linux/drivers/net/wireless/bcm43xx/bcm43xx_dma.c
Larry Finger 47c93d2faf [PATCH] bcm43xx: Remove dead configuration variable CONFIG_947XX
The CONFIG_BCM947XX configuration variable was designed for use by the
embedded device used by the OpenWRT project. The device has been shifted
to the ssb driver in bcm43xx-mac80211 and will not be used with SoftMAC.
Accordingly, this "dead" configuration variable is removed.

Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2007-05-08 11:52:00 -04:00

1264 lines
32 KiB
C

/*
Broadcom BCM43xx wireless driver
DMA ringbuffer and descriptor allocation/management
Copyright (c) 2005, 2006 Michael Buesch <mbuesch@freenet.de>
Some code in this file is derived from the b44.c driver
Copyright (C) 2002 David S. Miller
Copyright (C) Pekka Pietikainen
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "bcm43xx.h"
#include "bcm43xx_dma.h"
#include "bcm43xx_main.h"
#include "bcm43xx_debugfs.h"
#include "bcm43xx_power.h"
#include "bcm43xx_xmit.h"
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
static inline int free_slots(struct bcm43xx_dmaring *ring)
{
return (ring->nr_slots - ring->used_slots);
}
static inline int next_slot(struct bcm43xx_dmaring *ring, int slot)
{
assert(slot >= -1 && slot <= ring->nr_slots - 1);
if (slot == ring->nr_slots - 1)
return 0;
return slot + 1;
}
static inline int prev_slot(struct bcm43xx_dmaring *ring, int slot)
{
assert(slot >= 0 && slot <= ring->nr_slots - 1);
if (slot == 0)
return ring->nr_slots - 1;
return slot - 1;
}
/* Request a slot for usage. */
static inline
int request_slot(struct bcm43xx_dmaring *ring)
{
int slot;
assert(ring->tx);
assert(!ring->suspended);
assert(free_slots(ring) != 0);
slot = next_slot(ring, ring->current_slot);
ring->current_slot = slot;
ring->used_slots++;
/* Check the number of available slots and suspend TX,
* if we are running low on free slots.
*/
if (unlikely(free_slots(ring) < ring->suspend_mark)) {
netif_stop_queue(ring->bcm->net_dev);
ring->suspended = 1;
}
#ifdef CONFIG_BCM43XX_DEBUG
if (ring->used_slots > ring->max_used_slots)
ring->max_used_slots = ring->used_slots;
#endif /* CONFIG_BCM43XX_DEBUG*/
return slot;
}
/* Return a slot to the free slots. */
static inline
void return_slot(struct bcm43xx_dmaring *ring, int slot)
{
assert(ring->tx);
ring->used_slots--;
/* Check if TX is suspended and check if we have
* enough free slots to resume it again.
*/
if (unlikely(ring->suspended)) {
if (free_slots(ring) >= ring->resume_mark) {
ring->suspended = 0;
netif_wake_queue(ring->bcm->net_dev);
}
}
}
u16 bcm43xx_dmacontroller_base(int dma64bit, int controller_idx)
{
static const u16 map64[] = {
BCM43xx_MMIO_DMA64_BASE0,
BCM43xx_MMIO_DMA64_BASE1,
BCM43xx_MMIO_DMA64_BASE2,
BCM43xx_MMIO_DMA64_BASE3,
BCM43xx_MMIO_DMA64_BASE4,
BCM43xx_MMIO_DMA64_BASE5,
};
static const u16 map32[] = {
BCM43xx_MMIO_DMA32_BASE0,
BCM43xx_MMIO_DMA32_BASE1,
BCM43xx_MMIO_DMA32_BASE2,
BCM43xx_MMIO_DMA32_BASE3,
BCM43xx_MMIO_DMA32_BASE4,
BCM43xx_MMIO_DMA32_BASE5,
};
if (dma64bit) {
assert(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map64));
return map64[controller_idx];
}
assert(controller_idx >= 0 &&
controller_idx < ARRAY_SIZE(map32));
return map32[controller_idx];
}
static inline
dma_addr_t map_descbuffer(struct bcm43xx_dmaring *ring,
unsigned char *buf,
size_t len,
int tx)
{
dma_addr_t dmaaddr;
int direction = PCI_DMA_FROMDEVICE;
if (tx)
direction = PCI_DMA_TODEVICE;
dmaaddr = pci_map_single(ring->bcm->pci_dev,
buf, len,
direction);
return dmaaddr;
}
static inline
void unmap_descbuffer(struct bcm43xx_dmaring *ring,
dma_addr_t addr,
size_t len,
int tx)
{
if (tx) {
pci_unmap_single(ring->bcm->pci_dev,
addr, len,
PCI_DMA_TODEVICE);
} else {
pci_unmap_single(ring->bcm->pci_dev,
addr, len,
PCI_DMA_FROMDEVICE);
}
}
static inline
void sync_descbuffer_for_cpu(struct bcm43xx_dmaring *ring,
dma_addr_t addr,
size_t len)
{
assert(!ring->tx);
pci_dma_sync_single_for_cpu(ring->bcm->pci_dev,
addr, len, PCI_DMA_FROMDEVICE);
}
static inline
void sync_descbuffer_for_device(struct bcm43xx_dmaring *ring,
dma_addr_t addr,
size_t len)
{
assert(!ring->tx);
pci_dma_sync_single_for_cpu(ring->bcm->pci_dev,
addr, len, PCI_DMA_TODEVICE);
}
/* Unmap and free a descriptor buffer. */
static inline
void free_descriptor_buffer(struct bcm43xx_dmaring *ring,
struct bcm43xx_dmadesc_meta *meta,
int irq_context)
{
assert(meta->skb);
if (irq_context)
dev_kfree_skb_irq(meta->skb);
else
dev_kfree_skb(meta->skb);
meta->skb = NULL;
}
static int alloc_ringmemory(struct bcm43xx_dmaring *ring)
{
ring->descbase = pci_alloc_consistent(ring->bcm->pci_dev, BCM43xx_DMA_RINGMEMSIZE,
&(ring->dmabase));
if (!ring->descbase) {
/* Allocation may have failed due to pci_alloc_consistent
insisting on use of GFP_DMA, which is more restrictive
than necessary... */
struct dma_desc *rx_ring;
dma_addr_t rx_ring_dma;
rx_ring = kzalloc(BCM43xx_DMA_RINGMEMSIZE, GFP_KERNEL);
if (!rx_ring)
goto out_err;
rx_ring_dma = pci_map_single(ring->bcm->pci_dev, rx_ring,
BCM43xx_DMA_RINGMEMSIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(rx_ring_dma) ||
rx_ring_dma + BCM43xx_DMA_RINGMEMSIZE > ring->bcm->dma_mask) {
/* Sigh... */
if (!pci_dma_mapping_error(rx_ring_dma))
pci_unmap_single(ring->bcm->pci_dev,
rx_ring_dma, BCM43xx_DMA_RINGMEMSIZE,
PCI_DMA_BIDIRECTIONAL);
rx_ring_dma = pci_map_single(ring->bcm->pci_dev,
rx_ring, BCM43xx_DMA_RINGMEMSIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(rx_ring_dma) ||
rx_ring_dma + BCM43xx_DMA_RINGMEMSIZE > ring->bcm->dma_mask) {
assert(0);
if (!pci_dma_mapping_error(rx_ring_dma))
pci_unmap_single(ring->bcm->pci_dev,
rx_ring_dma, BCM43xx_DMA_RINGMEMSIZE,
PCI_DMA_BIDIRECTIONAL);
goto out_err;
}
}
ring->descbase = rx_ring;
ring->dmabase = rx_ring_dma;
}
memset(ring->descbase, 0, BCM43xx_DMA_RINGMEMSIZE);
return 0;
out_err:
printk(KERN_ERR PFX "DMA ringmemory allocation failed\n");
return -ENOMEM;
}
static void free_ringmemory(struct bcm43xx_dmaring *ring)
{
struct device *dev = &(ring->bcm->pci_dev->dev);
dma_free_coherent(dev, BCM43xx_DMA_RINGMEMSIZE,
ring->descbase, ring->dmabase);
}
/* Reset the RX DMA channel */
int bcm43xx_dmacontroller_rx_reset(struct bcm43xx_private *bcm,
u16 mmio_base, int dma64)
{
int i;
u32 value;
u16 offset;
offset = dma64 ? BCM43xx_DMA64_RXCTL : BCM43xx_DMA32_RXCTL;
bcm43xx_write32(bcm, mmio_base + offset, 0);
for (i = 0; i < 1000; i++) {
offset = dma64 ? BCM43xx_DMA64_RXSTATUS : BCM43xx_DMA32_RXSTATUS;
value = bcm43xx_read32(bcm, mmio_base + offset);
if (dma64) {
value &= BCM43xx_DMA64_RXSTAT;
if (value == BCM43xx_DMA64_RXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= BCM43xx_DMA32_RXSTATE;
if (value == BCM43xx_DMA32_RXSTAT_DISABLED) {
i = -1;
break;
}
}
udelay(10);
}
if (i != -1) {
printk(KERN_ERR PFX "Error: Wait on DMA RX status timed out.\n");
return -ENODEV;
}
return 0;
}
/* Reset the RX DMA channel */
int bcm43xx_dmacontroller_tx_reset(struct bcm43xx_private *bcm,
u16 mmio_base, int dma64)
{
int i;
u32 value;
u16 offset;
for (i = 0; i < 1000; i++) {
offset = dma64 ? BCM43xx_DMA64_TXSTATUS : BCM43xx_DMA32_TXSTATUS;
value = bcm43xx_read32(bcm, mmio_base + offset);
if (dma64) {
value &= BCM43xx_DMA64_TXSTAT;
if (value == BCM43xx_DMA64_TXSTAT_DISABLED ||
value == BCM43xx_DMA64_TXSTAT_IDLEWAIT ||
value == BCM43xx_DMA64_TXSTAT_STOPPED)
break;
} else {
value &= BCM43xx_DMA32_TXSTATE;
if (value == BCM43xx_DMA32_TXSTAT_DISABLED ||
value == BCM43xx_DMA32_TXSTAT_IDLEWAIT ||
value == BCM43xx_DMA32_TXSTAT_STOPPED)
break;
}
udelay(10);
}
offset = dma64 ? BCM43xx_DMA64_TXCTL : BCM43xx_DMA32_TXCTL;
bcm43xx_write32(bcm, mmio_base + offset, 0);
for (i = 0; i < 1000; i++) {
offset = dma64 ? BCM43xx_DMA64_TXSTATUS : BCM43xx_DMA32_TXSTATUS;
value = bcm43xx_read32(bcm, mmio_base + offset);
if (dma64) {
value &= BCM43xx_DMA64_TXSTAT;
if (value == BCM43xx_DMA64_TXSTAT_DISABLED) {
i = -1;
break;
}
} else {
value &= BCM43xx_DMA32_TXSTATE;
if (value == BCM43xx_DMA32_TXSTAT_DISABLED) {
i = -1;
break;
}
}
udelay(10);
}
if (i != -1) {
printk(KERN_ERR PFX "Error: Wait on DMA TX status timed out.\n");
return -ENODEV;
}
/* ensure the reset is completed. */
udelay(300);
return 0;
}
static void fill_descriptor(struct bcm43xx_dmaring *ring,
struct bcm43xx_dmadesc_generic *desc,
dma_addr_t dmaaddr,
u16 bufsize,
int start, int end, int irq)
{
int slot;
slot = bcm43xx_dma_desc2idx(ring, desc);
assert(slot >= 0 && slot < ring->nr_slots);
if (ring->dma64) {
u32 ctl0 = 0, ctl1 = 0;
u32 addrlo, addrhi;
u32 addrext;
addrlo = (u32)(dmaaddr & 0xFFFFFFFF);
addrhi = (((u64)dmaaddr >> 32) & ~BCM43xx_DMA64_ROUTING);
addrext = (((u64)dmaaddr >> 32) >> BCM43xx_DMA64_ROUTING_SHIFT);
addrhi |= ring->routing;
if (slot == ring->nr_slots - 1)
ctl0 |= BCM43xx_DMA64_DCTL0_DTABLEEND;
if (start)
ctl0 |= BCM43xx_DMA64_DCTL0_FRAMESTART;
if (end)
ctl0 |= BCM43xx_DMA64_DCTL0_FRAMEEND;
if (irq)
ctl0 |= BCM43xx_DMA64_DCTL0_IRQ;
ctl1 |= (bufsize - ring->frameoffset)
& BCM43xx_DMA64_DCTL1_BYTECNT;
ctl1 |= (addrext << BCM43xx_DMA64_DCTL1_ADDREXT_SHIFT)
& BCM43xx_DMA64_DCTL1_ADDREXT_MASK;
desc->dma64.control0 = cpu_to_le32(ctl0);
desc->dma64.control1 = cpu_to_le32(ctl1);
desc->dma64.address_low = cpu_to_le32(addrlo);
desc->dma64.address_high = cpu_to_le32(addrhi);
} else {
u32 ctl;
u32 addr;
u32 addrext;
addr = (u32)(dmaaddr & ~BCM43xx_DMA32_ROUTING);
addrext = (u32)(dmaaddr & BCM43xx_DMA32_ROUTING)
>> BCM43xx_DMA32_ROUTING_SHIFT;
addr |= ring->routing;
ctl = (bufsize - ring->frameoffset)
& BCM43xx_DMA32_DCTL_BYTECNT;
if (slot == ring->nr_slots - 1)
ctl |= BCM43xx_DMA32_DCTL_DTABLEEND;
if (start)
ctl |= BCM43xx_DMA32_DCTL_FRAMESTART;
if (end)
ctl |= BCM43xx_DMA32_DCTL_FRAMEEND;
if (irq)
ctl |= BCM43xx_DMA32_DCTL_IRQ;
ctl |= (addrext << BCM43xx_DMA32_DCTL_ADDREXT_SHIFT)
& BCM43xx_DMA32_DCTL_ADDREXT_MASK;
desc->dma32.control = cpu_to_le32(ctl);
desc->dma32.address = cpu_to_le32(addr);
}
}
static int setup_rx_descbuffer(struct bcm43xx_dmaring *ring,
struct bcm43xx_dmadesc_generic *desc,
struct bcm43xx_dmadesc_meta *meta,
gfp_t gfp_flags)
{
struct bcm43xx_rxhdr *rxhdr;
struct bcm43xx_hwxmitstatus *xmitstat;
dma_addr_t dmaaddr;
struct sk_buff *skb;
assert(!ring->tx);
skb = __dev_alloc_skb(ring->rx_buffersize, gfp_flags);
if (unlikely(!skb))
return -ENOMEM;
dmaaddr = map_descbuffer(ring, skb->data, ring->rx_buffersize, 0);
/* This hardware bug work-around adapted from the b44 driver.
The chip may be unable to do PCI DMA to/from anything above 1GB */
if (pci_dma_mapping_error(dmaaddr) ||
dmaaddr + ring->rx_buffersize > ring->bcm->dma_mask) {
/* This one has 30-bit addressing... */
if (!pci_dma_mapping_error(dmaaddr))
pci_unmap_single(ring->bcm->pci_dev,
dmaaddr, ring->rx_buffersize,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(skb);
skb = __dev_alloc_skb(ring->rx_buffersize,GFP_DMA);
if (skb == NULL)
return -ENOMEM;
dmaaddr = pci_map_single(ring->bcm->pci_dev,
skb->data, ring->rx_buffersize,
PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(dmaaddr) ||
dmaaddr + ring->rx_buffersize > ring->bcm->dma_mask) {
assert(0);
dev_kfree_skb_any(skb);
return -ENOMEM;
}
}
meta->skb = skb;
meta->dmaaddr = dmaaddr;
skb->dev = ring->bcm->net_dev;
fill_descriptor(ring, desc, dmaaddr,
ring->rx_buffersize, 0, 0, 0);
rxhdr = (struct bcm43xx_rxhdr *)(skb->data);
rxhdr->frame_length = 0;
rxhdr->flags1 = 0;
xmitstat = (struct bcm43xx_hwxmitstatus *)(skb->data);
xmitstat->cookie = 0;
return 0;
}
/* Allocate the initial descbuffers.
* This is used for an RX ring only.
*/
static int alloc_initial_descbuffers(struct bcm43xx_dmaring *ring)
{
int i, err = -ENOMEM;
struct bcm43xx_dmadesc_generic *desc;
struct bcm43xx_dmadesc_meta *meta;
for (i = 0; i < ring->nr_slots; i++) {
desc = bcm43xx_dma_idx2desc(ring, i, &meta);
err = setup_rx_descbuffer(ring, desc, meta, GFP_KERNEL);
if (err)
goto err_unwind;
}
mb();
ring->used_slots = ring->nr_slots;
err = 0;
out:
return err;
err_unwind:
for (i--; i >= 0; i--) {
desc = bcm43xx_dma_idx2desc(ring, i, &meta);
unmap_descbuffer(ring, meta->dmaaddr, ring->rx_buffersize, 0);
dev_kfree_skb(meta->skb);
}
goto out;
}
/* Do initial setup of the DMA controller.
* Reset the controller, write the ring busaddress
* and switch the "enable" bit on.
*/
static int dmacontroller_setup(struct bcm43xx_dmaring *ring)
{
int err = 0;
u32 value;
u32 addrext;
if (ring->tx) {
if (ring->dma64) {
u64 ringbase = (u64)(ring->dmabase);
addrext = ((ringbase >> 32) >> BCM43xx_DMA64_ROUTING_SHIFT);
value = BCM43xx_DMA64_TXENABLE;
value |= (addrext << BCM43xx_DMA64_TXADDREXT_SHIFT)
& BCM43xx_DMA64_TXADDREXT_MASK;
bcm43xx_dma_write(ring, BCM43xx_DMA64_TXCTL, value);
bcm43xx_dma_write(ring, BCM43xx_DMA64_TXRINGLO,
(ringbase & 0xFFFFFFFF));
bcm43xx_dma_write(ring, BCM43xx_DMA64_TXRINGHI,
((ringbase >> 32) & ~BCM43xx_DMA64_ROUTING)
| ring->routing);
} else {
u32 ringbase = (u32)(ring->dmabase);
addrext = (ringbase >> BCM43xx_DMA32_ROUTING_SHIFT);
value = BCM43xx_DMA32_TXENABLE;
value |= (addrext << BCM43xx_DMA32_TXADDREXT_SHIFT)
& BCM43xx_DMA32_TXADDREXT_MASK;
bcm43xx_dma_write(ring, BCM43xx_DMA32_TXCTL, value);
bcm43xx_dma_write(ring, BCM43xx_DMA32_TXRING,
(ringbase & ~BCM43xx_DMA32_ROUTING)
| ring->routing);
}
} else {
err = alloc_initial_descbuffers(ring);
if (err)
goto out;
if (ring->dma64) {
u64 ringbase = (u64)(ring->dmabase);
addrext = ((ringbase >> 32) >> BCM43xx_DMA64_ROUTING_SHIFT);
value = (ring->frameoffset << BCM43xx_DMA64_RXFROFF_SHIFT);
value |= BCM43xx_DMA64_RXENABLE;
value |= (addrext << BCM43xx_DMA64_RXADDREXT_SHIFT)
& BCM43xx_DMA64_RXADDREXT_MASK;
bcm43xx_dma_write(ring, BCM43xx_DMA64_RXCTL, value);
bcm43xx_dma_write(ring, BCM43xx_DMA64_RXRINGLO,
(ringbase & 0xFFFFFFFF));
bcm43xx_dma_write(ring, BCM43xx_DMA64_RXRINGHI,
((ringbase >> 32) & ~BCM43xx_DMA64_ROUTING)
| ring->routing);
bcm43xx_dma_write(ring, BCM43xx_DMA64_RXINDEX, 200);
} else {
u32 ringbase = (u32)(ring->dmabase);
addrext = (ringbase >> BCM43xx_DMA32_ROUTING_SHIFT);
value = (ring->frameoffset << BCM43xx_DMA32_RXFROFF_SHIFT);
value |= BCM43xx_DMA32_RXENABLE;
value |= (addrext << BCM43xx_DMA32_RXADDREXT_SHIFT)
& BCM43xx_DMA32_RXADDREXT_MASK;
bcm43xx_dma_write(ring, BCM43xx_DMA32_RXCTL, value);
bcm43xx_dma_write(ring, BCM43xx_DMA32_RXRING,
(ringbase & ~BCM43xx_DMA32_ROUTING)
| ring->routing);
bcm43xx_dma_write(ring, BCM43xx_DMA32_RXINDEX, 200);
}
}
out:
return err;
}
/* Shutdown the DMA controller. */
static void dmacontroller_cleanup(struct bcm43xx_dmaring *ring)
{
if (ring->tx) {
bcm43xx_dmacontroller_tx_reset(ring->bcm, ring->mmio_base, ring->dma64);
if (ring->dma64) {
bcm43xx_dma_write(ring, BCM43xx_DMA64_TXRINGLO, 0);
bcm43xx_dma_write(ring, BCM43xx_DMA64_TXRINGHI, 0);
} else
bcm43xx_dma_write(ring, BCM43xx_DMA32_TXRING, 0);
} else {
bcm43xx_dmacontroller_rx_reset(ring->bcm, ring->mmio_base, ring->dma64);
if (ring->dma64) {
bcm43xx_dma_write(ring, BCM43xx_DMA64_RXRINGLO, 0);
bcm43xx_dma_write(ring, BCM43xx_DMA64_RXRINGHI, 0);
} else
bcm43xx_dma_write(ring, BCM43xx_DMA32_RXRING, 0);
}
}
static void free_all_descbuffers(struct bcm43xx_dmaring *ring)
{
struct bcm43xx_dmadesc_generic *desc;
struct bcm43xx_dmadesc_meta *meta;
int i;
if (!ring->used_slots)
return;
for (i = 0; i < ring->nr_slots; i++) {
desc = bcm43xx_dma_idx2desc(ring, i, &meta);
if (!meta->skb) {
assert(ring->tx);
continue;
}
if (ring->tx) {
unmap_descbuffer(ring, meta->dmaaddr,
meta->skb->len, 1);
} else {
unmap_descbuffer(ring, meta->dmaaddr,
ring->rx_buffersize, 0);
}
free_descriptor_buffer(ring, meta, 0);
}
}
/* Main initialization function. */
static
struct bcm43xx_dmaring * bcm43xx_setup_dmaring(struct bcm43xx_private *bcm,
int controller_index,
int for_tx,
int dma64)
{
struct bcm43xx_dmaring *ring;
int err;
int nr_slots;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto out;
nr_slots = BCM43xx_RXRING_SLOTS;
if (for_tx)
nr_slots = BCM43xx_TXRING_SLOTS;
ring->meta = kcalloc(nr_slots, sizeof(struct bcm43xx_dmadesc_meta),
GFP_KERNEL);
if (!ring->meta)
goto err_kfree_ring;
ring->routing = BCM43xx_DMA32_CLIENTTRANS;
if (dma64)
ring->routing = BCM43xx_DMA64_CLIENTTRANS;
ring->bcm = bcm;
ring->nr_slots = nr_slots;
ring->suspend_mark = ring->nr_slots * BCM43xx_TXSUSPEND_PERCENT / 100;
ring->resume_mark = ring->nr_slots * BCM43xx_TXRESUME_PERCENT / 100;
assert(ring->suspend_mark < ring->resume_mark);
ring->mmio_base = bcm43xx_dmacontroller_base(dma64, controller_index);
ring->index = controller_index;
ring->dma64 = !!dma64;
if (for_tx) {
ring->tx = 1;
ring->current_slot = -1;
} else {
if (ring->index == 0) {
ring->rx_buffersize = BCM43xx_DMA0_RX_BUFFERSIZE;
ring->frameoffset = BCM43xx_DMA0_RX_FRAMEOFFSET;
} else if (ring->index == 3) {
ring->rx_buffersize = BCM43xx_DMA3_RX_BUFFERSIZE;
ring->frameoffset = BCM43xx_DMA3_RX_FRAMEOFFSET;
} else
assert(0);
}
err = alloc_ringmemory(ring);
if (err)
goto err_kfree_meta;
err = dmacontroller_setup(ring);
if (err)
goto err_free_ringmemory;
return ring;
out:
printk(KERN_ERR PFX "Error in bcm43xx_setup_dmaring\n");
return ring;
err_free_ringmemory:
free_ringmemory(ring);
err_kfree_meta:
kfree(ring->meta);
err_kfree_ring:
kfree(ring);
ring = NULL;
goto out;
}
/* Main cleanup function. */
static void bcm43xx_destroy_dmaring(struct bcm43xx_dmaring *ring)
{
if (!ring)
return;
dprintk(KERN_INFO PFX "DMA-%s 0x%04X (%s) max used slots: %d/%d\n",
(ring->dma64) ? "64" : "32",
ring->mmio_base,
(ring->tx) ? "TX" : "RX",
ring->max_used_slots, ring->nr_slots);
/* Device IRQs are disabled prior entering this function,
* so no need to take care of concurrency with rx handler stuff.
*/
dmacontroller_cleanup(ring);
free_all_descbuffers(ring);
free_ringmemory(ring);
kfree(ring->meta);
kfree(ring);
}
void bcm43xx_dma_free(struct bcm43xx_private *bcm)
{
struct bcm43xx_dma *dma;
if (bcm43xx_using_pio(bcm))
return;
dma = bcm43xx_current_dma(bcm);
bcm43xx_destroy_dmaring(dma->rx_ring3);
dma->rx_ring3 = NULL;
bcm43xx_destroy_dmaring(dma->rx_ring0);
dma->rx_ring0 = NULL;
bcm43xx_destroy_dmaring(dma->tx_ring5);
dma->tx_ring5 = NULL;
bcm43xx_destroy_dmaring(dma->tx_ring4);
dma->tx_ring4 = NULL;
bcm43xx_destroy_dmaring(dma->tx_ring3);
dma->tx_ring3 = NULL;
bcm43xx_destroy_dmaring(dma->tx_ring2);
dma->tx_ring2 = NULL;
bcm43xx_destroy_dmaring(dma->tx_ring1);
dma->tx_ring1 = NULL;
bcm43xx_destroy_dmaring(dma->tx_ring0);
dma->tx_ring0 = NULL;
}
int bcm43xx_dma_init(struct bcm43xx_private *bcm)
{
struct bcm43xx_dma *dma = bcm43xx_current_dma(bcm);
struct bcm43xx_dmaring *ring;
int err = -ENOMEM;
int dma64 = 0;
bcm->dma_mask = bcm43xx_get_supported_dma_mask(bcm);
if (bcm->dma_mask == DMA_64BIT_MASK)
dma64 = 1;
err = pci_set_dma_mask(bcm->pci_dev, bcm->dma_mask);
if (err)
goto no_dma;
err = pci_set_consistent_dma_mask(bcm->pci_dev, bcm->dma_mask);
if (err)
goto no_dma;
/* setup TX DMA channels. */
ring = bcm43xx_setup_dmaring(bcm, 0, 1, dma64);
if (!ring)
goto out;
dma->tx_ring0 = ring;
ring = bcm43xx_setup_dmaring(bcm, 1, 1, dma64);
if (!ring)
goto err_destroy_tx0;
dma->tx_ring1 = ring;
ring = bcm43xx_setup_dmaring(bcm, 2, 1, dma64);
if (!ring)
goto err_destroy_tx1;
dma->tx_ring2 = ring;
ring = bcm43xx_setup_dmaring(bcm, 3, 1, dma64);
if (!ring)
goto err_destroy_tx2;
dma->tx_ring3 = ring;
ring = bcm43xx_setup_dmaring(bcm, 4, 1, dma64);
if (!ring)
goto err_destroy_tx3;
dma->tx_ring4 = ring;
ring = bcm43xx_setup_dmaring(bcm, 5, 1, dma64);
if (!ring)
goto err_destroy_tx4;
dma->tx_ring5 = ring;
/* setup RX DMA channels. */
ring = bcm43xx_setup_dmaring(bcm, 0, 0, dma64);
if (!ring)
goto err_destroy_tx5;
dma->rx_ring0 = ring;
if (bcm->current_core->rev < 5) {
ring = bcm43xx_setup_dmaring(bcm, 3, 0, dma64);
if (!ring)
goto err_destroy_rx0;
dma->rx_ring3 = ring;
}
dprintk(KERN_INFO PFX "%d-bit DMA initialized\n",
(bcm->dma_mask == DMA_64BIT_MASK) ? 64 :
(bcm->dma_mask == DMA_32BIT_MASK) ? 32 : 30);
err = 0;
out:
return err;
err_destroy_rx0:
bcm43xx_destroy_dmaring(dma->rx_ring0);
dma->rx_ring0 = NULL;
err_destroy_tx5:
bcm43xx_destroy_dmaring(dma->tx_ring5);
dma->tx_ring5 = NULL;
err_destroy_tx4:
bcm43xx_destroy_dmaring(dma->tx_ring4);
dma->tx_ring4 = NULL;
err_destroy_tx3:
bcm43xx_destroy_dmaring(dma->tx_ring3);
dma->tx_ring3 = NULL;
err_destroy_tx2:
bcm43xx_destroy_dmaring(dma->tx_ring2);
dma->tx_ring2 = NULL;
err_destroy_tx1:
bcm43xx_destroy_dmaring(dma->tx_ring1);
dma->tx_ring1 = NULL;
err_destroy_tx0:
bcm43xx_destroy_dmaring(dma->tx_ring0);
dma->tx_ring0 = NULL;
no_dma:
#ifdef CONFIG_BCM43XX_PIO
printk(KERN_WARNING PFX "DMA not supported on this device."
" Falling back to PIO.\n");
bcm->__using_pio = 1;
return -ENOSYS;
#else
printk(KERN_ERR PFX "FATAL: DMA not supported and PIO not configured. "
"Please recompile the driver with PIO support.\n");
return -ENODEV;
#endif /* CONFIG_BCM43XX_PIO */
}
/* Generate a cookie for the TX header. */
static u16 generate_cookie(struct bcm43xx_dmaring *ring,
int slot)
{
u16 cookie = 0x1000;
/* Use the upper 4 bits of the cookie as
* DMA controller ID and store the slot number
* in the lower 12 bits.
* Note that the cookie must never be 0, as this
* is a special value used in RX path.
*/
switch (ring->index) {
case 0:
cookie = 0xA000;
break;
case 1:
cookie = 0xB000;
break;
case 2:
cookie = 0xC000;
break;
case 3:
cookie = 0xD000;
break;
case 4:
cookie = 0xE000;
break;
case 5:
cookie = 0xF000;
break;
}
assert(((u16)slot & 0xF000) == 0x0000);
cookie |= (u16)slot;
return cookie;
}
/* Inspect a cookie and find out to which controller/slot it belongs. */
static
struct bcm43xx_dmaring * parse_cookie(struct bcm43xx_private *bcm,
u16 cookie, int *slot)
{
struct bcm43xx_dma *dma = bcm43xx_current_dma(bcm);
struct bcm43xx_dmaring *ring = NULL;
switch (cookie & 0xF000) {
case 0xA000:
ring = dma->tx_ring0;
break;
case 0xB000:
ring = dma->tx_ring1;
break;
case 0xC000:
ring = dma->tx_ring2;
break;
case 0xD000:
ring = dma->tx_ring3;
break;
case 0xE000:
ring = dma->tx_ring4;
break;
case 0xF000:
ring = dma->tx_ring5;
break;
default:
assert(0);
}
*slot = (cookie & 0x0FFF);
assert(*slot >= 0 && *slot < ring->nr_slots);
return ring;
}
static void dmacontroller_poke_tx(struct bcm43xx_dmaring *ring,
int slot)
{
u16 offset;
int descsize;
/* Everything is ready to start. Buffers are DMA mapped and
* associated with slots.
* "slot" is the last slot of the new frame we want to transmit.
* Close your seat belts now, please.
*/
wmb();
slot = next_slot(ring, slot);
offset = (ring->dma64) ? BCM43xx_DMA64_TXINDEX : BCM43xx_DMA32_TXINDEX;
descsize = (ring->dma64) ? sizeof(struct bcm43xx_dmadesc64)
: sizeof(struct bcm43xx_dmadesc32);
bcm43xx_dma_write(ring, offset,
(u32)(slot * descsize));
}
static void dma_tx_fragment(struct bcm43xx_dmaring *ring,
struct sk_buff *skb,
u8 cur_frag)
{
int slot;
struct bcm43xx_dmadesc_generic *desc;
struct bcm43xx_dmadesc_meta *meta;
dma_addr_t dmaaddr;
struct sk_buff *bounce_skb;
assert(skb_shinfo(skb)->nr_frags == 0);
slot = request_slot(ring);
desc = bcm43xx_dma_idx2desc(ring, slot, &meta);
/* Add a device specific TX header. */
assert(skb_headroom(skb) >= sizeof(struct bcm43xx_txhdr));
/* Reserve enough headroom for the device tx header. */
__skb_push(skb, sizeof(struct bcm43xx_txhdr));
/* Now calculate and add the tx header.
* The tx header includes the PLCP header.
*/
bcm43xx_generate_txhdr(ring->bcm,
(struct bcm43xx_txhdr *)skb->data,
skb->data + sizeof(struct bcm43xx_txhdr),
skb->len - sizeof(struct bcm43xx_txhdr),
(cur_frag == 0),
generate_cookie(ring, slot));
dmaaddr = map_descbuffer(ring, skb->data, skb->len, 1);
if (dma_mapping_error(dmaaddr) || dmaaddr + skb->len > ring->bcm->dma_mask) {
/* chip cannot handle DMA to/from > 1GB, use bounce buffer (copied from b44 driver) */
if (!dma_mapping_error(dmaaddr))
unmap_descbuffer(ring, dmaaddr, skb->len, 1);
bounce_skb = __dev_alloc_skb(skb->len, GFP_ATOMIC|GFP_DMA);
if (!bounce_skb)
return;
dmaaddr = map_descbuffer(ring, bounce_skb->data, bounce_skb->len, 1);
if (dma_mapping_error(dmaaddr) || dmaaddr + skb->len > ring->bcm->dma_mask) {
if (!dma_mapping_error(dmaaddr))
unmap_descbuffer(ring, dmaaddr, skb->len, 1);
dev_kfree_skb_any(bounce_skb);
assert(0);
return;
}
skb_copy_from_linear_data(skb, skb_put(bounce_skb, skb->len),
skb->len);
dev_kfree_skb_any(skb);
skb = bounce_skb;
}
meta->skb = skb;
meta->dmaaddr = dmaaddr;
fill_descriptor(ring, desc, dmaaddr,
skb->len, 1, 1, 1);
/* Now transfer the whole frame. */
dmacontroller_poke_tx(ring, slot);
}
int bcm43xx_dma_tx(struct bcm43xx_private *bcm,
struct ieee80211_txb *txb)
{
/* We just received a packet from the kernel network subsystem.
* Add headers and DMA map the memory. Poke
* the device to send the stuff.
* Note that this is called from atomic context.
*/
struct bcm43xx_dmaring *ring = bcm43xx_current_dma(bcm)->tx_ring1;
u8 i;
struct sk_buff *skb;
assert(ring->tx);
if (unlikely(free_slots(ring) < txb->nr_frags)) {
/* The queue should be stopped,
* if we are low on free slots.
* If this ever triggers, we have to lower the suspend_mark.
*/
dprintkl(KERN_ERR PFX "Out of DMA descriptor slots!\n");
return -ENOMEM;
}
for (i = 0; i < txb->nr_frags; i++) {
skb = txb->fragments[i];
/* Take skb from ieee80211_txb_free */
txb->fragments[i] = NULL;
dma_tx_fragment(ring, skb, i);
}
ieee80211_txb_free(txb);
return 0;
}
void bcm43xx_dma_handle_xmitstatus(struct bcm43xx_private *bcm,
struct bcm43xx_xmitstatus *status)
{
struct bcm43xx_dmaring *ring;
struct bcm43xx_dmadesc_generic *desc;
struct bcm43xx_dmadesc_meta *meta;
int is_last_fragment;
int slot;
u32 tmp;
ring = parse_cookie(bcm, status->cookie, &slot);
assert(ring);
assert(ring->tx);
while (1) {
assert(slot >= 0 && slot < ring->nr_slots);
desc = bcm43xx_dma_idx2desc(ring, slot, &meta);
if (ring->dma64) {
tmp = le32_to_cpu(desc->dma64.control0);
is_last_fragment = !!(tmp & BCM43xx_DMA64_DCTL0_FRAMEEND);
} else {
tmp = le32_to_cpu(desc->dma32.control);
is_last_fragment = !!(tmp & BCM43xx_DMA32_DCTL_FRAMEEND);
}
unmap_descbuffer(ring, meta->dmaaddr, meta->skb->len, 1);
free_descriptor_buffer(ring, meta, 1);
/* Everything belonging to the slot is unmapped
* and freed, so we can return it.
*/
return_slot(ring, slot);
if (is_last_fragment)
break;
slot = next_slot(ring, slot);
}
bcm->stats.last_tx = jiffies;
}
static void dma_rx(struct bcm43xx_dmaring *ring,
int *slot)
{
struct bcm43xx_dmadesc_generic *desc;
struct bcm43xx_dmadesc_meta *meta;
struct bcm43xx_rxhdr *rxhdr;
struct sk_buff *skb;
u16 len;
int err;
dma_addr_t dmaaddr;
desc = bcm43xx_dma_idx2desc(ring, *slot, &meta);
sync_descbuffer_for_cpu(ring, meta->dmaaddr, ring->rx_buffersize);
skb = meta->skb;
if (ring->index == 3) {
/* We received an xmit status. */
struct bcm43xx_hwxmitstatus *hw = (struct bcm43xx_hwxmitstatus *)skb->data;
struct bcm43xx_xmitstatus stat;
int i = 0;
stat.cookie = le16_to_cpu(hw->cookie);
while (stat.cookie == 0) {
if (unlikely(++i >= 10000)) {
assert(0);
break;
}
udelay(2);
barrier();
stat.cookie = le16_to_cpu(hw->cookie);
}
stat.flags = hw->flags;
stat.cnt1 = hw->cnt1;
stat.cnt2 = hw->cnt2;
stat.seq = le16_to_cpu(hw->seq);
stat.unknown = le16_to_cpu(hw->unknown);
bcm43xx_debugfs_log_txstat(ring->bcm, &stat);
bcm43xx_dma_handle_xmitstatus(ring->bcm, &stat);
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr, ring->rx_buffersize);
return;
}
rxhdr = (struct bcm43xx_rxhdr *)skb->data;
len = le16_to_cpu(rxhdr->frame_length);
if (len == 0) {
int i = 0;
do {
udelay(2);
barrier();
len = le16_to_cpu(rxhdr->frame_length);
} while (len == 0 && i++ < 5);
if (unlikely(len == 0)) {
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
goto drop;
}
}
if (unlikely(len > ring->rx_buffersize)) {
/* The data did not fit into one descriptor buffer
* and is split over multiple buffers.
* This should never happen, as we try to allocate buffers
* big enough. So simply ignore this packet.
*/
int cnt = 0;
s32 tmp = len;
while (1) {
desc = bcm43xx_dma_idx2desc(ring, *slot, &meta);
/* recycle the descriptor buffer. */
sync_descbuffer_for_device(ring, meta->dmaaddr,
ring->rx_buffersize);
*slot = next_slot(ring, *slot);
cnt++;
tmp -= ring->rx_buffersize;
if (tmp <= 0)
break;
}
printkl(KERN_ERR PFX "DMA RX buffer too small "
"(len: %u, buffer: %u, nr-dropped: %d)\n",
len, ring->rx_buffersize, cnt);
goto drop;
}
len -= IEEE80211_FCS_LEN;
dmaaddr = meta->dmaaddr;
err = setup_rx_descbuffer(ring, desc, meta, GFP_ATOMIC);
if (unlikely(err)) {
dprintkl(KERN_ERR PFX "DMA RX: setup_rx_descbuffer() failed\n");
sync_descbuffer_for_device(ring, dmaaddr,
ring->rx_buffersize);
goto drop;
}
unmap_descbuffer(ring, dmaaddr, ring->rx_buffersize, 0);
skb_put(skb, len + ring->frameoffset);
skb_pull(skb, ring->frameoffset);
err = bcm43xx_rx(ring->bcm, skb, rxhdr);
if (err) {
dev_kfree_skb_irq(skb);
goto drop;
}
drop:
return;
}
void bcm43xx_dma_rx(struct bcm43xx_dmaring *ring)
{
u32 status;
u16 descptr;
int slot, current_slot;
#ifdef CONFIG_BCM43XX_DEBUG
int used_slots = 0;
#endif
assert(!ring->tx);
if (ring->dma64) {
status = bcm43xx_dma_read(ring, BCM43xx_DMA64_RXSTATUS);
descptr = (status & BCM43xx_DMA64_RXSTATDPTR);
current_slot = descptr / sizeof(struct bcm43xx_dmadesc64);
} else {
status = bcm43xx_dma_read(ring, BCM43xx_DMA32_RXSTATUS);
descptr = (status & BCM43xx_DMA32_RXDPTR);
current_slot = descptr / sizeof(struct bcm43xx_dmadesc32);
}
assert(current_slot >= 0 && current_slot < ring->nr_slots);
slot = ring->current_slot;
for ( ; slot != current_slot; slot = next_slot(ring, slot)) {
dma_rx(ring, &slot);
#ifdef CONFIG_BCM43XX_DEBUG
if (++used_slots > ring->max_used_slots)
ring->max_used_slots = used_slots;
#endif
}
if (ring->dma64) {
bcm43xx_dma_write(ring, BCM43xx_DMA64_RXINDEX,
(u32)(slot * sizeof(struct bcm43xx_dmadesc64)));
} else {
bcm43xx_dma_write(ring, BCM43xx_DMA32_RXINDEX,
(u32)(slot * sizeof(struct bcm43xx_dmadesc32)));
}
ring->current_slot = slot;
}
void bcm43xx_dma_tx_suspend(struct bcm43xx_dmaring *ring)
{
assert(ring->tx);
bcm43xx_power_saving_ctl_bits(ring->bcm, -1, 1);
if (ring->dma64) {
bcm43xx_dma_write(ring, BCM43xx_DMA64_TXCTL,
bcm43xx_dma_read(ring, BCM43xx_DMA64_TXCTL)
| BCM43xx_DMA64_TXSUSPEND);
} else {
bcm43xx_dma_write(ring, BCM43xx_DMA32_TXCTL,
bcm43xx_dma_read(ring, BCM43xx_DMA32_TXCTL)
| BCM43xx_DMA32_TXSUSPEND);
}
}
void bcm43xx_dma_tx_resume(struct bcm43xx_dmaring *ring)
{
assert(ring->tx);
if (ring->dma64) {
bcm43xx_dma_write(ring, BCM43xx_DMA64_TXCTL,
bcm43xx_dma_read(ring, BCM43xx_DMA64_TXCTL)
& ~BCM43xx_DMA64_TXSUSPEND);
} else {
bcm43xx_dma_write(ring, BCM43xx_DMA32_TXCTL,
bcm43xx_dma_read(ring, BCM43xx_DMA32_TXCTL)
& ~BCM43xx_DMA32_TXSUSPEND);
}
bcm43xx_power_saving_ctl_bits(ring->bcm, -1, -1);
}