_find_extent(inode, iblock, path);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
goto out;
|
|
}
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
if (ex2 != &newex)
|
|
ex2 = ex;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
allocated = max_blocks;
|
|
|
|
/* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
|
|
* to insert a extent in the middle zerout directly
|
|
* otherwise give the extent a chance to merge to left
|
|
*/
|
|
if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
|
|
iblock != ee_block) {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
/* update the extent length and mark as initialized */
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
/* zero out the first half */
|
|
/* blocks available from iblock */
|
|
return allocated;
|
|
}
|
|
}
|
|
/*
|
|
* If there was a change of depth as part of the
|
|
* insertion of ex3 above, we need to update the length
|
|
* of the ex1 extent again here
|
|
*/
|
|
if (ex1 && ex1 != ex) {
|
|
ex1 = ex;
|
|
ex1->ee_len = cpu_to_le16(iblock - ee_block);
|
|
ext4_ext_mark_uninitialized(ex1);
|
|
ex2 = &newex;
|
|
}
|
|
/* ex2: iblock to iblock + maxblocks-1 : initialised */
|
|
ex2->ee_block = cpu_to_le32(iblock);
|
|
ext4_ext_store_pblock(ex2, newblock);
|
|
ex2->ee_len = cpu_to_le16(allocated);
|
|
if (ex2 != ex)
|
|
goto insert;
|
|
/*
|
|
* New (initialized) extent starts from the first block
|
|
* in the current extent. i.e., ex2 == ex
|
|
* We have to see if it can be merged with the extent
|
|
* on the left.
|
|
*/
|
|
if (ex2 > EXT_FIRST_EXTENT(eh)) {
|
|
/*
|
|
* To merge left, pass "ex2 - 1" to try_to_merge(),
|
|
* since it merges towards right _only_.
|
|
*/
|
|
ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
|
|
if (ret) {
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
if (err)
|
|
goto out;
|
|
depth = ext_depth(inode);
|
|
ex2--;
|
|
}
|
|
}
|
|
/*
|
|
* Try to Merge towards right. This might be required
|
|
* only when the whole extent is being written to.
|
|
* i.e. ex2 == ex and ex3 == NULL.
|
|
*/
|
|
if (!ex3) {
|
|
ret = ext4_ext_try_to_merge(inode, path, ex2);
|
|
if (ret) {
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
}
|
|
/* Mark modified extent as dirty */
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
goto out;
|
|
insert:
|
|
err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
|
|
if (err == -ENOSPC) {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
/* update the extent length and mark as initialized */
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
/* zero out the first half */
|
|
return allocated;
|
|
} else if (err)
|
|
goto fix_extent_len;
|
|
out:
|
|
ext4_ext_show_leaf(inode, path);
|
|
return err ? err : allocated;
|
|
|
|
fix_extent_len:
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_mark_uninitialized(ex);
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* This function is called by ext4_ext_get_blocks() from
|
|
* ext4_get_blocks_dio_write() when DIO to write
|
|
* to an uninitialized extent.
|
|
*
|
|
* Writing to an uninitized extent may result in splitting the uninitialized
|
|
* extent into multiple /intialized unintialized extents (up to three)
|
|
* There are three possibilities:
|
|
* a> There is no split required: Entire extent should be uninitialized
|
|
* b> Splits in two extents: Write is happening at either end of the extent
|
|
* c> Splits in three extents: Somone is writing in middle of the extent
|
|
*
|
|
* One of more index blocks maybe needed if the extent tree grow after
|
|
* the unintialized extent split. To prevent ENOSPC occur at the IO
|
|
* complete, we need to split the uninitialized extent before DIO submit
|
|
* the IO. The uninitilized extent called at this time will be split
|
|
* into three uninitialized extent(at most). After IO complete, the part
|
|
* being filled will be convert to initialized by the end_io callback function
|
|
* via ext4_convert_unwritten_extents().
|
|
*
|
|
* Returns the size of uninitialized extent to be written on success.
|
|
*/
|
|
static int ext4_split_unwritten_extents(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t iblock,
|
|
unsigned int max_blocks,
|
|
int flags)
|
|
{
|
|
struct ext4_extent *ex, newex, orig_ex;
|
|
struct ext4_extent *ex1 = NULL;
|
|
struct ext4_extent *ex2 = NULL;
|
|
struct ext4_extent *ex3 = NULL;
|
|
struct ext4_extent_header *eh;
|
|
ext4_lblk_t ee_block;
|
|
unsigned int allocated, ee_len, depth;
|
|
ext4_fsblk_t newblock;
|
|
int err = 0;
|
|
|
|
ext_debug("ext4_split_unwritten_extents: inode %lu,"
|
|
"iblock %llu, max_blocks %u\n", inode->i_ino,
|
|
(unsigned long long)iblock, max_blocks);
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
allocated = ee_len - (iblock - ee_block);
|
|
newblock = iblock - ee_block + ext_pblock(ex);
|
|
ex2 = ex;
|
|
orig_ex.ee_block = ex->ee_block;
|
|
orig_ex.ee_len = cpu_to_le16(ee_len);
|
|
ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
|
|
|
|
/*
|
|
* If the uninitialized extent begins at the same logical
|
|
* block where the write begins, and the write completely
|
|
* covers the extent, then we don't need to split it.
|
|
*/
|
|
if ((iblock == ee_block) && (allocated <= max_blocks))
|
|
return allocated;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
/* ex1: ee_block to iblock - 1 : uninitialized */
|
|
if (iblock > ee_block) {
|
|
ex1 = ex;
|
|
ex1->ee_len = cpu_to_le16(iblock - ee_block);
|
|
ext4_ext_mark_uninitialized(ex1);
|
|
ex2 = &newex;
|
|
}
|
|
/*
|
|
* for sanity, update the length of the ex2 extent before
|
|
* we insert ex3, if ex1 is NULL. This is to avoid temporary
|
|
* overlap of blocks.
|
|
*/
|
|
if (!ex1 && allocated > max_blocks)
|
|
ex2->ee_len = cpu_to_le16(max_blocks);
|
|
/* ex3: to ee_block + ee_len : uninitialised */
|
|
if (allocated > max_blocks) {
|
|
unsigned int newdepth;
|
|
ex3 = &newex;
|
|
ex3->ee_block = cpu_to_le32(iblock + max_blocks);
|
|
ext4_ext_store_pblock(ex3, newblock + max_blocks);
|
|
ex3->ee_len = cpu_to_le16(allocated - max_blocks);
|
|
ext4_ext_mark_uninitialized(ex3);
|
|
err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
|
|
if (err == -ENOSPC) {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
/* update the extent length and mark as initialized */
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
/* zeroed the full extent */
|
|
/* blocks available from iblock */
|
|
return allocated;
|
|
|
|
} else if (err)
|
|
goto fix_extent_len;
|
|
/*
|
|
* The depth, and hence eh & ex might change
|
|
* as part of the insert above.
|
|
*/
|
|
newdepth = ext_depth(inode);
|
|
/*
|
|
* update the extent length after successful insert of the
|
|
* split extent
|
|
*/
|
|
orig_ex.ee_len = cpu_to_le16(ee_len -
|
|
ext4_ext_get_actual_len(ex3));
|
|
depth = newdepth;
|
|
ext4_ext_drop_refs(path);
|
|
path = ext4_ext_find_extent(inode, iblock, path);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
goto out;
|
|
}
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
if (ex2 != &newex)
|
|
ex2 = ex;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
allocated = max_blocks;
|
|
}
|
|
/*
|
|
* If there was a change of depth as part of the
|
|
* insertion of ex3 above, we need to update the length
|
|
* of the ex1 extent again here
|
|
*/
|
|
if (ex1 && ex1 != ex) {
|
|
ex1 = ex;
|
|
ex1->ee_len = cpu_to_le16(iblock - ee_block);
|
|
ext4_ext_mark_uninitialized(ex1);
|
|
ex2 = &newex;
|
|
}
|
|
/*
|
|
* ex2: iblock to iblock + maxblocks-1 : to be direct IO written,
|
|
* uninitialised still.
|
|
*/
|
|
ex2->ee_block = cpu_to_le32(iblock);
|
|
ext4_ext_store_pblock(ex2, newblock);
|
|
ex2->ee_len = cpu_to_le16(allocated);
|
|
ext4_ext_mark_uninitialized(ex2);
|
|
if (ex2 != ex)
|
|
goto insert;
|
|
/* Mark modified extent as dirty */
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
ext_debug("out here\n");
|
|
goto out;
|
|
insert:
|
|
err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
|
|
if (err == -ENOSPC) {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
/* update the extent length and mark as initialized */
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
/* zero out the first half */
|
|
return allocated;
|
|
} else if (err)
|
|
goto fix_extent_len;
|
|
out:
|
|
ext4_ext_show_leaf(inode, path);
|
|
return err ? err : allocated;
|
|
|
|
fix_extent_len:
|
|
ex->ee_block = orig_ex.ee_block;
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
|
|
ext4_ext_mark_uninitialized(ex);
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
return err;
|
|
}
|
|
static int ext4_convert_unwritten_extents_dio(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_extent *ex;
|
|
struct ext4_extent_header *eh;
|
|
int depth;
|
|
int err = 0;
|
|
int ret = 0;
|
|
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
/* first mark the extent as initialized */
|
|
ext4_ext_mark_initialized(ex);
|
|
|
|
/*
|
|
* We have to see if it can be merged with the extent
|
|
* on the left.
|
|
*/
|
|
if (ex > EXT_FIRST_EXTENT(eh)) {
|
|
/*
|
|
* To merge left, pass "ex - 1" to try_to_merge(),
|
|
* since it merges towards right _only_.
|
|
*/
|
|
ret = ext4_ext_try_to_merge(inode, path, ex - 1);
|
|
if (ret) {
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
if (err)
|
|
goto out;
|
|
depth = ext_depth(inode);
|
|
ex--;
|
|
}
|
|
}
|
|
/*
|
|
* Try to Merge towards right.
|
|
*/
|
|
ret = ext4_ext_try_to_merge(inode, path, ex);
|
|
if (ret) {
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
if (err)
|
|
goto out;
|
|
depth = ext_depth(inode);
|
|
}
|
|
/* Mark modified extent as dirty */
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
out:
|
|
ext4_ext_show_leaf(inode, path);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
|
|
ext4_lblk_t iblock, unsigned int max_blocks,
|
|
struct ext4_ext_path *path, int flags,
|
|
unsigned int allocated, struct buffer_head *bh_result,
|
|
ext4_fsblk_t newblock)
|
|
{
|
|
int ret = 0;
|
|
int err = 0;
|
|
ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
|
|
|
|
ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
|
|
"block %llu, max_blocks %u, flags %d, allocated %u",
|
|
inode->i_ino, (unsigned long long)iblock, max_blocks,
|
|
flags, allocated);
|
|
ext4_ext_show_leaf(inode, path);
|
|
|
|
/* DIO get_block() before submit the IO, split the extent */
|
|
if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
|
|
ret = ext4_split_unwritten_extents(handle,
|
|
inode, path, iblock,
|
|
max_blocks, flags);
|
|
/*
|
|
* Flag the inode(non aio case) or end_io struct (aio case)
|
|
* that this IO needs to convertion to written when IO is
|
|
* completed
|
|
*/
|
|
if (io)
|
|
io->flag = DIO_AIO_UNWRITTEN;
|
|
else
|
|
EXT4_I(inode)->i_state |= EXT4_STATE_DIO_UNWRITTEN;
|
|
goto out;
|
|
}
|
|
/* async DIO end_io complete, convert the filled extent to written */
|
|
if (flags == EXT4_GET_BLOCKS_DIO_CONVERT_EXT) {
|
|
ret = ext4_convert_unwritten_extents_dio(handle, inode,
|
|
path);
|
|
goto out2;
|
|
}
|
|
/* buffered IO case */
|
|
/*
|
|
* repeat fallocate creation request
|
|
* we already have an unwritten extent
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
|
|
goto map_out;
|
|
|
|
/* buffered READ or buffered write_begin() lookup */
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
|
|
/*
|
|
* We have blocks reserved already. We
|
|
* return allocated blocks so that delalloc
|
|
* won't do block reservation for us. But
|
|
* the buffer head will be unmapped so that
|
|
* a read from the block returns 0s.
|
|
*/
|
|
set_buffer_unwritten(bh_result);
|
|
goto out1;
|
|
}
|
|
|
|
/* buffered write, writepage time, convert*/
|
|
ret = ext4_ext_convert_to_initialized(handle, inode,
|
|
path, iblock,
|
|
max_blocks);
|
|
out:
|
|
if (ret <= 0) {
|
|
err = ret;
|
|
goto out2;
|
|
} else
|
|
allocated = ret;
|
|
set_buffer_new(bh_result);
|
|
map_out:
|
|
set_buffer_mapped(bh_result);
|
|
out1:
|
|
if (allocated > max_blocks)
|
|
allocated = max_blocks;
|
|
ext4_ext_show_leaf(inode, path);
|
|
bh_result->b_bdev = inode->i_sb->s_bdev;
|
|
bh_result->b_blocknr = newblock;
|
|
out2:
|
|
if (path) {
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
}
|
|
return err ? err : allocated;
|
|
}
|
|
/*
|
|
* Block allocation/map/preallocation routine for extents based files
|
|
*
|
|
*
|
|
* Need to be called with
|
|
* down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
|
|
* (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
|
|
*
|
|
* return > 0, number of of blocks already mapped/allocated
|
|
* if create == 0 and these are pre-allocated blocks
|
|
* buffer head is unmapped
|
|
* otherwise blocks are mapped
|
|
*
|
|
* return = 0, if plain look up failed (blocks have not been allocated)
|
|
* buffer head is unmapped
|
|
*
|
|
* return < 0, error case.
|
|
*/
|
|
int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
|
|
ext4_lblk_t iblock,
|
|
unsigned int max_blocks, struct buffer_head *bh_result,
|
|
int flags)
|
|
{
|
|
struct ext4_ext_path *path = NULL;
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent newex, *ex;
|
|
ext4_fsblk_t newblock;
|
|
int err = 0, depth, ret, cache_type;
|
|
unsigned int allocated = 0;
|
|
struct ext4_allocation_request ar;
|
|
ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
|
|
|
|
__clear_bit(BH_New, &bh_result->b_state);
|
|
ext_debug("blocks %u/%u requested for inode %lu\n",
|
|
iblock, max_blocks, inode->i_ino);
|
|
|
|
/* check in cache */
|
|
cache_type = ext4_ext_in_cache(inode, iblock, &newex);
|
|
if (cache_type) {
|
|
if (cache_type == EXT4_EXT_CACHE_GAP) {
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
|
|
/*
|
|
* block isn't allocated yet and
|
|
* user doesn't want to allocate it
|
|
*/
|
|
goto out2;
|
|
}
|
|
/* we should allocate requested block */
|
|
} else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
|
|
/* block is already allocated */
|
|
newblock = iblock
|
|
- le32_to_cpu(newex.ee_block)
|
|
+ ext_pblock(&newex);
|
|
/* number of remaining blocks in the extent */
|
|
allocated = ext4_ext_get_actual_len(&newex) -
|
|
(iblock - le32_to_cpu(newex.ee_block));
|
|
goto out;
|
|
} else {
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* find extent for this block */
|
|
path = ext4_ext_find_extent(inode, iblock, NULL);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
path = NULL;
|
|
goto out2;
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
|
|
/*
|
|
* consistent leaf must not be empty;
|
|
* this situation is possible, though, _during_ tree modification;
|
|
* this is why assert can't be put in ext4_ext_find_extent()
|
|
*/
|
|
BUG_ON(path[depth].p_ext == NULL && depth != 0);
|
|
eh = path[depth].p_hdr;
|
|
|
|
ex = path[depth].p_ext;
|
|
if (ex) {
|
|
ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
|
|
ext4_fsblk_t ee_start = ext_pblock(ex);
|
|
unsigned short ee_len;
|
|
|
|
/*
|
|
* Uninitialized extents are treated as holes, except that
|
|
* we split out initialized portions during a write.
|
|
*/
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
/* if found extent covers block, simply return it */
|
|
if (iblock >= ee_block && iblock < ee_block + ee_len) {
|
|
newblock = iblock - ee_block + ee_start;
|
|
/* number of remaining blocks in the extent */
|
|
allocated = ee_len - (iblock - ee_block);
|
|
ext_debug("%u fit into %u:%d -> %llu\n", iblock,
|
|
ee_block, ee_len, newblock);
|
|
|
|
/* Do not put uninitialized extent in the cache */
|
|
if (!ext4_ext_is_uninitialized(ex)) {
|
|
ext4_ext_put_in_cache(inode, ee_block,
|
|
ee_len, ee_start,
|
|
EXT4_EXT_CACHE_EXTENT);
|
|
goto out;
|
|
}
|
|
ret = ext4_ext_handle_uninitialized_extents(handle,
|
|
inode, iblock, max_blocks, path,
|
|
flags, allocated, bh_result, newblock);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* requested block isn't allocated yet;
|
|
* we couldn't try to create block if create flag is zero
|
|
*/
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
|
|
/*
|
|
* put just found gap into cache to speed up
|
|
* subsequent requests
|
|
*/
|
|
ext4_ext_put_gap_in_cache(inode, path, iblock);
|
|
goto out2;
|
|
}
|
|
/*
|
|
* Okay, we need to do block allocation.
|
|
*/
|
|
|
|
/* find neighbour allocated blocks */
|
|
ar.lleft = iblock;
|
|
err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
|
|
if (err)
|
|
goto out2;
|
|
ar.lright = iblock;
|
|
err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
|
|
if (err)
|
|
goto out2;
|
|
|
|
/*
|
|
* See if request is beyond maximum number of blocks we can have in
|
|
* a single extent. For an initialized extent this limit is
|
|
* EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
|
|
* EXT_UNINIT_MAX_LEN.
|
|
*/
|
|
if (max_blocks > EXT_INIT_MAX_LEN &&
|
|
!(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
|
|
max_blocks = EXT_INIT_MAX_LEN;
|
|
else if (max_blocks > EXT_UNINIT_MAX_LEN &&
|
|
(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
|
|
max_blocks = EXT_UNINIT_MAX_LEN;
|
|
|
|
/* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
|
|
newex.ee_block = cpu_to_le32(iblock);
|
|
newex.ee_len = cpu_to_le16(max_blocks);
|
|
err = ext4_ext_check_overlap(inode, &newex, path);
|
|
if (err)
|
|
allocated = ext4_ext_get_actual_len(&newex);
|
|
else
|
|
allocated = max_blocks;
|
|
|
|
/* allocate new block */
|
|
ar.inode = inode;
|
|
ar.goal = ext4_ext_find_goal(inode, path, iblock);
|
|
ar.logical = iblock;
|
|
ar.len = allocated;
|
|
if (S_ISREG(inode->i_mode))
|
|
ar.flags = EXT4_MB_HINT_DATA;
|
|
else
|
|
/* disable in-core preallocation for non-regular files */
|
|
ar.flags = 0;
|
|
newblock = ext4_mb_new_blocks(handle, &ar, &err);
|
|
if (!newblock)
|
|
goto out2;
|
|
ext_debug("allocate new block: goal %llu, found %llu/%u\n",
|
|
ar.goal, newblock, allocated);
|
|
|
|
/* try to insert new extent into found leaf and return */
|
|
ext4_ext_store_pblock(&newex, newblock);
|
|
newex.ee_len = cpu_to_le16(ar.len);
|
|
/* Mark uninitialized */
|
|
if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
|
|
ext4_ext_mark_uninitialized(&newex);
|
|
/*
|
|
* io_end structure was created for every async
|
|
* direct IO write to the middle of the file.
|
|
* To avoid unecessary convertion for every aio dio rewrite
|
|
* to the mid of file, here we flag the IO that is really
|
|
* need the convertion.
|
|
* For non asycn direct IO case, flag the inode state
|
|
* that we need to perform convertion when IO is done.
|
|
*/
|
|
if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
|
|
if (io)
|
|
io->flag = DIO_AIO_UNWRITTEN;
|
|
else
|
|
EXT4_I(inode)->i_state |=
|
|
EXT4_STATE_DIO_UNWRITTEN;;
|
|
}
|
|
}
|
|
err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
|
|
if (err) {
|
|
/* free data blocks we just allocated */
|
|
/* not a good idea to call discard here directly,
|
|
* but otherwise we'd need to call it every free() */
|
|
ext4_discard_preallocations(inode);
|
|
ext4_free_blocks(handle, inode, ext_pblock(&newex),
|
|
ext4_ext_get_actual_len(&newex), 0);
|
|
goto out2;
|
|
}
|
|
|
|
/* previous routine could use block we allocated */
|
|
newblock = ext_pblock(&newex);
|
|
allocated = ext4_ext_get_actual_len(&newex);
|
|
set_buffer_new(bh_result);
|
|
|
|
/* Cache only when it is _not_ an uninitialized extent */
|
|
if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
|
|
ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
|
|
EXT4_EXT_CACHE_EXTENT);
|
|
out:
|
|
if (allocated > max_blocks)
|
|
allocated = max_blocks;
|
|
ext4_ext_show_leaf(inode, path);
|
|
set_buffer_mapped(bh_result);
|
|
bh_result->b_bdev = inode->i_sb->s_bdev;
|
|
bh_result->b_blocknr = newblock;
|
|
out2:
|
|
if (path) {
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
}
|
|
return err ? err : allocated;
|
|
}
|
|
|
|
void ext4_ext_truncate(struct inode *inode)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct super_block *sb = inode->i_sb;
|
|
ext4_lblk_t last_block;
|
|
handle_t *handle;
|
|
int err = 0;
|
|
|
|
/*
|
|
* probably first extent we're gonna free will be last in block
|
|
*/
|
|
err = ext4_writepage_trans_blocks(inode);
|
|
handle = ext4_journal_start(inode, err);
|
|
if (IS_ERR(handle))
|
|
return;
|
|
|
|
if (inode->i_size & (sb->s_blocksize - 1))
|
|
ext4_block_truncate_page(handle, mapping, inode->i_size);
|
|
|
|
if (ext4_orphan_add(handle, inode))
|
|
goto out_stop;
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_ext_invalidate_cache(inode);
|
|
|
|
ext4_discard_preallocations(inode);
|
|
|
|
/*
|
|
* TODO: optimization is possible here.
|
|
* Probably we need not scan at all,
|
|
* because page truncation is enough.
|
|
*/
|
|
|
|
/* we have to know where to truncate from in crash case */
|
|
EXT4_I(inode)->i_disksize = inode->i_size;
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
|
|
last_block = (inode->i_size + sb->s_blocksize - 1)
|
|
>> EXT4_BLOCK_SIZE_BITS(sb);
|
|
err = ext4_ext_remove_space(inode, last_block);
|
|
|
|
/* In a multi-transaction truncate, we only make the final
|
|
* transaction synchronous.
|
|
*/
|
|
if (IS_SYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
|
|
out_stop:
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
/*
|
|
* If this was a simple ftruncate() and the file will remain alive,
|
|
* then we need to clear up the orphan record which we created above.
|
|
* However, if this was a real unlink then we were called by
|
|
* ext4_delete_inode(), and we allow that function to clean up the
|
|
* orphan info for us.
|
|
*/
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(handle, inode);
|
|
|
|
inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
}
|
|
|
|
static void ext4_falloc_update_inode(struct inode *inode,
|
|
int mode, loff_t new_size, int update_ctime)
|
|
{
|
|
struct timespec now;
|
|
|
|
if (update_ctime) {
|
|
now = current_fs_time(inode->i_sb);
|
|
if (!timespec_equal(&inode->i_ctime, &now))
|
|
inode->i_ctime = now;
|
|
}
|
|
/*
|
|
* Update only when preallocation was requested beyond
|
|
* the file size.
|
|
*/
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE)) {
|
|
if (new_size > i_size_read(inode))
|
|
i_size_write(inode, new_size);
|
|
if (new_size > EXT4_I(inode)->i_disksize)
|
|
ext4_update_i_disksize(inode, new_size);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* preallocate space for a file. This implements ext4's fallocate inode
|
|
* operation, which gets called from sys_fallocate system call.
|
|
* For block-mapped files, posix_fallocate should fall back to the method
|
|
* of writing zeroes to the required new blocks (the same behavior which is
|
|
* expected for file systems which do not support fallocate() system call).
|
|
*/
|
|
long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
|
|
{
|
|
handle_t *handle;
|
|
ext4_lblk_t block;
|
|
loff_t new_size;
|
|
unsigned int max_blocks;
|
|
int ret = 0;
|
|
int ret2 = 0;
|
|
int retries = 0;
|
|
struct buffer_head map_bh;
|
|
unsigned int credits, blkbits = inode->i_blkbits;
|
|
|
|
/*
|
|
* currently supporting (pre)allocate mode for extent-based
|
|
* files _only_
|
|
*/
|
|
if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* preallocation to directories is currently not supported */
|
|
if (S_ISDIR(inode->i_mode))
|
|
return -ENODEV;
|
|
|
|
block = offset >> blkbits;
|
|
/*
|
|
* We can't just convert len to max_blocks because
|
|
* If blocksize = 4096 offset = 3072 and len = 2048
|
|
*/
|
|
max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
|
|
- block;
|
|
/*
|
|
* credits to insert 1 extent into extent tree
|
|
*/
|
|
credits = ext4_chunk_trans_blocks(inode, max_blocks);
|
|
mutex_lock(&inode->i_mutex);
|
|
retry:
|
|
while (ret >= 0 && ret < max_blocks) {
|
|
block = block + ret;
|
|
max_blocks = max_blocks - ret;
|
|
handle = ext4_journal_start(inode, credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
break;
|
|
}
|
|
map_bh.b_state = 0;
|
|
ret = ext4_get_blocks(handle, inode, block,
|
|
max_blocks, &map_bh,
|
|
EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
|
|
if (ret <= 0) {
|
|
#ifdef EXT4FS_DEBUG
|
|
WARN_ON(ret <= 0);
|
|
printk(KERN_ERR "%s: ext4_ext_get_blocks "
|
|
"returned error inode#%lu, block=%u, "
|
|
"max_blocks=%u", __func__,
|
|
inode->i_ino, block, max_blocks);
|
|
#endif
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ret2 = ext4_journal_stop(handle);
|
|
break;
|
|
}
|
|
if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
|
|
blkbits) >> blkbits))
|
|
new_size = offset + len;
|
|
else
|
|
new_size = (block + ret) << blkbits;
|
|
|
|
ext4_falloc_update_inode(inode, mode, new_size,
|
|
buffer_new(&map_bh));
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (ret2)
|
|
break;
|
|
}
|
|
if (ret == -ENOSPC &&
|
|
ext4_should_retry_alloc(inode->i_sb, &retries)) {
|
|
ret = 0;
|
|
goto retry;
|
|
}
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret > 0 ? ret2 : ret;
|
|
}
|
|
|
|
/*
|
|
* This function convert a range of blocks to written extents
|
|
* The caller of this function will pass the start offset and the size.
|
|
* all unwritten extents within this range will be converted to
|
|
* written extents.
|
|
*
|
|
* This function is called from the direct IO end io call back
|
|
* function, to convert the fallocated extents after IO is completed.
|
|
* Returns 0 on success.
|
|
*/
|
|
int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
|
|
loff_t len)
|
|
{
|
|
handle_t *handle;
|
|
ext4_lblk_t block;
|
|
unsigned int max_blocks;
|
|
int ret = 0;
|
|
int ret2 = 0;
|
|
struct buffer_head map_bh;
|
|
unsigned int credits, blkbits = inode->i_blkbits;
|
|
|
|
block = offset >> blkbits;
|
|
/*
|
|
* We can't just convert len to max_blocks because
|
|
* If blocksize = 4096 offset = 3072 and len = 2048
|
|
*/
|
|
max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
|
|
- block;
|
|
/*
|
|
* credits to insert 1 extent into extent tree
|
|
*/
|
|
credits = ext4_chunk_trans_blocks(inode, max_blocks);
|
|
while (ret >= 0 && ret < max_blocks) {
|
|
block = block + ret;
|
|
max_blocks = max_blocks - ret;
|
|
handle = ext4_journal_start(inode, credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
break;
|
|
}
|
|
map_bh.b_state = 0;
|
|
ret = ext4_get_blocks(handle, inode, block,
|
|
max_blocks, &map_bh,
|
|
EXT4_GET_BLOCKS_DIO_CONVERT_EXT);
|
|
if (ret <= 0) {
|
|
WARN_ON(ret <= 0);
|
|
printk(KERN_ERR "%s: ext4_ext_get_blocks "
|
|
"returned error inode#%lu, block=%u, "
|
|
"max_blocks=%u", __func__,
|
|
inode->i_ino, block, max_blocks);
|
|
}
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (ret <= 0 || ret2 )
|
|
break;
|
|
}
|
|
return ret > 0 ? ret2 : ret;
|
|
}
|
|
/*
|
|
* Callback function called for each extent to gather FIEMAP information.
|
|
*/
|
|
static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
|
|
struct ext4_ext_cache *newex, struct ext4_extent *ex,
|
|
void *data)
|
|
{
|
|
struct fiemap_extent_info *fieinfo = data;
|
|
unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
|
|
__u64 logical;
|
|
__u64 physical;
|
|
__u64 length;
|
|
__u32 flags = 0;
|
|
int error;
|
|
|
|
logical = (__u64)newex->ec_block << blksize_bits;
|
|
|
|
if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
|
|
pgoff_t offset;
|
|
struct page *page;
|
|
struct buffer_head *bh = NULL;
|
|
|
|
offset = logical >> PAGE_SHIFT;
|
|
page = find_get_page(inode->i_mapping, offset);
|
|
if (!page || !page_has_buffers(page))
|
|
return EXT_CONTINUE;
|
|
|
|
bh = page_buffers(page);
|
|
|
|
if (!bh)
|
|
return EXT_CONTINUE;
|
|
|
|
if (buffer_delay(bh)) {
|
|
flags |= FIEMAP_EXTENT_DELALLOC;
|
|
page_cache_release(page);
|
|
} else {
|
|
page_cache_release(page);
|
|
return EXT_CONTINUE;
|
|
}
|
|
}
|
|
|
|
physical = (__u64)newex->ec_start << blksize_bits;
|
|
length = (__u64)newex->ec_len << blksize_bits;
|
|
|
|
if (ex && ext4_ext_is_uninitialized(ex))
|
|
flags |= FIEMAP_EXTENT_UNWRITTEN;
|
|
|
|
/*
|
|
* If this extent reaches EXT_MAX_BLOCK, it must be last.
|
|
*
|
|
* Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
|
|
* this also indicates no more allocated blocks.
|
|
*
|
|
* XXX this might miss a single-block extent at EXT_MAX_BLOCK
|
|
*/
|
|
if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
|
|
newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
|
|
loff_t size = i_size_read(inode);
|
|
loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
|
|
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
if ((flags & FIEMAP_EXTENT_DELALLOC) &&
|
|
logical+length > size)
|
|
length = (size - logical + bs - 1) & ~(bs-1);
|
|
}
|
|
|
|
error = fiemap_fill_next_extent(fieinfo, logical, physical,
|
|
length, flags);
|
|
if (error < 0)
|
|
return error;
|
|
if (error == 1)
|
|
return EXT_BREAK;
|
|
|
|
return EXT_CONTINUE;
|
|
}
|
|
|
|
/* fiemap flags we can handle specified here */
|
|
#define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
|
|
|
|
static int ext4_xattr_fiemap(struct inode *inode,
|
|
struct fiemap_extent_info *fieinfo)
|
|
{
|
|
__u64 physical = 0;
|
|
__u64 length;
|
|
__u32 flags = FIEMAP_EXTENT_LAST;
|
|
int blockbits = inode->i_sb->s_blocksize_bits;
|
|
int error = 0;
|
|
|
|
/* in-inode? */
|
|
if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
|
|
struct ext4_iloc iloc;
|
|
int offset; /* offset of xattr in inode */
|
|
|
|
error = ext4_get_inode_loc(inode, &iloc);
|
|
if (error)
|
|
return error;
|
|
physical = iloc.bh->b_blocknr << blockbits;
|
|
offset = EXT4_GOOD_OLD_INODE_SIZE +
|
|
EXT4_I(inode)->i_extra_isize;
|
|
physical += offset;
|
|
length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
|
|
flags |= FIEMAP_EXTENT_DATA_INLINE;
|
|
} else { /* external block */
|
|
physical = EXT4_I(inode)->i_file_acl << blockbits;
|
|
length = inode->i_sb->s_blocksize;
|
|
}
|
|
|
|
if (physical)
|
|
error = fiemap_fill_next_extent(fieinfo, 0, physical,
|
|
length, flags);
|
|
return (error < 0 ? error : 0);
|
|
}
|
|
|
|
int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
__u64 start, __u64 len)
|
|
{
|
|
ext4_lblk_t start_blk;
|
|
ext4_lblk_t len_blks;
|
|
int error = 0;
|
|
|
|
/* fallback to generic here if not in extents fmt */
|
|
if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
|
|
return generic_block_fiemap(inode, fieinfo, start, len,
|
|
ext4_get_block);
|
|
|
|
if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
|
|
return -EBADR;
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
|
|
error = ext4_xattr_fiemap(inode, fieinfo);
|
|
} else {
|
|
start_blk = start >> inode->i_sb->s_blocksize_bits;
|
|
len_blks = len >> inode->i_sb->s_blocksize_bits;
|
|
|
|
/*
|
|
* Walk the extent tree gathering extent information.
|
|
* ext4_ext_fiemap_cb will push extents back to user.
|
|
*/
|
|
down_read(&EXT4_I(inode)->i_data_sem);
|
|
error = ext4_ext_walk_space(inode, start_blk, len_blks,
|
|
ext4_ext_fiemap_cb, fieinfo);
|
|
up_read(&EXT4_I(inode)->i_data_sem);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|