mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-14 05:12:17 +00:00
5132ba8f2b
When we read inodes via bulkstat, we generally only read them once and then throw them away - they never get used again. If we retain them in cache, then it simply causes the working set of inodes and other cached items to be reclaimed just so the inode cache can grow. Avoid this problem by marking inodes read by bulkstat not to be cached and check this flag in .drop_inode to determine whether the inode should be added to the VFS LRU or not. If the inode lookup hits an already cached inode, then don't set the flag. If the inode lookup hits an inode marked with no cache flag, remove the flag and allow it to be cached once the current reference goes away. Inodes marked as not cached will get cleaned up by the background inode reclaim or via memory pressure, so they will still generate some short term cache pressure. They will, however, be reclaimed much sooner and in preference to cache hot inodes. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ben Myers <bpm@sgi.com>
737 lines
20 KiB
C
737 lines
20 KiB
C
/*
|
||
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
||
* All Rights Reserved.
|
||
*
|
||
* This program is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU General Public License as
|
||
* published by the Free Software Foundation.
|
||
*
|
||
* This program is distributed in the hope that it would be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, write the Free Software Foundation,
|
||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
*/
|
||
#include "xfs.h"
|
||
#include "xfs_fs.h"
|
||
#include "xfs_types.h"
|
||
#include "xfs_acl.h"
|
||
#include "xfs_bit.h"
|
||
#include "xfs_log.h"
|
||
#include "xfs_inum.h"
|
||
#include "xfs_trans.h"
|
||
#include "xfs_sb.h"
|
||
#include "xfs_ag.h"
|
||
#include "xfs_mount.h"
|
||
#include "xfs_bmap_btree.h"
|
||
#include "xfs_alloc_btree.h"
|
||
#include "xfs_ialloc_btree.h"
|
||
#include "xfs_dinode.h"
|
||
#include "xfs_inode.h"
|
||
#include "xfs_btree.h"
|
||
#include "xfs_ialloc.h"
|
||
#include "xfs_quota.h"
|
||
#include "xfs_utils.h"
|
||
#include "xfs_trans_priv.h"
|
||
#include "xfs_inode_item.h"
|
||
#include "xfs_bmap.h"
|
||
#include "xfs_trace.h"
|
||
|
||
|
||
/*
|
||
* Define xfs inode iolock lockdep classes. We need to ensure that all active
|
||
* inodes are considered the same for lockdep purposes, including inodes that
|
||
* are recycled through the XFS_IRECLAIMABLE state. This is the the only way to
|
||
* guarantee the locks are considered the same when there are multiple lock
|
||
* initialisation siteѕ. Also, define a reclaimable inode class so it is
|
||
* obvious in lockdep reports which class the report is against.
|
||
*/
|
||
static struct lock_class_key xfs_iolock_active;
|
||
struct lock_class_key xfs_iolock_reclaimable;
|
||
|
||
/*
|
||
* Allocate and initialise an xfs_inode.
|
||
*/
|
||
STATIC struct xfs_inode *
|
||
xfs_inode_alloc(
|
||
struct xfs_mount *mp,
|
||
xfs_ino_t ino)
|
||
{
|
||
struct xfs_inode *ip;
|
||
|
||
/*
|
||
* if this didn't occur in transactions, we could use
|
||
* KM_MAYFAIL and return NULL here on ENOMEM. Set the
|
||
* code up to do this anyway.
|
||
*/
|
||
ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
|
||
if (!ip)
|
||
return NULL;
|
||
if (inode_init_always(mp->m_super, VFS_I(ip))) {
|
||
kmem_zone_free(xfs_inode_zone, ip);
|
||
return NULL;
|
||
}
|
||
|
||
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
||
ASSERT(!spin_is_locked(&ip->i_flags_lock));
|
||
ASSERT(!xfs_isiflocked(ip));
|
||
ASSERT(ip->i_ino == 0);
|
||
|
||
mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
|
||
lockdep_set_class_and_name(&ip->i_iolock.mr_lock,
|
||
&xfs_iolock_active, "xfs_iolock_active");
|
||
|
||
/* initialise the xfs inode */
|
||
ip->i_ino = ino;
|
||
ip->i_mount = mp;
|
||
memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
|
||
ip->i_afp = NULL;
|
||
memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
|
||
ip->i_flags = 0;
|
||
ip->i_delayed_blks = 0;
|
||
memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
|
||
|
||
return ip;
|
||
}
|
||
|
||
STATIC void
|
||
xfs_inode_free_callback(
|
||
struct rcu_head *head)
|
||
{
|
||
struct inode *inode = container_of(head, struct inode, i_rcu);
|
||
struct xfs_inode *ip = XFS_I(inode);
|
||
|
||
kmem_zone_free(xfs_inode_zone, ip);
|
||
}
|
||
|
||
void
|
||
xfs_inode_free(
|
||
struct xfs_inode *ip)
|
||
{
|
||
switch (ip->i_d.di_mode & S_IFMT) {
|
||
case S_IFREG:
|
||
case S_IFDIR:
|
||
case S_IFLNK:
|
||
xfs_idestroy_fork(ip, XFS_DATA_FORK);
|
||
break;
|
||
}
|
||
|
||
if (ip->i_afp)
|
||
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
|
||
|
||
if (ip->i_itemp) {
|
||
/*
|
||
* Only if we are shutting down the fs will we see an
|
||
* inode still in the AIL. If it is there, we should remove
|
||
* it to prevent a use-after-free from occurring.
|
||
*/
|
||
xfs_log_item_t *lip = &ip->i_itemp->ili_item;
|
||
struct xfs_ail *ailp = lip->li_ailp;
|
||
|
||
ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
|
||
XFS_FORCED_SHUTDOWN(ip->i_mount));
|
||
if (lip->li_flags & XFS_LI_IN_AIL) {
|
||
spin_lock(&ailp->xa_lock);
|
||
if (lip->li_flags & XFS_LI_IN_AIL)
|
||
xfs_trans_ail_delete(ailp, lip);
|
||
else
|
||
spin_unlock(&ailp->xa_lock);
|
||
}
|
||
xfs_inode_item_destroy(ip);
|
||
ip->i_itemp = NULL;
|
||
}
|
||
|
||
/* asserts to verify all state is correct here */
|
||
ASSERT(atomic_read(&ip->i_pincount) == 0);
|
||
ASSERT(!spin_is_locked(&ip->i_flags_lock));
|
||
ASSERT(!xfs_isiflocked(ip));
|
||
|
||
/*
|
||
* Because we use RCU freeing we need to ensure the inode always
|
||
* appears to be reclaimed with an invalid inode number when in the
|
||
* free state. The ip->i_flags_lock provides the barrier against lookup
|
||
* races.
|
||
*/
|
||
spin_lock(&ip->i_flags_lock);
|
||
ip->i_flags = XFS_IRECLAIM;
|
||
ip->i_ino = 0;
|
||
spin_unlock(&ip->i_flags_lock);
|
||
|
||
call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
|
||
}
|
||
|
||
/*
|
||
* Check the validity of the inode we just found it the cache
|
||
*/
|
||
static int
|
||
xfs_iget_cache_hit(
|
||
struct xfs_perag *pag,
|
||
struct xfs_inode *ip,
|
||
xfs_ino_t ino,
|
||
int flags,
|
||
int lock_flags) __releases(RCU)
|
||
{
|
||
struct inode *inode = VFS_I(ip);
|
||
struct xfs_mount *mp = ip->i_mount;
|
||
int error;
|
||
|
||
/*
|
||
* check for re-use of an inode within an RCU grace period due to the
|
||
* radix tree nodes not being updated yet. We monitor for this by
|
||
* setting the inode number to zero before freeing the inode structure.
|
||
* If the inode has been reallocated and set up, then the inode number
|
||
* will not match, so check for that, too.
|
||
*/
|
||
spin_lock(&ip->i_flags_lock);
|
||
if (ip->i_ino != ino) {
|
||
trace_xfs_iget_skip(ip);
|
||
XFS_STATS_INC(xs_ig_frecycle);
|
||
error = EAGAIN;
|
||
goto out_error;
|
||
}
|
||
|
||
|
||
/*
|
||
* If we are racing with another cache hit that is currently
|
||
* instantiating this inode or currently recycling it out of
|
||
* reclaimabe state, wait for the initialisation to complete
|
||
* before continuing.
|
||
*
|
||
* XXX(hch): eventually we should do something equivalent to
|
||
* wait_on_inode to wait for these flags to be cleared
|
||
* instead of polling for it.
|
||
*/
|
||
if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
|
||
trace_xfs_iget_skip(ip);
|
||
XFS_STATS_INC(xs_ig_frecycle);
|
||
error = EAGAIN;
|
||
goto out_error;
|
||
}
|
||
|
||
/*
|
||
* If lookup is racing with unlink return an error immediately.
|
||
*/
|
||
if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
|
||
error = ENOENT;
|
||
goto out_error;
|
||
}
|
||
|
||
/*
|
||
* If IRECLAIMABLE is set, we've torn down the VFS inode already.
|
||
* Need to carefully get it back into useable state.
|
||
*/
|
||
if (ip->i_flags & XFS_IRECLAIMABLE) {
|
||
trace_xfs_iget_reclaim(ip);
|
||
|
||
/*
|
||
* We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
|
||
* from stomping over us while we recycle the inode. We can't
|
||
* clear the radix tree reclaimable tag yet as it requires
|
||
* pag_ici_lock to be held exclusive.
|
||
*/
|
||
ip->i_flags |= XFS_IRECLAIM;
|
||
|
||
spin_unlock(&ip->i_flags_lock);
|
||
rcu_read_unlock();
|
||
|
||
error = -inode_init_always(mp->m_super, inode);
|
||
if (error) {
|
||
/*
|
||
* Re-initializing the inode failed, and we are in deep
|
||
* trouble. Try to re-add it to the reclaim list.
|
||
*/
|
||
rcu_read_lock();
|
||
spin_lock(&ip->i_flags_lock);
|
||
|
||
ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
|
||
ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
|
||
trace_xfs_iget_reclaim_fail(ip);
|
||
goto out_error;
|
||
}
|
||
|
||
spin_lock(&pag->pag_ici_lock);
|
||
spin_lock(&ip->i_flags_lock);
|
||
|
||
/*
|
||
* Clear the per-lifetime state in the inode as we are now
|
||
* effectively a new inode and need to return to the initial
|
||
* state before reuse occurs.
|
||
*/
|
||
ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
|
||
ip->i_flags |= XFS_INEW;
|
||
__xfs_inode_clear_reclaim_tag(mp, pag, ip);
|
||
inode->i_state = I_NEW;
|
||
|
||
ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
|
||
mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
|
||
lockdep_set_class_and_name(&ip->i_iolock.mr_lock,
|
||
&xfs_iolock_active, "xfs_iolock_active");
|
||
|
||
spin_unlock(&ip->i_flags_lock);
|
||
spin_unlock(&pag->pag_ici_lock);
|
||
} else {
|
||
/* If the VFS inode is being torn down, pause and try again. */
|
||
if (!igrab(inode)) {
|
||
trace_xfs_iget_skip(ip);
|
||
error = EAGAIN;
|
||
goto out_error;
|
||
}
|
||
|
||
/* We've got a live one. */
|
||
spin_unlock(&ip->i_flags_lock);
|
||
rcu_read_unlock();
|
||
trace_xfs_iget_hit(ip);
|
||
}
|
||
|
||
if (lock_flags != 0)
|
||
xfs_ilock(ip, lock_flags);
|
||
|
||
xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
|
||
XFS_STATS_INC(xs_ig_found);
|
||
|
||
return 0;
|
||
|
||
out_error:
|
||
spin_unlock(&ip->i_flags_lock);
|
||
rcu_read_unlock();
|
||
return error;
|
||
}
|
||
|
||
|
||
static int
|
||
xfs_iget_cache_miss(
|
||
struct xfs_mount *mp,
|
||
struct xfs_perag *pag,
|
||
xfs_trans_t *tp,
|
||
xfs_ino_t ino,
|
||
struct xfs_inode **ipp,
|
||
int flags,
|
||
int lock_flags)
|
||
{
|
||
struct xfs_inode *ip;
|
||
int error;
|
||
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
|
||
int iflags;
|
||
|
||
ip = xfs_inode_alloc(mp, ino);
|
||
if (!ip)
|
||
return ENOMEM;
|
||
|
||
error = xfs_iread(mp, tp, ip, flags);
|
||
if (error)
|
||
goto out_destroy;
|
||
|
||
trace_xfs_iget_miss(ip);
|
||
|
||
if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
|
||
error = ENOENT;
|
||
goto out_destroy;
|
||
}
|
||
|
||
/*
|
||
* Preload the radix tree so we can insert safely under the
|
||
* write spinlock. Note that we cannot sleep inside the preload
|
||
* region.
|
||
*/
|
||
if (radix_tree_preload(GFP_KERNEL)) {
|
||
error = EAGAIN;
|
||
goto out_destroy;
|
||
}
|
||
|
||
/*
|
||
* Because the inode hasn't been added to the radix-tree yet it can't
|
||
* be found by another thread, so we can do the non-sleeping lock here.
|
||
*/
|
||
if (lock_flags) {
|
||
if (!xfs_ilock_nowait(ip, lock_flags))
|
||
BUG();
|
||
}
|
||
|
||
/*
|
||
* These values must be set before inserting the inode into the radix
|
||
* tree as the moment it is inserted a concurrent lookup (allowed by the
|
||
* RCU locking mechanism) can find it and that lookup must see that this
|
||
* is an inode currently under construction (i.e. that XFS_INEW is set).
|
||
* The ip->i_flags_lock that protects the XFS_INEW flag forms the
|
||
* memory barrier that ensures this detection works correctly at lookup
|
||
* time.
|
||
*/
|
||
iflags = XFS_INEW;
|
||
if (flags & XFS_IGET_DONTCACHE)
|
||
iflags |= XFS_IDONTCACHE;
|
||
ip->i_udquot = ip->i_gdquot = NULL;
|
||
xfs_iflags_set(ip, iflags);
|
||
|
||
/* insert the new inode */
|
||
spin_lock(&pag->pag_ici_lock);
|
||
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
|
||
if (unlikely(error)) {
|
||
WARN_ON(error != -EEXIST);
|
||
XFS_STATS_INC(xs_ig_dup);
|
||
error = EAGAIN;
|
||
goto out_preload_end;
|
||
}
|
||
spin_unlock(&pag->pag_ici_lock);
|
||
radix_tree_preload_end();
|
||
|
||
*ipp = ip;
|
||
return 0;
|
||
|
||
out_preload_end:
|
||
spin_unlock(&pag->pag_ici_lock);
|
||
radix_tree_preload_end();
|
||
if (lock_flags)
|
||
xfs_iunlock(ip, lock_flags);
|
||
out_destroy:
|
||
__destroy_inode(VFS_I(ip));
|
||
xfs_inode_free(ip);
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
* Look up an inode by number in the given file system.
|
||
* The inode is looked up in the cache held in each AG.
|
||
* If the inode is found in the cache, initialise the vfs inode
|
||
* if necessary.
|
||
*
|
||
* If it is not in core, read it in from the file system's device,
|
||
* add it to the cache and initialise the vfs inode.
|
||
*
|
||
* The inode is locked according to the value of the lock_flags parameter.
|
||
* This flag parameter indicates how and if the inode's IO lock and inode lock
|
||
* should be taken.
|
||
*
|
||
* mp -- the mount point structure for the current file system. It points
|
||
* to the inode hash table.
|
||
* tp -- a pointer to the current transaction if there is one. This is
|
||
* simply passed through to the xfs_iread() call.
|
||
* ino -- the number of the inode desired. This is the unique identifier
|
||
* within the file system for the inode being requested.
|
||
* lock_flags -- flags indicating how to lock the inode. See the comment
|
||
* for xfs_ilock() for a list of valid values.
|
||
*/
|
||
int
|
||
xfs_iget(
|
||
xfs_mount_t *mp,
|
||
xfs_trans_t *tp,
|
||
xfs_ino_t ino,
|
||
uint flags,
|
||
uint lock_flags,
|
||
xfs_inode_t **ipp)
|
||
{
|
||
xfs_inode_t *ip;
|
||
int error;
|
||
xfs_perag_t *pag;
|
||
xfs_agino_t agino;
|
||
|
||
/*
|
||
* xfs_reclaim_inode() uses the ILOCK to ensure an inode
|
||
* doesn't get freed while it's being referenced during a
|
||
* radix tree traversal here. It assumes this function
|
||
* aqcuires only the ILOCK (and therefore it has no need to
|
||
* involve the IOLOCK in this synchronization).
|
||
*/
|
||
ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
|
||
|
||
/* reject inode numbers outside existing AGs */
|
||
if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
|
||
return EINVAL;
|
||
|
||
/* get the perag structure and ensure that it's inode capable */
|
||
pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
|
||
agino = XFS_INO_TO_AGINO(mp, ino);
|
||
|
||
again:
|
||
error = 0;
|
||
rcu_read_lock();
|
||
ip = radix_tree_lookup(&pag->pag_ici_root, agino);
|
||
|
||
if (ip) {
|
||
error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
|
||
if (error)
|
||
goto out_error_or_again;
|
||
} else {
|
||
rcu_read_unlock();
|
||
XFS_STATS_INC(xs_ig_missed);
|
||
|
||
error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
|
||
flags, lock_flags);
|
||
if (error)
|
||
goto out_error_or_again;
|
||
}
|
||
xfs_perag_put(pag);
|
||
|
||
*ipp = ip;
|
||
|
||
/*
|
||
* If we have a real type for an on-disk inode, we can set ops(&unlock)
|
||
* now. If it's a new inode being created, xfs_ialloc will handle it.
|
||
*/
|
||
if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
|
||
xfs_setup_inode(ip);
|
||
return 0;
|
||
|
||
out_error_or_again:
|
||
if (error == EAGAIN) {
|
||
delay(1);
|
||
goto again;
|
||
}
|
||
xfs_perag_put(pag);
|
||
return error;
|
||
}
|
||
|
||
/*
|
||
* This is a wrapper routine around the xfs_ilock() routine
|
||
* used to centralize some grungy code. It is used in places
|
||
* that wish to lock the inode solely for reading the extents.
|
||
* The reason these places can't just call xfs_ilock(SHARED)
|
||
* is that the inode lock also guards to bringing in of the
|
||
* extents from disk for a file in b-tree format. If the inode
|
||
* is in b-tree format, then we need to lock the inode exclusively
|
||
* until the extents are read in. Locking it exclusively all
|
||
* the time would limit our parallelism unnecessarily, though.
|
||
* What we do instead is check to see if the extents have been
|
||
* read in yet, and only lock the inode exclusively if they
|
||
* have not.
|
||
*
|
||
* The function returns a value which should be given to the
|
||
* corresponding xfs_iunlock_map_shared(). This value is
|
||
* the mode in which the lock was actually taken.
|
||
*/
|
||
uint
|
||
xfs_ilock_map_shared(
|
||
xfs_inode_t *ip)
|
||
{
|
||
uint lock_mode;
|
||
|
||
if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
|
||
((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
|
||
lock_mode = XFS_ILOCK_EXCL;
|
||
} else {
|
||
lock_mode = XFS_ILOCK_SHARED;
|
||
}
|
||
|
||
xfs_ilock(ip, lock_mode);
|
||
|
||
return lock_mode;
|
||
}
|
||
|
||
/*
|
||
* This is simply the unlock routine to go with xfs_ilock_map_shared().
|
||
* All it does is call xfs_iunlock() with the given lock_mode.
|
||
*/
|
||
void
|
||
xfs_iunlock_map_shared(
|
||
xfs_inode_t *ip,
|
||
unsigned int lock_mode)
|
||
{
|
||
xfs_iunlock(ip, lock_mode);
|
||
}
|
||
|
||
/*
|
||
* The xfs inode contains 2 locks: a multi-reader lock called the
|
||
* i_iolock and a multi-reader lock called the i_lock. This routine
|
||
* allows either or both of the locks to be obtained.
|
||
*
|
||
* The 2 locks should always be ordered so that the IO lock is
|
||
* obtained first in order to prevent deadlock.
|
||
*
|
||
* ip -- the inode being locked
|
||
* lock_flags -- this parameter indicates the inode's locks
|
||
* to be locked. It can be:
|
||
* XFS_IOLOCK_SHARED,
|
||
* XFS_IOLOCK_EXCL,
|
||
* XFS_ILOCK_SHARED,
|
||
* XFS_ILOCK_EXCL,
|
||
* XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
|
||
* XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
|
||
* XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
|
||
* XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
|
||
*/
|
||
void
|
||
xfs_ilock(
|
||
xfs_inode_t *ip,
|
||
uint lock_flags)
|
||
{
|
||
/*
|
||
* You can't set both SHARED and EXCL for the same lock,
|
||
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
||
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
||
*/
|
||
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
||
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
||
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
||
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
||
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
|
||
|
||
if (lock_flags & XFS_IOLOCK_EXCL)
|
||
mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
|
||
else if (lock_flags & XFS_IOLOCK_SHARED)
|
||
mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
|
||
|
||
if (lock_flags & XFS_ILOCK_EXCL)
|
||
mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
|
||
else if (lock_flags & XFS_ILOCK_SHARED)
|
||
mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
|
||
|
||
trace_xfs_ilock(ip, lock_flags, _RET_IP_);
|
||
}
|
||
|
||
/*
|
||
* This is just like xfs_ilock(), except that the caller
|
||
* is guaranteed not to sleep. It returns 1 if it gets
|
||
* the requested locks and 0 otherwise. If the IO lock is
|
||
* obtained but the inode lock cannot be, then the IO lock
|
||
* is dropped before returning.
|
||
*
|
||
* ip -- the inode being locked
|
||
* lock_flags -- this parameter indicates the inode's locks to be
|
||
* to be locked. See the comment for xfs_ilock() for a list
|
||
* of valid values.
|
||
*/
|
||
int
|
||
xfs_ilock_nowait(
|
||
xfs_inode_t *ip,
|
||
uint lock_flags)
|
||
{
|
||
/*
|
||
* You can't set both SHARED and EXCL for the same lock,
|
||
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
||
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
||
*/
|
||
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
||
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
||
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
||
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
||
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
|
||
|
||
if (lock_flags & XFS_IOLOCK_EXCL) {
|
||
if (!mrtryupdate(&ip->i_iolock))
|
||
goto out;
|
||
} else if (lock_flags & XFS_IOLOCK_SHARED) {
|
||
if (!mrtryaccess(&ip->i_iolock))
|
||
goto out;
|
||
}
|
||
if (lock_flags & XFS_ILOCK_EXCL) {
|
||
if (!mrtryupdate(&ip->i_lock))
|
||
goto out_undo_iolock;
|
||
} else if (lock_flags & XFS_ILOCK_SHARED) {
|
||
if (!mrtryaccess(&ip->i_lock))
|
||
goto out_undo_iolock;
|
||
}
|
||
trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
|
||
return 1;
|
||
|
||
out_undo_iolock:
|
||
if (lock_flags & XFS_IOLOCK_EXCL)
|
||
mrunlock_excl(&ip->i_iolock);
|
||
else if (lock_flags & XFS_IOLOCK_SHARED)
|
||
mrunlock_shared(&ip->i_iolock);
|
||
out:
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* xfs_iunlock() is used to drop the inode locks acquired with
|
||
* xfs_ilock() and xfs_ilock_nowait(). The caller must pass
|
||
* in the flags given to xfs_ilock() or xfs_ilock_nowait() so
|
||
* that we know which locks to drop.
|
||
*
|
||
* ip -- the inode being unlocked
|
||
* lock_flags -- this parameter indicates the inode's locks to be
|
||
* to be unlocked. See the comment for xfs_ilock() for a list
|
||
* of valid values for this parameter.
|
||
*
|
||
*/
|
||
void
|
||
xfs_iunlock(
|
||
xfs_inode_t *ip,
|
||
uint lock_flags)
|
||
{
|
||
/*
|
||
* You can't set both SHARED and EXCL for the same lock,
|
||
* and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
|
||
* and XFS_ILOCK_EXCL are valid values to set in lock_flags.
|
||
*/
|
||
ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
|
||
(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
|
||
ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
|
||
(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
|
||
ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
|
||
ASSERT(lock_flags != 0);
|
||
|
||
if (lock_flags & XFS_IOLOCK_EXCL)
|
||
mrunlock_excl(&ip->i_iolock);
|
||
else if (lock_flags & XFS_IOLOCK_SHARED)
|
||
mrunlock_shared(&ip->i_iolock);
|
||
|
||
if (lock_flags & XFS_ILOCK_EXCL)
|
||
mrunlock_excl(&ip->i_lock);
|
||
else if (lock_flags & XFS_ILOCK_SHARED)
|
||
mrunlock_shared(&ip->i_lock);
|
||
|
||
trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
|
||
}
|
||
|
||
/*
|
||
* give up write locks. the i/o lock cannot be held nested
|
||
* if it is being demoted.
|
||
*/
|
||
void
|
||
xfs_ilock_demote(
|
||
xfs_inode_t *ip,
|
||
uint lock_flags)
|
||
{
|
||
ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
|
||
ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
|
||
|
||
if (lock_flags & XFS_ILOCK_EXCL)
|
||
mrdemote(&ip->i_lock);
|
||
if (lock_flags & XFS_IOLOCK_EXCL)
|
||
mrdemote(&ip->i_iolock);
|
||
|
||
trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
|
||
}
|
||
|
||
#ifdef DEBUG
|
||
int
|
||
xfs_isilocked(
|
||
xfs_inode_t *ip,
|
||
uint lock_flags)
|
||
{
|
||
if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
|
||
if (!(lock_flags & XFS_ILOCK_SHARED))
|
||
return !!ip->i_lock.mr_writer;
|
||
return rwsem_is_locked(&ip->i_lock.mr_lock);
|
||
}
|
||
|
||
if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
|
||
if (!(lock_flags & XFS_IOLOCK_SHARED))
|
||
return !!ip->i_iolock.mr_writer;
|
||
return rwsem_is_locked(&ip->i_iolock.mr_lock);
|
||
}
|
||
|
||
ASSERT(0);
|
||
return 0;
|
||
}
|
||
#endif
|
||
|
||
void
|
||
__xfs_iflock(
|
||
struct xfs_inode *ip)
|
||
{
|
||
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
|
||
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
|
||
|
||
do {
|
||
prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
|
||
if (xfs_isiflocked(ip))
|
||
io_schedule();
|
||
} while (!xfs_iflock_nowait(ip));
|
||
|
||
finish_wait(wq, &wait.wait);
|
||
}
|