Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

189 lines
5.2 KiB
C

/*
* Copyright 2004-2009 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/gfp.h>
#include <linux/swap.h>
#include <linux/bootmem.h>
#include <linux/uaccess.h>
#include <asm/bfin-global.h>
#include <asm/pda.h>
#include <asm/cplbinit.h>
#include <asm/early_printk.h>
#include "blackfin_sram.h"
/*
* BAD_PAGE is the page that is used for page faults when linux
* is out-of-memory. Older versions of linux just did a
* do_exit(), but using this instead means there is less risk
* for a process dying in kernel mode, possibly leaving a inode
* unused etc..
*
* BAD_PAGETABLE is the accompanying page-table: it is initialized
* to point to BAD_PAGE entries.
*
* ZERO_PAGE is a special page that is used for zero-initialized
* data and COW.
*/
static unsigned long empty_bad_page_table;
static unsigned long empty_bad_page;
static unsigned long empty_zero_page;
#ifndef CONFIG_EXCEPTION_L1_SCRATCH
#if defined CONFIG_SYSCALL_TAB_L1
__attribute__((l1_data))
#endif
static unsigned long exception_stack[NR_CPUS][1024];
#endif
struct blackfin_pda cpu_pda[NR_CPUS];
EXPORT_SYMBOL(cpu_pda);
/*
* paging_init() continues the virtual memory environment setup which
* was begun by the code in arch/head.S.
* The parameters are pointers to where to stick the starting and ending
* addresses of available kernel virtual memory.
*/
void __init paging_init(void)
{
/*
* make sure start_mem is page aligned, otherwise bootmem and
* page_alloc get different views og the world
*/
unsigned long end_mem = memory_end & PAGE_MASK;
pr_debug("start_mem is %#lx virtual_end is %#lx\n", PAGE_ALIGN(memory_start), end_mem);
/*
* initialize the bad page table and bad page to point
* to a couple of allocated pages
*/
empty_bad_page_table = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
empty_bad_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
empty_zero_page = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
memset((void *)empty_zero_page, 0, PAGE_SIZE);
/*
* Set up SFC/DFC registers (user data space)
*/
set_fs(KERNEL_DS);
pr_debug("free_area_init -> start_mem is %#lx virtual_end is %#lx\n",
PAGE_ALIGN(memory_start), end_mem);
{
unsigned long zones_size[MAX_NR_ZONES] = { 0, };
zones_size[ZONE_DMA] = (end_mem - PAGE_OFFSET) >> PAGE_SHIFT;
zones_size[ZONE_NORMAL] = 0;
#ifdef CONFIG_HIGHMEM
zones_size[ZONE_HIGHMEM] = 0;
#endif
free_area_init(zones_size);
}
}
asmlinkage void __init init_pda(void)
{
unsigned int cpu = raw_smp_processor_id();
early_shadow_stamp();
/* Initialize the PDA fields holding references to other parts
of the memory. The content of such memory is still
undefined at the time of the call, we are only setting up
valid pointers to it. */
memset(&cpu_pda[cpu], 0, sizeof(cpu_pda[cpu]));
cpu_pda[0].next = &cpu_pda[1];
cpu_pda[1].next = &cpu_pda[0];
#ifdef CONFIG_EXCEPTION_L1_SCRATCH
cpu_pda[cpu].ex_stack = (unsigned long *)(L1_SCRATCH_START + \
L1_SCRATCH_LENGTH);
#else
cpu_pda[cpu].ex_stack = exception_stack[cpu + 1];
#endif
#ifdef CONFIG_SMP
cpu_pda[cpu].imask = 0x1f;
#endif
}
void __init mem_init(void)
{
unsigned int codek = 0, datak = 0, initk = 0;
unsigned int reservedpages = 0, freepages = 0;
unsigned long tmp;
unsigned long start_mem = memory_start;
unsigned long end_mem = memory_end;
end_mem &= PAGE_MASK;
high_memory = (void *)end_mem;
start_mem = PAGE_ALIGN(start_mem);
max_mapnr = num_physpages = MAP_NR(high_memory);
printk(KERN_DEBUG "Kernel managed physical pages: %lu\n", num_physpages);
/* This will put all memory onto the freelists. */
totalram_pages = free_all_bootmem();
reservedpages = 0;
for (tmp = 0; tmp < max_mapnr; tmp++)
if (PageReserved(pfn_to_page(tmp)))
reservedpages++;
freepages = max_mapnr - reservedpages;
/* do not count in kernel image between _rambase and _ramstart */
reservedpages -= (_ramstart - _rambase) >> PAGE_SHIFT;
#if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
reservedpages += (_ramend - memory_end - DMA_UNCACHED_REGION) >> PAGE_SHIFT;
#endif
codek = (_etext - _stext) >> 10;
initk = (__init_end - __init_begin) >> 10;
datak = ((_ramstart - _rambase) >> 10) - codek - initk;
printk(KERN_INFO
"Memory available: %luk/%luk RAM, "
"(%uk init code, %uk kernel code, %uk data, %uk dma, %uk reserved)\n",
(unsigned long) freepages << (PAGE_SHIFT-10), _ramend >> 10,
initk, codek, datak, DMA_UNCACHED_REGION >> 10, (reservedpages << (PAGE_SHIFT-10)));
}
static void __init free_init_pages(const char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
/* next to check that the page we free is not a partial page */
for (addr = begin; addr + PAGE_SIZE <= end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
free_page(addr);
totalram_pages++;
}
printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
}
#ifdef CONFIG_BLK_DEV_INITRD
void __init free_initrd_mem(unsigned long start, unsigned long end)
{
#ifndef CONFIG_MPU
free_init_pages("initrd memory", start, end);
#endif
}
#endif
void __init_refok free_initmem(void)
{
#if defined CONFIG_RAMKERNEL && !defined CONFIG_MPU
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
#endif
}