mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-30 13:38:40 +00:00
64b3d0e812
Currently, we never set _PAGE_COHERENT in the PTEs, we just OR it in in the hash code based on some CPU feature bit. We also manipulate _PAGE_NO_CACHE and _PAGE_GUARDED by hand in all sorts of places. This changes the logic so that instead, the PTE now contains _PAGE_COHERENT for all normal RAM pages thay have I = 0 on platforms that need it. The hash code clears it if the feature bit is not set. It also adds some clean accessors to setup various valid combinations of access flags and change various bits of code to use them instead. This should help having the PTE actually containing the bit combinations that we really want. I also removed _PAGE_GUARDED from _PAGE_BASE on 44x and instead set it explicitely from the TLB miss. I will ultimately remove it completely as it appears that it might not be needed after all but in the meantime, having it in the TLB miss makes things a lot easier. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: Kumar Gala <galak@kernel.crashing.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
530 lines
14 KiB
C
530 lines
14 KiB
C
/*
|
|
* PowerPC version
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
* PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/lmb.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/btext.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/sparsemem.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/fixmap.h>
|
|
|
|
#include "mmu_decl.h"
|
|
|
|
#ifndef CPU_FTR_COHERENT_ICACHE
|
|
#define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
|
|
#define CPU_FTR_NOEXECUTE 0
|
|
#endif
|
|
|
|
int init_bootmem_done;
|
|
int mem_init_done;
|
|
unsigned long memory_limit;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
pte_t *kmap_pte;
|
|
pgprot_t kmap_prot;
|
|
|
|
EXPORT_SYMBOL(kmap_prot);
|
|
EXPORT_SYMBOL(kmap_pte);
|
|
|
|
static inline pte_t *virt_to_kpte(unsigned long vaddr)
|
|
{
|
|
return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr),
|
|
vaddr), vaddr), vaddr);
|
|
}
|
|
#endif
|
|
|
|
int page_is_ram(unsigned long pfn)
|
|
{
|
|
#ifndef CONFIG_PPC64 /* XXX for now */
|
|
return pfn < max_pfn;
|
|
#else
|
|
unsigned long paddr = (pfn << PAGE_SHIFT);
|
|
int i;
|
|
for (i=0; i < lmb.memory.cnt; i++) {
|
|
unsigned long base;
|
|
|
|
base = lmb.memory.region[i].base;
|
|
|
|
if ((paddr >= base) &&
|
|
(paddr < (base + lmb.memory.region[i].size))) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
if (ppc_md.phys_mem_access_prot)
|
|
return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
|
|
|
|
if (!page_is_ram(pfn))
|
|
vma_prot = pgprot_noncached(vma_prot);
|
|
|
|
return vma_prot;
|
|
}
|
|
EXPORT_SYMBOL(phys_mem_access_prot);
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
|
|
#ifdef CONFIG_NUMA
|
|
int memory_add_physaddr_to_nid(u64 start)
|
|
{
|
|
return hot_add_scn_to_nid(start);
|
|
}
|
|
#endif
|
|
|
|
int arch_add_memory(int nid, u64 start, u64 size)
|
|
{
|
|
struct pglist_data *pgdata;
|
|
struct zone *zone;
|
|
unsigned long start_pfn = start >> PAGE_SHIFT;
|
|
unsigned long nr_pages = size >> PAGE_SHIFT;
|
|
|
|
pgdata = NODE_DATA(nid);
|
|
|
|
start = (unsigned long)__va(start);
|
|
create_section_mapping(start, start + size);
|
|
|
|
/* this should work for most non-highmem platforms */
|
|
zone = pgdata->node_zones;
|
|
|
|
return __add_pages(zone, start_pfn, nr_pages);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
/*
|
|
* walk_memory_resource() needs to make sure there is no holes in a given
|
|
* memory range. PPC64 does not maintain the memory layout in /proc/iomem.
|
|
* Instead it maintains it in lmb.memory structures. Walk through the
|
|
* memory regions, find holes and callback for contiguous regions.
|
|
*/
|
|
int
|
|
walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg,
|
|
int (*func)(unsigned long, unsigned long, void *))
|
|
{
|
|
struct lmb_property res;
|
|
unsigned long pfn, len;
|
|
u64 end;
|
|
int ret = -1;
|
|
|
|
res.base = (u64) start_pfn << PAGE_SHIFT;
|
|
res.size = (u64) nr_pages << PAGE_SHIFT;
|
|
|
|
end = res.base + res.size - 1;
|
|
while ((res.base < end) && (lmb_find(&res) >= 0)) {
|
|
pfn = (unsigned long)(res.base >> PAGE_SHIFT);
|
|
len = (unsigned long)(res.size >> PAGE_SHIFT);
|
|
ret = (*func)(pfn, len, arg);
|
|
if (ret)
|
|
break;
|
|
res.base += (res.size + 1);
|
|
res.size = (end - res.base + 1);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(walk_memory_resource);
|
|
|
|
/*
|
|
* Initialize the bootmem system and give it all the memory we
|
|
* have available. If we are using highmem, we only put the
|
|
* lowmem into the bootmem system.
|
|
*/
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
void __init do_init_bootmem(void)
|
|
{
|
|
unsigned long i;
|
|
unsigned long start, bootmap_pages;
|
|
unsigned long total_pages;
|
|
int boot_mapsize;
|
|
|
|
max_low_pfn = max_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
|
|
total_pages = (lmb_end_of_DRAM() - memstart_addr) >> PAGE_SHIFT;
|
|
#ifdef CONFIG_HIGHMEM
|
|
total_pages = total_lowmem >> PAGE_SHIFT;
|
|
max_low_pfn = lowmem_end_addr >> PAGE_SHIFT;
|
|
#endif
|
|
|
|
/*
|
|
* Find an area to use for the bootmem bitmap. Calculate the size of
|
|
* bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
|
|
* Add 1 additional page in case the address isn't page-aligned.
|
|
*/
|
|
bootmap_pages = bootmem_bootmap_pages(total_pages);
|
|
|
|
start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
|
|
|
|
min_low_pfn = MEMORY_START >> PAGE_SHIFT;
|
|
boot_mapsize = init_bootmem_node(NODE_DATA(0), start >> PAGE_SHIFT, min_low_pfn, max_low_pfn);
|
|
|
|
/* Add active regions with valid PFNs */
|
|
for (i = 0; i < lmb.memory.cnt; i++) {
|
|
unsigned long start_pfn, end_pfn;
|
|
start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
|
|
end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
|
|
add_active_range(0, start_pfn, end_pfn);
|
|
}
|
|
|
|
/* Add all physical memory to the bootmem map, mark each area
|
|
* present.
|
|
*/
|
|
#ifdef CONFIG_HIGHMEM
|
|
free_bootmem_with_active_regions(0, lowmem_end_addr >> PAGE_SHIFT);
|
|
|
|
/* reserve the sections we're already using */
|
|
for (i = 0; i < lmb.reserved.cnt; i++) {
|
|
unsigned long addr = lmb.reserved.region[i].base +
|
|
lmb_size_bytes(&lmb.reserved, i) - 1;
|
|
if (addr < lowmem_end_addr)
|
|
reserve_bootmem(lmb.reserved.region[i].base,
|
|
lmb_size_bytes(&lmb.reserved, i),
|
|
BOOTMEM_DEFAULT);
|
|
else if (lmb.reserved.region[i].base < lowmem_end_addr) {
|
|
unsigned long adjusted_size = lowmem_end_addr -
|
|
lmb.reserved.region[i].base;
|
|
reserve_bootmem(lmb.reserved.region[i].base,
|
|
adjusted_size, BOOTMEM_DEFAULT);
|
|
}
|
|
}
|
|
#else
|
|
free_bootmem_with_active_regions(0, max_pfn);
|
|
|
|
/* reserve the sections we're already using */
|
|
for (i = 0; i < lmb.reserved.cnt; i++)
|
|
reserve_bootmem(lmb.reserved.region[i].base,
|
|
lmb_size_bytes(&lmb.reserved, i),
|
|
BOOTMEM_DEFAULT);
|
|
|
|
#endif
|
|
/* XXX need to clip this if using highmem? */
|
|
sparse_memory_present_with_active_regions(0);
|
|
|
|
init_bootmem_done = 1;
|
|
}
|
|
|
|
/* mark pages that don't exist as nosave */
|
|
static int __init mark_nonram_nosave(void)
|
|
{
|
|
unsigned long lmb_next_region_start_pfn,
|
|
lmb_region_max_pfn;
|
|
int i;
|
|
|
|
for (i = 0; i < lmb.memory.cnt - 1; i++) {
|
|
lmb_region_max_pfn =
|
|
(lmb.memory.region[i].base >> PAGE_SHIFT) +
|
|
(lmb.memory.region[i].size >> PAGE_SHIFT);
|
|
lmb_next_region_start_pfn =
|
|
lmb.memory.region[i+1].base >> PAGE_SHIFT;
|
|
|
|
if (lmb_region_max_pfn < lmb_next_region_start_pfn)
|
|
register_nosave_region(lmb_region_max_pfn,
|
|
lmb_next_region_start_pfn);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* paging_init() sets up the page tables - in fact we've already done this.
|
|
*/
|
|
void __init paging_init(void)
|
|
{
|
|
unsigned long total_ram = lmb_phys_mem_size();
|
|
phys_addr_t top_of_ram = lmb_end_of_DRAM();
|
|
unsigned long max_zone_pfns[MAX_NR_ZONES];
|
|
|
|
#ifdef CONFIG_PPC32
|
|
unsigned long v = __fix_to_virt(__end_of_fixed_addresses - 1);
|
|
unsigned long end = __fix_to_virt(FIX_HOLE);
|
|
|
|
for (; v < end; v += PAGE_SIZE)
|
|
map_page(v, 0, 0); /* XXX gross */
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
map_page(PKMAP_BASE, 0, 0); /* XXX gross */
|
|
pkmap_page_table = virt_to_kpte(PKMAP_BASE);
|
|
|
|
kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
|
|
kmap_prot = PAGE_KERNEL;
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%lx\n",
|
|
(unsigned long long)top_of_ram, total_ram);
|
|
printk(KERN_DEBUG "Memory hole size: %ldMB\n",
|
|
(long int)((top_of_ram - total_ram) >> 20));
|
|
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
|
|
#ifdef CONFIG_HIGHMEM
|
|
max_zone_pfns[ZONE_DMA] = lowmem_end_addr >> PAGE_SHIFT;
|
|
max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT;
|
|
#else
|
|
max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
|
|
#endif
|
|
free_area_init_nodes(max_zone_pfns);
|
|
|
|
mark_nonram_nosave();
|
|
}
|
|
#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
|
|
|
|
void __init mem_init(void)
|
|
{
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
int nid;
|
|
#endif
|
|
pg_data_t *pgdat;
|
|
unsigned long i;
|
|
struct page *page;
|
|
unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
|
|
|
|
num_physpages = lmb.memory.size >> PAGE_SHIFT;
|
|
high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
|
|
|
|
#ifdef CONFIG_NEED_MULTIPLE_NODES
|
|
for_each_online_node(nid) {
|
|
if (NODE_DATA(nid)->node_spanned_pages != 0) {
|
|
printk("freeing bootmem node %d\n", nid);
|
|
totalram_pages +=
|
|
free_all_bootmem_node(NODE_DATA(nid));
|
|
}
|
|
}
|
|
#else
|
|
max_mapnr = max_pfn;
|
|
totalram_pages += free_all_bootmem();
|
|
#endif
|
|
for_each_online_pgdat(pgdat) {
|
|
for (i = 0; i < pgdat->node_spanned_pages; i++) {
|
|
if (!pfn_valid(pgdat->node_start_pfn + i))
|
|
continue;
|
|
page = pgdat_page_nr(pgdat, i);
|
|
if (PageReserved(page))
|
|
reservedpages++;
|
|
}
|
|
}
|
|
|
|
codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
|
|
datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
|
|
initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
|
|
bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
{
|
|
unsigned long pfn, highmem_mapnr;
|
|
|
|
highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT;
|
|
for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
if (lmb_is_reserved(pfn << PAGE_SHIFT))
|
|
continue;
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
__free_page(page);
|
|
totalhigh_pages++;
|
|
reservedpages--;
|
|
}
|
|
totalram_pages += totalhigh_pages;
|
|
printk(KERN_DEBUG "High memory: %luk\n",
|
|
totalhigh_pages << (PAGE_SHIFT-10));
|
|
}
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
|
|
"%luk reserved, %luk data, %luk bss, %luk init)\n",
|
|
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
|
|
num_physpages << (PAGE_SHIFT-10),
|
|
codesize >> 10,
|
|
reservedpages << (PAGE_SHIFT-10),
|
|
datasize >> 10,
|
|
bsssize >> 10,
|
|
initsize >> 10);
|
|
|
|
mem_init_done = 1;
|
|
}
|
|
|
|
/*
|
|
* This is called when a page has been modified by the kernel.
|
|
* It just marks the page as not i-cache clean. We do the i-cache
|
|
* flush later when the page is given to a user process, if necessary.
|
|
*/
|
|
void flush_dcache_page(struct page *page)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
|
|
return;
|
|
/* avoid an atomic op if possible */
|
|
if (test_bit(PG_arch_1, &page->flags))
|
|
clear_bit(PG_arch_1, &page->flags);
|
|
}
|
|
EXPORT_SYMBOL(flush_dcache_page);
|
|
|
|
void flush_dcache_icache_page(struct page *page)
|
|
{
|
|
#ifdef CONFIG_BOOKE
|
|
void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
|
|
__flush_dcache_icache(start);
|
|
kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
|
|
#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
|
|
/* On 8xx there is no need to kmap since highmem is not supported */
|
|
__flush_dcache_icache(page_address(page));
|
|
#else
|
|
__flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
|
|
#endif
|
|
|
|
}
|
|
void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
|
|
{
|
|
clear_page(page);
|
|
|
|
/*
|
|
* We shouldnt have to do this, but some versions of glibc
|
|
* require it (ld.so assumes zero filled pages are icache clean)
|
|
* - Anton
|
|
*/
|
|
flush_dcache_page(pg);
|
|
}
|
|
EXPORT_SYMBOL(clear_user_page);
|
|
|
|
void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
|
|
struct page *pg)
|
|
{
|
|
copy_page(vto, vfrom);
|
|
|
|
/*
|
|
* We should be able to use the following optimisation, however
|
|
* there are two problems.
|
|
* Firstly a bug in some versions of binutils meant PLT sections
|
|
* were not marked executable.
|
|
* Secondly the first word in the GOT section is blrl, used
|
|
* to establish the GOT address. Until recently the GOT was
|
|
* not marked executable.
|
|
* - Anton
|
|
*/
|
|
#if 0
|
|
if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
|
|
return;
|
|
#endif
|
|
|
|
flush_dcache_page(pg);
|
|
}
|
|
|
|
void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
|
|
unsigned long addr, int len)
|
|
{
|
|
unsigned long maddr;
|
|
|
|
maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
|
|
flush_icache_range(maddr, maddr + len);
|
|
kunmap(page);
|
|
}
|
|
EXPORT_SYMBOL(flush_icache_user_range);
|
|
|
|
/*
|
|
* This is called at the end of handling a user page fault, when the
|
|
* fault has been handled by updating a PTE in the linux page tables.
|
|
* We use it to preload an HPTE into the hash table corresponding to
|
|
* the updated linux PTE.
|
|
*
|
|
* This must always be called with the pte lock held.
|
|
*/
|
|
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
|
|
pte_t pte)
|
|
{
|
|
#ifdef CONFIG_PPC_STD_MMU
|
|
unsigned long access = 0, trap;
|
|
#endif
|
|
unsigned long pfn = pte_pfn(pte);
|
|
|
|
/* handle i-cache coherency */
|
|
if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
|
|
!cpu_has_feature(CPU_FTR_NOEXECUTE) &&
|
|
pfn_valid(pfn)) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
#ifdef CONFIG_8xx
|
|
/* On 8xx, cache control instructions (particularly
|
|
* "dcbst" from flush_dcache_icache) fault as write
|
|
* operation if there is an unpopulated TLB entry
|
|
* for the address in question. To workaround that,
|
|
* we invalidate the TLB here, thus avoiding dcbst
|
|
* misbehaviour.
|
|
*/
|
|
_tlbil_va(address, 0 /* 8xx doesn't care about PID */);
|
|
#endif
|
|
/* The _PAGE_USER test should really be _PAGE_EXEC, but
|
|
* older glibc versions execute some code from no-exec
|
|
* pages, which for now we are supporting. If exec-only
|
|
* pages are ever implemented, this will have to change.
|
|
*/
|
|
if (!PageReserved(page) && (pte_val(pte) & _PAGE_USER)
|
|
&& !test_bit(PG_arch_1, &page->flags)) {
|
|
if (vma->vm_mm == current->active_mm) {
|
|
__flush_dcache_icache((void *) address);
|
|
} else
|
|
flush_dcache_icache_page(page);
|
|
set_bit(PG_arch_1, &page->flags);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_STD_MMU
|
|
/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
|
|
if (!pte_young(pte) || address >= TASK_SIZE)
|
|
return;
|
|
|
|
/* We try to figure out if we are coming from an instruction
|
|
* access fault and pass that down to __hash_page so we avoid
|
|
* double-faulting on execution of fresh text. We have to test
|
|
* for regs NULL since init will get here first thing at boot
|
|
*
|
|
* We also avoid filling the hash if not coming from a fault
|
|
*/
|
|
if (current->thread.regs == NULL)
|
|
return;
|
|
trap = TRAP(current->thread.regs);
|
|
if (trap == 0x400)
|
|
access |= _PAGE_EXEC;
|
|
else if (trap != 0x300)
|
|
return;
|
|
hash_preload(vma->vm_mm, address, access, trap);
|
|
#endif /* CONFIG_PPC_STD_MMU */
|
|
}
|