mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-30 13:38:40 +00:00
2937367b8a
This enables the generic early_ioremap implementation for ARM. It uses the fixmap region reserved for kmap. Since early_ioremap is only supported before paging_init(), and kmap is only supported afterwards, this is guaranteed not to cause any clashes. Tested-by: Ryan Harkin <ryan.harkin@linaro.org> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
481 lines
12 KiB
C
481 lines
12 KiB
C
/*
|
|
* linux/arch/arm/mm/ioremap.c
|
|
*
|
|
* Re-map IO memory to kernel address space so that we can access it.
|
|
*
|
|
* (C) Copyright 1995 1996 Linus Torvalds
|
|
*
|
|
* Hacked for ARM by Phil Blundell <philb@gnu.org>
|
|
* Hacked to allow all architectures to build, and various cleanups
|
|
* by Russell King
|
|
*
|
|
* This allows a driver to remap an arbitrary region of bus memory into
|
|
* virtual space. One should *only* use readl, writel, memcpy_toio and
|
|
* so on with such remapped areas.
|
|
*
|
|
* Because the ARM only has a 32-bit address space we can't address the
|
|
* whole of the (physical) PCI space at once. PCI huge-mode addressing
|
|
* allows us to circumvent this restriction by splitting PCI space into
|
|
* two 2GB chunks and mapping only one at a time into processor memory.
|
|
* We use MMU protection domains to trap any attempt to access the bank
|
|
* that is not currently mapped. (This isn't fully implemented yet.)
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/io.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include <asm/cp15.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/early_ioremap.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/system_info.h>
|
|
|
|
#include <asm/mach/map.h>
|
|
#include <asm/mach/pci.h>
|
|
#include "mm.h"
|
|
|
|
|
|
LIST_HEAD(static_vmlist);
|
|
|
|
static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
|
|
size_t size, unsigned int mtype)
|
|
{
|
|
struct static_vm *svm;
|
|
struct vm_struct *vm;
|
|
|
|
list_for_each_entry(svm, &static_vmlist, list) {
|
|
vm = &svm->vm;
|
|
if (!(vm->flags & VM_ARM_STATIC_MAPPING))
|
|
continue;
|
|
if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
|
|
continue;
|
|
|
|
if (vm->phys_addr > paddr ||
|
|
paddr + size - 1 > vm->phys_addr + vm->size - 1)
|
|
continue;
|
|
|
|
return svm;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct static_vm *find_static_vm_vaddr(void *vaddr)
|
|
{
|
|
struct static_vm *svm;
|
|
struct vm_struct *vm;
|
|
|
|
list_for_each_entry(svm, &static_vmlist, list) {
|
|
vm = &svm->vm;
|
|
|
|
/* static_vmlist is ascending order */
|
|
if (vm->addr > vaddr)
|
|
break;
|
|
|
|
if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
|
|
return svm;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void __init add_static_vm_early(struct static_vm *svm)
|
|
{
|
|
struct static_vm *curr_svm;
|
|
struct vm_struct *vm;
|
|
void *vaddr;
|
|
|
|
vm = &svm->vm;
|
|
vm_area_add_early(vm);
|
|
vaddr = vm->addr;
|
|
|
|
list_for_each_entry(curr_svm, &static_vmlist, list) {
|
|
vm = &curr_svm->vm;
|
|
|
|
if (vm->addr > vaddr)
|
|
break;
|
|
}
|
|
list_add_tail(&svm->list, &curr_svm->list);
|
|
}
|
|
|
|
int ioremap_page(unsigned long virt, unsigned long phys,
|
|
const struct mem_type *mtype)
|
|
{
|
|
return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
|
|
__pgprot(mtype->prot_pte));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_page);
|
|
|
|
void __check_vmalloc_seq(struct mm_struct *mm)
|
|
{
|
|
unsigned int seq;
|
|
|
|
do {
|
|
seq = init_mm.context.vmalloc_seq;
|
|
memcpy(pgd_offset(mm, VMALLOC_START),
|
|
pgd_offset_k(VMALLOC_START),
|
|
sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
|
|
pgd_index(VMALLOC_START)));
|
|
mm->context.vmalloc_seq = seq;
|
|
} while (seq != init_mm.context.vmalloc_seq);
|
|
}
|
|
|
|
#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
|
|
/*
|
|
* Section support is unsafe on SMP - If you iounmap and ioremap a region,
|
|
* the other CPUs will not see this change until their next context switch.
|
|
* Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
|
|
* which requires the new ioremap'd region to be referenced, the CPU will
|
|
* reference the _old_ region.
|
|
*
|
|
* Note that get_vm_area_caller() allocates a guard 4K page, so we need to
|
|
* mask the size back to 1MB aligned or we will overflow in the loop below.
|
|
*/
|
|
static void unmap_area_sections(unsigned long virt, unsigned long size)
|
|
{
|
|
unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmdp;
|
|
|
|
flush_cache_vunmap(addr, end);
|
|
pgd = pgd_offset_k(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
pmdp = pmd_offset(pud, addr);
|
|
do {
|
|
pmd_t pmd = *pmdp;
|
|
|
|
if (!pmd_none(pmd)) {
|
|
/*
|
|
* Clear the PMD from the page table, and
|
|
* increment the vmalloc sequence so others
|
|
* notice this change.
|
|
*
|
|
* Note: this is still racy on SMP machines.
|
|
*/
|
|
pmd_clear(pmdp);
|
|
init_mm.context.vmalloc_seq++;
|
|
|
|
/*
|
|
* Free the page table, if there was one.
|
|
*/
|
|
if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
|
|
pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
|
|
}
|
|
|
|
addr += PMD_SIZE;
|
|
pmdp += 2;
|
|
} while (addr < end);
|
|
|
|
/*
|
|
* Ensure that the active_mm is up to date - we want to
|
|
* catch any use-after-iounmap cases.
|
|
*/
|
|
if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
|
|
__check_vmalloc_seq(current->active_mm);
|
|
|
|
flush_tlb_kernel_range(virt, end);
|
|
}
|
|
|
|
static int
|
|
remap_area_sections(unsigned long virt, unsigned long pfn,
|
|
size_t size, const struct mem_type *type)
|
|
{
|
|
unsigned long addr = virt, end = virt + size;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
/*
|
|
* Remove and free any PTE-based mapping, and
|
|
* sync the current kernel mapping.
|
|
*/
|
|
unmap_area_sections(virt, size);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
pud = pud_offset(pgd, addr);
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
|
|
pfn += SZ_1M >> PAGE_SHIFT;
|
|
pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
|
|
pfn += SZ_1M >> PAGE_SHIFT;
|
|
flush_pmd_entry(pmd);
|
|
|
|
addr += PMD_SIZE;
|
|
pmd += 2;
|
|
} while (addr < end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
remap_area_supersections(unsigned long virt, unsigned long pfn,
|
|
size_t size, const struct mem_type *type)
|
|
{
|
|
unsigned long addr = virt, end = virt + size;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
/*
|
|
* Remove and free any PTE-based mapping, and
|
|
* sync the current kernel mapping.
|
|
*/
|
|
unmap_area_sections(virt, size);
|
|
|
|
pgd = pgd_offset_k(virt);
|
|
pud = pud_offset(pgd, addr);
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
unsigned long super_pmd_val, i;
|
|
|
|
super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
|
|
PMD_SECT_SUPER;
|
|
super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
pmd[0] = __pmd(super_pmd_val);
|
|
pmd[1] = __pmd(super_pmd_val);
|
|
flush_pmd_entry(pmd);
|
|
|
|
addr += PMD_SIZE;
|
|
pmd += 2;
|
|
}
|
|
|
|
pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
|
|
} while (addr < end);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
|
|
unsigned long offset, size_t size, unsigned int mtype, void *caller)
|
|
{
|
|
const struct mem_type *type;
|
|
int err;
|
|
unsigned long addr;
|
|
struct vm_struct *area;
|
|
phys_addr_t paddr = __pfn_to_phys(pfn);
|
|
|
|
#ifndef CONFIG_ARM_LPAE
|
|
/*
|
|
* High mappings must be supersection aligned
|
|
*/
|
|
if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
|
|
return NULL;
|
|
#endif
|
|
|
|
type = get_mem_type(mtype);
|
|
if (!type)
|
|
return NULL;
|
|
|
|
/*
|
|
* Page align the mapping size, taking account of any offset.
|
|
*/
|
|
size = PAGE_ALIGN(offset + size);
|
|
|
|
/*
|
|
* Try to reuse one of the static mapping whenever possible.
|
|
*/
|
|
if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
|
|
struct static_vm *svm;
|
|
|
|
svm = find_static_vm_paddr(paddr, size, mtype);
|
|
if (svm) {
|
|
addr = (unsigned long)svm->vm.addr;
|
|
addr += paddr - svm->vm.phys_addr;
|
|
return (void __iomem *) (offset + addr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Don't allow RAM to be mapped - this causes problems with ARMv6+
|
|
*/
|
|
if (WARN_ON(pfn_valid(pfn)))
|
|
return NULL;
|
|
|
|
area = get_vm_area_caller(size, VM_IOREMAP, caller);
|
|
if (!area)
|
|
return NULL;
|
|
addr = (unsigned long)area->addr;
|
|
area->phys_addr = paddr;
|
|
|
|
#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
|
|
if (DOMAIN_IO == 0 &&
|
|
(((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
|
|
cpu_is_xsc3()) && pfn >= 0x100000 &&
|
|
!((paddr | size | addr) & ~SUPERSECTION_MASK)) {
|
|
area->flags |= VM_ARM_SECTION_MAPPING;
|
|
err = remap_area_supersections(addr, pfn, size, type);
|
|
} else if (!((paddr | size | addr) & ~PMD_MASK)) {
|
|
area->flags |= VM_ARM_SECTION_MAPPING;
|
|
err = remap_area_sections(addr, pfn, size, type);
|
|
} else
|
|
#endif
|
|
err = ioremap_page_range(addr, addr + size, paddr,
|
|
__pgprot(type->prot_pte));
|
|
|
|
if (err) {
|
|
vunmap((void *)addr);
|
|
return NULL;
|
|
}
|
|
|
|
flush_cache_vmap(addr, addr + size);
|
|
return (void __iomem *) (offset + addr);
|
|
}
|
|
|
|
void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
|
|
unsigned int mtype, void *caller)
|
|
{
|
|
phys_addr_t last_addr;
|
|
unsigned long offset = phys_addr & ~PAGE_MASK;
|
|
unsigned long pfn = __phys_to_pfn(phys_addr);
|
|
|
|
/*
|
|
* Don't allow wraparound or zero size
|
|
*/
|
|
last_addr = phys_addr + size - 1;
|
|
if (!size || last_addr < phys_addr)
|
|
return NULL;
|
|
|
|
return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
|
|
caller);
|
|
}
|
|
|
|
/*
|
|
* Remap an arbitrary physical address space into the kernel virtual
|
|
* address space. Needed when the kernel wants to access high addresses
|
|
* directly.
|
|
*
|
|
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
|
|
* have to convert them into an offset in a page-aligned mapping, but the
|
|
* caller shouldn't need to know that small detail.
|
|
*/
|
|
void __iomem *
|
|
__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
|
|
unsigned int mtype)
|
|
{
|
|
return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(__arm_ioremap_pfn);
|
|
|
|
void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
|
|
unsigned int, void *) =
|
|
__arm_ioremap_caller;
|
|
|
|
void __iomem *ioremap(resource_size_t res_cookie, size_t size)
|
|
{
|
|
return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap);
|
|
|
|
void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
|
|
{
|
|
return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_cache);
|
|
|
|
void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
|
|
{
|
|
return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_wc);
|
|
|
|
/*
|
|
* Remap an arbitrary physical address space into the kernel virtual
|
|
* address space as memory. Needed when the kernel wants to execute
|
|
* code in external memory. This is needed for reprogramming source
|
|
* clocks that would affect normal memory for example. Please see
|
|
* CONFIG_GENERIC_ALLOCATOR for allocating external memory.
|
|
*/
|
|
void __iomem *
|
|
__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
|
|
{
|
|
unsigned int mtype;
|
|
|
|
if (cached)
|
|
mtype = MT_MEMORY_RWX;
|
|
else
|
|
mtype = MT_MEMORY_RWX_NONCACHED;
|
|
|
|
return __arm_ioremap_caller(phys_addr, size, mtype,
|
|
__builtin_return_address(0));
|
|
}
|
|
|
|
void __iounmap(volatile void __iomem *io_addr)
|
|
{
|
|
void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
|
|
struct static_vm *svm;
|
|
|
|
/* If this is a static mapping, we must leave it alone */
|
|
svm = find_static_vm_vaddr(addr);
|
|
if (svm)
|
|
return;
|
|
|
|
#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
|
|
{
|
|
struct vm_struct *vm;
|
|
|
|
vm = find_vm_area(addr);
|
|
|
|
/*
|
|
* If this is a section based mapping we need to handle it
|
|
* specially as the VM subsystem does not know how to handle
|
|
* such a beast.
|
|
*/
|
|
if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
|
|
unmap_area_sections((unsigned long)vm->addr, vm->size);
|
|
}
|
|
#endif
|
|
|
|
vunmap(addr);
|
|
}
|
|
|
|
void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
|
|
|
|
void iounmap(volatile void __iomem *cookie)
|
|
{
|
|
arch_iounmap(cookie);
|
|
}
|
|
EXPORT_SYMBOL(iounmap);
|
|
|
|
#ifdef CONFIG_PCI
|
|
static int pci_ioremap_mem_type = MT_DEVICE;
|
|
|
|
void pci_ioremap_set_mem_type(int mem_type)
|
|
{
|
|
pci_ioremap_mem_type = mem_type;
|
|
}
|
|
|
|
int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
|
|
{
|
|
BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
|
|
|
|
return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
|
|
PCI_IO_VIRT_BASE + offset + SZ_64K,
|
|
phys_addr,
|
|
__pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
|
|
}
|
|
EXPORT_SYMBOL_GPL(pci_ioremap_io);
|
|
#endif
|
|
|
|
/*
|
|
* Must be called after early_fixmap_init
|
|
*/
|
|
void __init early_ioremap_init(void)
|
|
{
|
|
early_ioremap_setup();
|
|
}
|