mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-23 18:07:03 +00:00
4bf27b8b33
CONFIG_HOTPLUG is going away as an option. As a result, the __dev* markings need to be removed. This change removes the use of __devinit, __devexit_p, __devinitconst, and __devexit from these drivers. Based on patches originally written by Bill Pemberton, but redone by me in order to handle some of the coding style issues better, by hand. Cc: Bill Pemberton <wfp5p@virginia.edu> Cc: Viresh Kumar <viresh.linux@gmail.com> Cc: Dan Williams <djbw@fb.com> Cc: Vinod Koul <vinod.koul@intel.com> Cc: Barry Song <baohua.song@csr.com> Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Cc: Alexander Duyck <alexander.h.duyck@intel.com> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Linus Walleij <linus.walleij@linaro.org> Cc: Jassi Brar <jassisinghbrar@gmail.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Bill Pemberton <wfp5p@virginia.edu> Cc: Guennadi Liakhovetski <g.liakhovetski@gmx.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
4993 lines
134 KiB
C
4993 lines
134 KiB
C
/*
|
|
* Copyright (C) 2006-2009 DENX Software Engineering.
|
|
*
|
|
* Author: Yuri Tikhonov <yur@emcraft.com>
|
|
*
|
|
* Further porting to arch/powerpc by
|
|
* Anatolij Gustschin <agust@denx.de>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59
|
|
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The full GNU General Public License is included in this distribution in the
|
|
* file called COPYING.
|
|
*/
|
|
|
|
/*
|
|
* This driver supports the asynchrounous DMA copy and RAID engines available
|
|
* on the AMCC PPC440SPe Processors.
|
|
* Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
|
|
* ADMA driver written by D.Williams.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/async_tx.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_platform.h>
|
|
#include <asm/dcr.h>
|
|
#include <asm/dcr-regs.h>
|
|
#include "adma.h"
|
|
#include "../dmaengine.h"
|
|
|
|
enum ppc_adma_init_code {
|
|
PPC_ADMA_INIT_OK = 0,
|
|
PPC_ADMA_INIT_MEMRES,
|
|
PPC_ADMA_INIT_MEMREG,
|
|
PPC_ADMA_INIT_ALLOC,
|
|
PPC_ADMA_INIT_COHERENT,
|
|
PPC_ADMA_INIT_CHANNEL,
|
|
PPC_ADMA_INIT_IRQ1,
|
|
PPC_ADMA_INIT_IRQ2,
|
|
PPC_ADMA_INIT_REGISTER
|
|
};
|
|
|
|
static char *ppc_adma_errors[] = {
|
|
[PPC_ADMA_INIT_OK] = "ok",
|
|
[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
|
|
[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
|
|
[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
|
|
"structure",
|
|
[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
|
|
"hardware descriptors",
|
|
[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
|
|
[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
|
|
[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
|
|
[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
|
|
};
|
|
|
|
static enum ppc_adma_init_code
|
|
ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
|
|
|
|
struct ppc_dma_chan_ref {
|
|
struct dma_chan *chan;
|
|
struct list_head node;
|
|
};
|
|
|
|
/* The list of channels exported by ppc440spe ADMA */
|
|
struct list_head
|
|
ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
|
|
|
|
/* This flag is set when want to refetch the xor chain in the interrupt
|
|
* handler
|
|
*/
|
|
static u32 do_xor_refetch;
|
|
|
|
/* Pointer to DMA0, DMA1 CP/CS FIFO */
|
|
static void *ppc440spe_dma_fifo_buf;
|
|
|
|
/* Pointers to last submitted to DMA0, DMA1 CDBs */
|
|
static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
|
|
static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
|
|
|
|
/* Pointer to last linked and submitted xor CB */
|
|
static struct ppc440spe_adma_desc_slot *xor_last_linked;
|
|
static struct ppc440spe_adma_desc_slot *xor_last_submit;
|
|
|
|
/* This array is used in data-check operations for storing a pattern */
|
|
static char ppc440spe_qword[16];
|
|
|
|
static atomic_t ppc440spe_adma_err_irq_ref;
|
|
static dcr_host_t ppc440spe_mq_dcr_host;
|
|
static unsigned int ppc440spe_mq_dcr_len;
|
|
|
|
/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
|
|
* the block size in transactions, then we do not allow to activate more than
|
|
* only one RXOR transactions simultaneously. So use this var to store
|
|
* the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
|
|
* set) or not (PPC440SPE_RXOR_RUN is clear).
|
|
*/
|
|
static unsigned long ppc440spe_rxor_state;
|
|
|
|
/* These are used in enable & check routines
|
|
*/
|
|
static u32 ppc440spe_r6_enabled;
|
|
static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
|
|
static struct completion ppc440spe_r6_test_comp;
|
|
|
|
static int ppc440spe_adma_dma2rxor_prep_src(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_rxor *cursor, int index,
|
|
int src_cnt, u32 addr);
|
|
static void ppc440spe_adma_dma2rxor_set_src(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
int index, dma_addr_t addr);
|
|
static void ppc440spe_adma_dma2rxor_set_mult(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
int index, u8 mult);
|
|
|
|
#ifdef ADMA_LL_DEBUG
|
|
#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
|
|
#else
|
|
#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
|
|
#endif
|
|
|
|
static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
|
|
{
|
|
struct dma_cdb *cdb;
|
|
struct xor_cb *cb;
|
|
int i;
|
|
|
|
switch (chan->device->id) {
|
|
case 0:
|
|
case 1:
|
|
cdb = block;
|
|
|
|
pr_debug("CDB at %p [%d]:\n"
|
|
"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
|
|
"\t sg1u 0x%08x sg1l 0x%08x\n"
|
|
"\t sg2u 0x%08x sg2l 0x%08x\n"
|
|
"\t sg3u 0x%08x sg3l 0x%08x\n",
|
|
cdb, chan->device->id,
|
|
cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
|
|
le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
|
|
le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
|
|
le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
|
|
);
|
|
break;
|
|
case 2:
|
|
cb = block;
|
|
|
|
pr_debug("CB at %p [%d]:\n"
|
|
"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
|
|
"\t cbtah 0x%08x cbtal 0x%08x\n"
|
|
"\t cblah 0x%08x cblal 0x%08x\n",
|
|
cb, chan->device->id,
|
|
cb->cbc, cb->cbbc, cb->cbs,
|
|
cb->cbtah, cb->cbtal,
|
|
cb->cblah, cb->cblal);
|
|
for (i = 0; i < 16; i++) {
|
|
if (i && !cb->ops[i].h && !cb->ops[i].l)
|
|
continue;
|
|
pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
|
|
i, cb->ops[i].h, cb->ops[i].l);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void print_cb_list(struct ppc440spe_adma_chan *chan,
|
|
struct ppc440spe_adma_desc_slot *iter)
|
|
{
|
|
for (; iter; iter = iter->hw_next)
|
|
print_cb(chan, iter->hw_desc);
|
|
}
|
|
|
|
static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
|
|
unsigned int src_cnt)
|
|
{
|
|
int i;
|
|
|
|
pr_debug("\n%s(%d):\nsrc: ", __func__, id);
|
|
for (i = 0; i < src_cnt; i++)
|
|
pr_debug("\t0x%016llx ", src[i]);
|
|
pr_debug("dst:\n\t0x%016llx\n", dst);
|
|
}
|
|
|
|
static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
|
|
unsigned int src_cnt)
|
|
{
|
|
int i;
|
|
|
|
pr_debug("\n%s(%d):\nsrc: ", __func__, id);
|
|
for (i = 0; i < src_cnt; i++)
|
|
pr_debug("\t0x%016llx ", src[i]);
|
|
pr_debug("dst: ");
|
|
for (i = 0; i < 2; i++)
|
|
pr_debug("\t0x%016llx ", dst[i]);
|
|
}
|
|
|
|
static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
|
|
unsigned int src_cnt,
|
|
const unsigned char *scf)
|
|
{
|
|
int i;
|
|
|
|
pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
|
|
if (scf) {
|
|
for (i = 0; i < src_cnt; i++)
|
|
pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
|
|
} else {
|
|
for (i = 0; i < src_cnt; i++)
|
|
pr_debug("\t0x%016llx(no) ", src[i]);
|
|
}
|
|
|
|
pr_debug("dst: ");
|
|
for (i = 0; i < 2; i++)
|
|
pr_debug("\t0x%016llx ", src[src_cnt + i]);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Command (Descriptor) Blocks low-level routines
|
|
******************************************************************************/
|
|
/**
|
|
* ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
|
|
* pseudo operation
|
|
*/
|
|
static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct xor_cb *p;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_XOR_ID:
|
|
p = desc->hw_desc;
|
|
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
|
|
/* NOP with Command Block Complete Enable */
|
|
p->cbc = XOR_CBCR_CBCE_BIT;
|
|
break;
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
|
|
/* NOP with interrupt */
|
|
set_bit(PPC440SPE_DESC_INT, &desc->flags);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
|
|
__func__);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
|
|
* pseudo operation
|
|
*/
|
|
static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
|
|
{
|
|
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
|
|
desc->hw_next = NULL;
|
|
desc->src_cnt = 0;
|
|
desc->dst_cnt = 1;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
|
|
*/
|
|
static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
|
|
int src_cnt, unsigned long flags)
|
|
{
|
|
struct xor_cb *hw_desc = desc->hw_desc;
|
|
|
|
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
|
|
desc->hw_next = NULL;
|
|
desc->src_cnt = src_cnt;
|
|
desc->dst_cnt = 1;
|
|
|
|
hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
|
|
if (flags & DMA_PREP_INTERRUPT)
|
|
/* Enable interrupt on completion */
|
|
hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
|
|
* operation in DMA2 controller
|
|
*/
|
|
static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
|
|
int dst_cnt, int src_cnt, unsigned long flags)
|
|
{
|
|
struct xor_cb *hw_desc = desc->hw_desc;
|
|
|
|
memset(desc->hw_desc, 0, sizeof(struct xor_cb));
|
|
desc->hw_next = NULL;
|
|
desc->src_cnt = src_cnt;
|
|
desc->dst_cnt = dst_cnt;
|
|
memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
|
|
desc->descs_per_op = 0;
|
|
|
|
hw_desc->cbc = XOR_CBCR_TGT_BIT;
|
|
if (flags & DMA_PREP_INTERRUPT)
|
|
/* Enable interrupt on completion */
|
|
hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
|
|
}
|
|
|
|
#define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
|
|
#define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
|
|
#define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
|
|
|
|
/**
|
|
* ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
|
|
* with DMA0/1
|
|
*/
|
|
static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
|
|
int dst_cnt, int src_cnt, unsigned long flags,
|
|
unsigned long op)
|
|
{
|
|
struct dma_cdb *hw_desc;
|
|
struct ppc440spe_adma_desc_slot *iter;
|
|
u8 dopc;
|
|
|
|
/* Common initialization of a PQ descriptors chain */
|
|
set_bits(op, &desc->flags);
|
|
desc->src_cnt = src_cnt;
|
|
desc->dst_cnt = dst_cnt;
|
|
|
|
/* WXOR MULTICAST if both P and Q are being computed
|
|
* MV_SG1_SG2 if Q only
|
|
*/
|
|
dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
|
|
DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
|
|
|
|
list_for_each_entry(iter, &desc->group_list, chain_node) {
|
|
hw_desc = iter->hw_desc;
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
|
|
if (likely(!list_is_last(&iter->chain_node,
|
|
&desc->group_list))) {
|
|
/* set 'next' pointer */
|
|
iter->hw_next = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot, chain_node);
|
|
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
} else {
|
|
/* this is the last descriptor.
|
|
* this slot will be pasted from ADMA level
|
|
* each time it wants to configure parameters
|
|
* of the transaction (src, dst, ...)
|
|
*/
|
|
iter->hw_next = NULL;
|
|
if (flags & DMA_PREP_INTERRUPT)
|
|
set_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
else
|
|
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
}
|
|
}
|
|
|
|
/* Set OPS depending on WXOR/RXOR type of operation */
|
|
if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
|
|
/* This is a WXOR only chain:
|
|
* - first descriptors are for zeroing destinations
|
|
* if PPC440SPE_ZERO_P/Q set;
|
|
* - descriptors remained are for GF-XOR operations.
|
|
*/
|
|
iter = list_first_entry(&desc->group_list,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
|
|
if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
iter = list_first_entry(&iter->chain_node,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
}
|
|
|
|
if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
iter = list_first_entry(&iter->chain_node,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
}
|
|
|
|
list_for_each_entry_from(iter, &desc->group_list, chain_node) {
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = dopc;
|
|
}
|
|
} else {
|
|
/* This is either RXOR-only or mixed RXOR/WXOR */
|
|
|
|
/* The first 1 or 2 slots in chain are always RXOR,
|
|
* if need to calculate P & Q, then there are two
|
|
* RXOR slots; if only P or only Q, then there is one
|
|
*/
|
|
iter = list_first_entry(&desc->group_list,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
|
|
if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
|
|
iter = list_first_entry(&iter->chain_node,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
}
|
|
|
|
/* The remaining descs (if any) are WXORs */
|
|
if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
|
|
iter = list_first_entry(&iter->chain_node,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
list_for_each_entry_from(iter, &desc->group_list,
|
|
chain_node) {
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = dopc;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
|
|
* for PQ_ZERO_SUM operation
|
|
*/
|
|
static void ppc440spe_desc_init_dma01pqzero_sum(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
int dst_cnt, int src_cnt)
|
|
{
|
|
struct dma_cdb *hw_desc;
|
|
struct ppc440spe_adma_desc_slot *iter;
|
|
int i = 0;
|
|
u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
|
|
DMA_CDB_OPC_MV_SG1_SG2;
|
|
/*
|
|
* Initialize starting from 2nd or 3rd descriptor dependent
|
|
* on dst_cnt. First one or two slots are for cloning P
|
|
* and/or Q to chan->pdest and/or chan->qdest as we have
|
|
* to preserve original P/Q.
|
|
*/
|
|
iter = list_first_entry(&desc->group_list,
|
|
struct ppc440spe_adma_desc_slot, chain_node);
|
|
iter = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot, chain_node);
|
|
|
|
if (dst_cnt > 1) {
|
|
iter = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot, chain_node);
|
|
}
|
|
/* initialize each source descriptor in chain */
|
|
list_for_each_entry_from(iter, &desc->group_list, chain_node) {
|
|
hw_desc = iter->hw_desc;
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
iter->src_cnt = 0;
|
|
iter->dst_cnt = 0;
|
|
|
|
/* This is a ZERO_SUM operation:
|
|
* - <src_cnt> descriptors starting from 2nd or 3rd
|
|
* descriptor are for GF-XOR operations;
|
|
* - remaining <dst_cnt> descriptors are for checking the result
|
|
*/
|
|
if (i++ < src_cnt)
|
|
/* MV_SG1_SG2 if only Q is being verified
|
|
* MULTICAST if both P and Q are being verified
|
|
*/
|
|
hw_desc->opc = dopc;
|
|
else
|
|
/* DMA_CDB_OPC_DCHECK128 operation */
|
|
hw_desc->opc = DMA_CDB_OPC_DCHECK128;
|
|
|
|
if (likely(!list_is_last(&iter->chain_node,
|
|
&desc->group_list))) {
|
|
/* set 'next' pointer */
|
|
iter->hw_next = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
} else {
|
|
/* this is the last descriptor.
|
|
* this slot will be pasted from ADMA level
|
|
* each time it wants to configure parameters
|
|
* of the transaction (src, dst, ...)
|
|
*/
|
|
iter->hw_next = NULL;
|
|
/* always enable interrupt generation since we get
|
|
* the status of pqzero from the handler
|
|
*/
|
|
set_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
}
|
|
}
|
|
desc->src_cnt = src_cnt;
|
|
desc->dst_cnt = dst_cnt;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
|
|
*/
|
|
static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
|
|
unsigned long flags)
|
|
{
|
|
struct dma_cdb *hw_desc = desc->hw_desc;
|
|
|
|
memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
|
|
desc->hw_next = NULL;
|
|
desc->src_cnt = 1;
|
|
desc->dst_cnt = 1;
|
|
|
|
if (flags & DMA_PREP_INTERRUPT)
|
|
set_bit(PPC440SPE_DESC_INT, &desc->flags);
|
|
else
|
|
clear_bit(PPC440SPE_DESC_INT, &desc->flags);
|
|
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
|
|
*/
|
|
static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
|
|
int value, unsigned long flags)
|
|
{
|
|
struct dma_cdb *hw_desc = desc->hw_desc;
|
|
|
|
memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
|
|
desc->hw_next = NULL;
|
|
desc->src_cnt = 1;
|
|
desc->dst_cnt = 1;
|
|
|
|
if (flags & DMA_PREP_INTERRUPT)
|
|
set_bit(PPC440SPE_DESC_INT, &desc->flags);
|
|
else
|
|
clear_bit(PPC440SPE_DESC_INT, &desc->flags);
|
|
|
|
hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
|
|
hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
|
|
hw_desc->opc = DMA_CDB_OPC_DFILL128;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_set_src_addr - set source address into the descriptor
|
|
*/
|
|
static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan,
|
|
int src_idx, dma_addr_t addrh,
|
|
dma_addr_t addrl)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
struct xor_cb *xor_hw_desc;
|
|
phys_addr_t addr64, tmplow, tmphi;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
if (!addrh) {
|
|
addr64 = addrl;
|
|
tmphi = (addr64 >> 32);
|
|
tmplow = (addr64 & 0xFFFFFFFF);
|
|
} else {
|
|
tmphi = addrh;
|
|
tmplow = addrl;
|
|
}
|
|
dma_hw_desc = desc->hw_desc;
|
|
dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
|
|
dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
xor_hw_desc = desc->hw_desc;
|
|
xor_hw_desc->ops[src_idx].l = addrl;
|
|
xor_hw_desc->ops[src_idx].h |= addrh;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_set_src_mult - set source address mult into the descriptor
|
|
*/
|
|
static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan, u32 mult_index,
|
|
int sg_index, unsigned char mult_value)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
struct xor_cb *xor_hw_desc;
|
|
u32 *psgu;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_hw_desc = desc->hw_desc;
|
|
|
|
switch (sg_index) {
|
|
/* for RXOR operations set multiplier
|
|
* into source cued address
|
|
*/
|
|
case DMA_CDB_SG_SRC:
|
|
psgu = &dma_hw_desc->sg1u;
|
|
break;
|
|
/* for WXOR operations set multiplier
|
|
* into destination cued address(es)
|
|
*/
|
|
case DMA_CDB_SG_DST1:
|
|
psgu = &dma_hw_desc->sg2u;
|
|
break;
|
|
case DMA_CDB_SG_DST2:
|
|
psgu = &dma_hw_desc->sg3u;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
*psgu |= cpu_to_le32(mult_value << mult_index);
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
xor_hw_desc = desc->hw_desc;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_set_dest_addr - set destination address into the descriptor
|
|
*/
|
|
static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan,
|
|
dma_addr_t addrh, dma_addr_t addrl,
|
|
u32 dst_idx)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
struct xor_cb *xor_hw_desc;
|
|
phys_addr_t addr64, tmphi, tmplow;
|
|
u32 *psgu, *psgl;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
if (!addrh) {
|
|
addr64 = addrl;
|
|
tmphi = (addr64 >> 32);
|
|
tmplow = (addr64 & 0xFFFFFFFF);
|
|
} else {
|
|
tmphi = addrh;
|
|
tmplow = addrl;
|
|
}
|
|
dma_hw_desc = desc->hw_desc;
|
|
|
|
psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
|
|
psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
|
|
|
|
*psgl = cpu_to_le32((u32)tmplow);
|
|
*psgu |= cpu_to_le32((u32)tmphi);
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
xor_hw_desc = desc->hw_desc;
|
|
xor_hw_desc->cbtal = addrl;
|
|
xor_hw_desc->cbtah |= addrh;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_set_byte_count - set number of data bytes involved
|
|
* into the operation
|
|
*/
|
|
static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan,
|
|
u32 byte_count)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
struct xor_cb *xor_hw_desc;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_hw_desc = desc->hw_desc;
|
|
dma_hw_desc->cnt = cpu_to_le32(byte_count);
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
xor_hw_desc = desc->hw_desc;
|
|
xor_hw_desc->cbbc = byte_count;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_set_rxor_block_size - set RXOR block size
|
|
*/
|
|
static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
|
|
{
|
|
/* assume that byte_count is aligned on the 512-boundary;
|
|
* thus write it directly to the register (bits 23:31 are
|
|
* reserved there).
|
|
*/
|
|
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_set_dcheck - set CHECK pattern
|
|
*/
|
|
static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan, u8 *qword)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_hw_desc = desc->hw_desc;
|
|
iowrite32(qword[0], &dma_hw_desc->sg3l);
|
|
iowrite32(qword[4], &dma_hw_desc->sg3u);
|
|
iowrite32(qword[8], &dma_hw_desc->sg2l);
|
|
iowrite32(qword[12], &dma_hw_desc->sg2u);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_xor_set_link - set link address in xor CB
|
|
*/
|
|
static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
|
|
struct ppc440spe_adma_desc_slot *next_desc)
|
|
{
|
|
struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
|
|
|
|
if (unlikely(!next_desc || !(next_desc->phys))) {
|
|
printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
|
|
__func__, next_desc,
|
|
next_desc ? next_desc->phys : 0);
|
|
BUG();
|
|
}
|
|
|
|
xor_hw_desc->cbs = 0;
|
|
xor_hw_desc->cblal = next_desc->phys;
|
|
xor_hw_desc->cblah = 0;
|
|
xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_set_link - set the address of descriptor following this
|
|
* descriptor in chain
|
|
*/
|
|
static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
|
|
struct ppc440spe_adma_desc_slot *prev_desc,
|
|
struct ppc440spe_adma_desc_slot *next_desc)
|
|
{
|
|
unsigned long flags;
|
|
struct ppc440spe_adma_desc_slot *tail = next_desc;
|
|
|
|
if (unlikely(!prev_desc || !next_desc ||
|
|
(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
|
|
/* If previous next is overwritten something is wrong.
|
|
* though we may refetch from append to initiate list
|
|
* processing; in this case - it's ok.
|
|
*/
|
|
printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
|
|
"prev->hw_next=0x%p\n", __func__, prev_desc,
|
|
next_desc, prev_desc ? prev_desc->hw_next : 0);
|
|
BUG();
|
|
}
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* do s/w chaining both for DMA and XOR descriptors */
|
|
prev_desc->hw_next = next_desc;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
/* bind descriptor to the chain */
|
|
while (tail->hw_next)
|
|
tail = tail->hw_next;
|
|
xor_last_linked = tail;
|
|
|
|
if (prev_desc == xor_last_submit)
|
|
/* do not link to the last submitted CB */
|
|
break;
|
|
ppc440spe_xor_set_link(prev_desc, next_desc);
|
|
break;
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_get_src_addr - extract the source address from the descriptor
|
|
*/
|
|
static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan, int src_idx)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
struct xor_cb *xor_hw_desc;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_hw_desc = desc->hw_desc;
|
|
/* May have 0, 1, 2, or 3 sources */
|
|
switch (dma_hw_desc->opc) {
|
|
case DMA_CDB_OPC_NO_OP:
|
|
case DMA_CDB_OPC_DFILL128:
|
|
return 0;
|
|
case DMA_CDB_OPC_DCHECK128:
|
|
if (unlikely(src_idx)) {
|
|
printk(KERN_ERR "%s: try to get %d source for"
|
|
" DCHECK128\n", __func__, src_idx);
|
|
BUG();
|
|
}
|
|
return le32_to_cpu(dma_hw_desc->sg1l);
|
|
case DMA_CDB_OPC_MULTICAST:
|
|
case DMA_CDB_OPC_MV_SG1_SG2:
|
|
if (unlikely(src_idx > 2)) {
|
|
printk(KERN_ERR "%s: try to get %d source from"
|
|
" DMA descr\n", __func__, src_idx);
|
|
BUG();
|
|
}
|
|
if (src_idx) {
|
|
if (le32_to_cpu(dma_hw_desc->sg1u) &
|
|
DMA_CUED_XOR_WIN_MSK) {
|
|
u8 region;
|
|
|
|
if (src_idx == 1)
|
|
return le32_to_cpu(
|
|
dma_hw_desc->sg1l) +
|
|
desc->unmap_len;
|
|
|
|
region = (le32_to_cpu(
|
|
dma_hw_desc->sg1u)) >>
|
|
DMA_CUED_REGION_OFF;
|
|
|
|
region &= DMA_CUED_REGION_MSK;
|
|
switch (region) {
|
|
case DMA_RXOR123:
|
|
return le32_to_cpu(
|
|
dma_hw_desc->sg1l) +
|
|
(desc->unmap_len << 1);
|
|
case DMA_RXOR124:
|
|
return le32_to_cpu(
|
|
dma_hw_desc->sg1l) +
|
|
(desc->unmap_len * 3);
|
|
case DMA_RXOR125:
|
|
return le32_to_cpu(
|
|
dma_hw_desc->sg1l) +
|
|
(desc->unmap_len << 2);
|
|
default:
|
|
printk(KERN_ERR
|
|
"%s: try to"
|
|
" get src3 for region %02x"
|
|
"PPC440SPE_DESC_RXOR12?\n",
|
|
__func__, region);
|
|
BUG();
|
|
}
|
|
} else {
|
|
printk(KERN_ERR
|
|
"%s: try to get %d"
|
|
" source for non-cued descr\n",
|
|
__func__, src_idx);
|
|
BUG();
|
|
}
|
|
}
|
|
return le32_to_cpu(dma_hw_desc->sg1l);
|
|
default:
|
|
printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
|
|
__func__, dma_hw_desc->opc);
|
|
BUG();
|
|
}
|
|
return le32_to_cpu(dma_hw_desc->sg1l);
|
|
case PPC440SPE_XOR_ID:
|
|
/* May have up to 16 sources */
|
|
xor_hw_desc = desc->hw_desc;
|
|
return xor_hw_desc->ops[src_idx].l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_get_dest_addr - extract the destination address from the
|
|
* descriptor
|
|
*/
|
|
static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan, int idx)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
struct xor_cb *xor_hw_desc;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_hw_desc = desc->hw_desc;
|
|
|
|
if (likely(!idx))
|
|
return le32_to_cpu(dma_hw_desc->sg2l);
|
|
return le32_to_cpu(dma_hw_desc->sg3l);
|
|
case PPC440SPE_XOR_ID:
|
|
xor_hw_desc = desc->hw_desc;
|
|
return xor_hw_desc->cbtal;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_get_src_num - extract the number of source addresses from
|
|
* the descriptor
|
|
*/
|
|
static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
struct xor_cb *xor_hw_desc;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_hw_desc = desc->hw_desc;
|
|
|
|
switch (dma_hw_desc->opc) {
|
|
case DMA_CDB_OPC_NO_OP:
|
|
case DMA_CDB_OPC_DFILL128:
|
|
return 0;
|
|
case DMA_CDB_OPC_DCHECK128:
|
|
return 1;
|
|
case DMA_CDB_OPC_MV_SG1_SG2:
|
|
case DMA_CDB_OPC_MULTICAST:
|
|
/*
|
|
* Only for RXOR operations we have more than
|
|
* one source
|
|
*/
|
|
if (le32_to_cpu(dma_hw_desc->sg1u) &
|
|
DMA_CUED_XOR_WIN_MSK) {
|
|
/* RXOR op, there are 2 or 3 sources */
|
|
if (((le32_to_cpu(dma_hw_desc->sg1u) >>
|
|
DMA_CUED_REGION_OFF) &
|
|
DMA_CUED_REGION_MSK) == DMA_RXOR12) {
|
|
/* RXOR 1-2 */
|
|
return 2;
|
|
} else {
|
|
/* RXOR 1-2-3/1-2-4/1-2-5 */
|
|
return 3;
|
|
}
|
|
}
|
|
return 1;
|
|
default:
|
|
printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
|
|
__func__, dma_hw_desc->opc);
|
|
BUG();
|
|
}
|
|
case PPC440SPE_XOR_ID:
|
|
/* up to 16 sources */
|
|
xor_hw_desc = desc->hw_desc;
|
|
return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
|
|
default:
|
|
BUG();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_get_dst_num - get the number of destination addresses in
|
|
* this descriptor
|
|
*/
|
|
static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct dma_cdb *dma_hw_desc;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
/* May be 1 or 2 destinations */
|
|
dma_hw_desc = desc->hw_desc;
|
|
switch (dma_hw_desc->opc) {
|
|
case DMA_CDB_OPC_NO_OP:
|
|
case DMA_CDB_OPC_DCHECK128:
|
|
return 0;
|
|
case DMA_CDB_OPC_MV_SG1_SG2:
|
|
case DMA_CDB_OPC_DFILL128:
|
|
return 1;
|
|
case DMA_CDB_OPC_MULTICAST:
|
|
if (desc->dst_cnt == 2)
|
|
return 2;
|
|
else
|
|
return 1;
|
|
default:
|
|
printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
|
|
__func__, dma_hw_desc->opc);
|
|
BUG();
|
|
}
|
|
case PPC440SPE_XOR_ID:
|
|
/* Always only 1 destination */
|
|
return 1;
|
|
default:
|
|
BUG();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_get_link - get the address of the descriptor that
|
|
* follows this one
|
|
*/
|
|
static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan)
|
|
{
|
|
if (!desc->hw_next)
|
|
return 0;
|
|
|
|
return desc->hw_next->phys;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_is_aligned - check alignment
|
|
*/
|
|
static inline int ppc440spe_desc_is_aligned(
|
|
struct ppc440spe_adma_desc_slot *desc, int num_slots)
|
|
{
|
|
return (desc->idx & (num_slots - 1)) ? 0 : 1;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_chan_xor_slot_count - get the number of slots necessary for
|
|
* XOR operation
|
|
*/
|
|
static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
|
|
int *slots_per_op)
|
|
{
|
|
int slot_cnt;
|
|
|
|
/* each XOR descriptor provides up to 16 source operands */
|
|
slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
|
|
|
|
if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
|
|
return slot_cnt;
|
|
|
|
printk(KERN_ERR "%s: len %d > max %d !!\n",
|
|
__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
|
|
BUG();
|
|
return slot_cnt;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
|
|
* DMA2 PQ operation
|
|
*/
|
|
static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
|
|
int src_cnt, size_t len)
|
|
{
|
|
signed long long order = 0;
|
|
int state = 0;
|
|
int addr_count = 0;
|
|
int i;
|
|
for (i = 1; i < src_cnt; i++) {
|
|
dma_addr_t cur_addr = srcs[i];
|
|
dma_addr_t old_addr = srcs[i-1];
|
|
switch (state) {
|
|
case 0:
|
|
if (cur_addr == old_addr + len) {
|
|
/* direct RXOR */
|
|
order = 1;
|
|
state = 1;
|
|
if (i == src_cnt-1)
|
|
addr_count++;
|
|
} else if (old_addr == cur_addr + len) {
|
|
/* reverse RXOR */
|
|
order = -1;
|
|
state = 1;
|
|
if (i == src_cnt-1)
|
|
addr_count++;
|
|
} else {
|
|
state = 3;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (i == src_cnt-2 || (order == -1
|
|
&& cur_addr != old_addr - len)) {
|
|
order = 0;
|
|
state = 0;
|
|
addr_count++;
|
|
} else if (cur_addr == old_addr + len*order) {
|
|
state = 2;
|
|
if (i == src_cnt-1)
|
|
addr_count++;
|
|
} else if (cur_addr == old_addr + 2*len) {
|
|
state = 2;
|
|
if (i == src_cnt-1)
|
|
addr_count++;
|
|
} else if (cur_addr == old_addr + 3*len) {
|
|
state = 2;
|
|
if (i == src_cnt-1)
|
|
addr_count++;
|
|
} else {
|
|
order = 0;
|
|
state = 0;
|
|
addr_count++;
|
|
}
|
|
break;
|
|
case 2:
|
|
order = 0;
|
|
state = 0;
|
|
addr_count++;
|
|
break;
|
|
}
|
|
if (state == 3)
|
|
break;
|
|
}
|
|
if (src_cnt <= 1 || (state != 1 && state != 2)) {
|
|
pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
|
|
__func__, src_cnt, state, addr_count, order);
|
|
for (i = 0; i < src_cnt; i++)
|
|
pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
|
|
BUG();
|
|
}
|
|
|
|
return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
* ADMA channel low-level routines
|
|
******************************************************************************/
|
|
|
|
static u32
|
|
ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
|
|
static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
|
|
|
|
/**
|
|
* ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
|
|
*/
|
|
static void ppc440spe_adma_device_clear_eot_status(
|
|
struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct dma_regs *dma_reg;
|
|
struct xor_regs *xor_reg;
|
|
u8 *p = chan->device->dma_desc_pool_virt;
|
|
struct dma_cdb *cdb;
|
|
u32 rv, i;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
/* read FIFO to ack */
|
|
dma_reg = chan->device->dma_reg;
|
|
while ((rv = ioread32(&dma_reg->csfpl))) {
|
|
i = rv & DMA_CDB_ADDR_MSK;
|
|
cdb = (struct dma_cdb *)&p[i -
|
|
(u32)chan->device->dma_desc_pool];
|
|
|
|
/* Clear opcode to ack. This is necessary for
|
|
* ZeroSum operations only
|
|
*/
|
|
cdb->opc = 0;
|
|
|
|
if (test_bit(PPC440SPE_RXOR_RUN,
|
|
&ppc440spe_rxor_state)) {
|
|
/* probably this is a completed RXOR op,
|
|
* get pointer to CDB using the fact that
|
|
* physical and virtual addresses of CDB
|
|
* in pools have the same offsets
|
|
*/
|
|
if (le32_to_cpu(cdb->sg1u) &
|
|
DMA_CUED_XOR_BASE) {
|
|
/* this is a RXOR */
|
|
clear_bit(PPC440SPE_RXOR_RUN,
|
|
&ppc440spe_rxor_state);
|
|
}
|
|
}
|
|
|
|
if (rv & DMA_CDB_STATUS_MSK) {
|
|
/* ZeroSum check failed
|
|
*/
|
|
struct ppc440spe_adma_desc_slot *iter;
|
|
dma_addr_t phys = rv & ~DMA_CDB_MSK;
|
|
|
|
/*
|
|
* Update the status of corresponding
|
|
* descriptor.
|
|
*/
|
|
list_for_each_entry(iter, &chan->chain,
|
|
chain_node) {
|
|
if (iter->phys == phys)
|
|
break;
|
|
}
|
|
/*
|
|
* if cannot find the corresponding
|
|
* slot it's a bug
|
|
*/
|
|
BUG_ON(&iter->chain_node == &chan->chain);
|
|
|
|
if (iter->xor_check_result) {
|
|
if (test_bit(PPC440SPE_DESC_PCHECK,
|
|
&iter->flags)) {
|
|
*iter->xor_check_result |=
|
|
SUM_CHECK_P_RESULT;
|
|
} else
|
|
if (test_bit(PPC440SPE_DESC_QCHECK,
|
|
&iter->flags)) {
|
|
*iter->xor_check_result |=
|
|
SUM_CHECK_Q_RESULT;
|
|
} else
|
|
BUG();
|
|
}
|
|
}
|
|
}
|
|
|
|
rv = ioread32(&dma_reg->dsts);
|
|
if (rv) {
|
|
pr_err("DMA%d err status: 0x%x\n",
|
|
chan->device->id, rv);
|
|
/* write back to clear */
|
|
iowrite32(rv, &dma_reg->dsts);
|
|
}
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
/* reset status bits to ack */
|
|
xor_reg = chan->device->xor_reg;
|
|
rv = ioread32be(&xor_reg->sr);
|
|
iowrite32be(rv, &xor_reg->sr);
|
|
|
|
if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
|
|
if (rv & XOR_IE_RPTIE_BIT) {
|
|
/* Read PLB Timeout Error.
|
|
* Try to resubmit the CB
|
|
*/
|
|
u32 val = ioread32be(&xor_reg->ccbalr);
|
|
|
|
iowrite32be(val, &xor_reg->cblalr);
|
|
|
|
val = ioread32be(&xor_reg->crsr);
|
|
iowrite32be(val | XOR_CRSR_XAE_BIT,
|
|
&xor_reg->crsr);
|
|
} else
|
|
pr_err("XOR ERR 0x%x status\n", rv);
|
|
break;
|
|
}
|
|
|
|
/* if the XORcore is idle, but there are unprocessed CBs
|
|
* then refetch the s/w chain here
|
|
*/
|
|
if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
|
|
do_xor_refetch)
|
|
ppc440spe_chan_append(chan);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_chan_is_busy - get the channel status
|
|
*/
|
|
static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct dma_regs *dma_reg;
|
|
struct xor_regs *xor_reg;
|
|
int busy = 0;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_reg = chan->device->dma_reg;
|
|
/* if command FIFO's head and tail pointers are equal and
|
|
* status tail is the same as command, then channel is free
|
|
*/
|
|
if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
|
|
ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
|
|
busy = 1;
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
/* use the special status bit for the XORcore
|
|
*/
|
|
xor_reg = chan->device->xor_reg;
|
|
busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
|
|
break;
|
|
}
|
|
|
|
return busy;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
|
|
*/
|
|
static void ppc440spe_chan_set_first_xor_descriptor(
|
|
struct ppc440spe_adma_chan *chan,
|
|
struct ppc440spe_adma_desc_slot *next_desc)
|
|
{
|
|
struct xor_regs *xor_reg = chan->device->xor_reg;
|
|
|
|
if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
|
|
printk(KERN_INFO "%s: Warn: XORcore is running "
|
|
"when try to set the first CDB!\n",
|
|
__func__);
|
|
|
|
xor_last_submit = xor_last_linked = next_desc;
|
|
|
|
iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
|
|
|
|
iowrite32be(next_desc->phys, &xor_reg->cblalr);
|
|
iowrite32be(0, &xor_reg->cblahr);
|
|
iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
|
|
&xor_reg->cbcr);
|
|
|
|
chan->hw_chain_inited = 1;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
|
|
* called with irqs disabled
|
|
*/
|
|
static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
|
|
struct ppc440spe_adma_desc_slot *desc)
|
|
{
|
|
u32 pcdb;
|
|
struct dma_regs *dma_reg = chan->device->dma_reg;
|
|
|
|
pcdb = desc->phys;
|
|
if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
|
|
pcdb |= DMA_CDB_NO_INT;
|
|
|
|
chan_last_sub[chan->device->id] = desc;
|
|
|
|
ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
|
|
|
|
iowrite32(pcdb, &dma_reg->cpfpl);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_chan_append - update the h/w chain in the channel
|
|
*/
|
|
static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct xor_regs *xor_reg;
|
|
struct ppc440spe_adma_desc_slot *iter;
|
|
struct xor_cb *xcb;
|
|
u32 cur_desc;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
cur_desc = ppc440spe_chan_get_current_descriptor(chan);
|
|
|
|
if (likely(cur_desc)) {
|
|
iter = chan_last_sub[chan->device->id];
|
|
BUG_ON(!iter);
|
|
} else {
|
|
/* first peer */
|
|
iter = chan_first_cdb[chan->device->id];
|
|
BUG_ON(!iter);
|
|
ppc440spe_dma_put_desc(chan, iter);
|
|
chan->hw_chain_inited = 1;
|
|
}
|
|
|
|
/* is there something new to append */
|
|
if (!iter->hw_next)
|
|
break;
|
|
|
|
/* flush descriptors from the s/w queue to fifo */
|
|
list_for_each_entry_continue(iter, &chan->chain, chain_node) {
|
|
ppc440spe_dma_put_desc(chan, iter);
|
|
if (!iter->hw_next)
|
|
break;
|
|
}
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
/* update h/w links and refetch */
|
|
if (!xor_last_submit->hw_next)
|
|
break;
|
|
|
|
xor_reg = chan->device->xor_reg;
|
|
/* the last linked CDB has to generate an interrupt
|
|
* that we'd be able to append the next lists to h/w
|
|
* regardless of the XOR engine state at the moment of
|
|
* appending of these next lists
|
|
*/
|
|
xcb = xor_last_linked->hw_desc;
|
|
xcb->cbc |= XOR_CBCR_CBCE_BIT;
|
|
|
|
if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
|
|
/* XORcore is idle. Refetch now */
|
|
do_xor_refetch = 0;
|
|
ppc440spe_xor_set_link(xor_last_submit,
|
|
xor_last_submit->hw_next);
|
|
|
|
ADMA_LL_DBG(print_cb_list(chan,
|
|
xor_last_submit->hw_next));
|
|
|
|
xor_last_submit = xor_last_linked;
|
|
iowrite32be(ioread32be(&xor_reg->crsr) |
|
|
XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
|
|
&xor_reg->crsr);
|
|
} else {
|
|
/* XORcore is running. Refetch later in the handler */
|
|
do_xor_refetch = 1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
|
|
*/
|
|
static u32
|
|
ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct dma_regs *dma_reg;
|
|
struct xor_regs *xor_reg;
|
|
|
|
if (unlikely(!chan->hw_chain_inited))
|
|
/* h/w descriptor chain is not initialized yet */
|
|
return 0;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_reg = chan->device->dma_reg;
|
|
return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
|
|
case PPC440SPE_XOR_ID:
|
|
xor_reg = chan->device->xor_reg;
|
|
return ioread32be(&xor_reg->ccbalr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_chan_run - enable the channel
|
|
*/
|
|
static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct xor_regs *xor_reg;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
/* DMAs are always enabled, do nothing */
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
/* drain write buffer */
|
|
xor_reg = chan->device->xor_reg;
|
|
|
|
/* fetch descriptor pointed to in <link> */
|
|
iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
|
|
&xor_reg->crsr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* ADMA device level
|
|
******************************************************************************/
|
|
|
|
static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
|
|
static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
|
|
|
|
static dma_cookie_t
|
|
ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
|
|
|
|
static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
|
|
dma_addr_t addr, int index);
|
|
static void
|
|
ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
|
|
dma_addr_t addr, int index);
|
|
|
|
static void
|
|
ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
|
|
dma_addr_t *paddr, unsigned long flags);
|
|
static void
|
|
ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
|
|
dma_addr_t addr, int index);
|
|
static void
|
|
ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
|
|
unsigned char mult, int index, int dst_pos);
|
|
static void
|
|
ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
|
|
dma_addr_t paddr, dma_addr_t qaddr);
|
|
|
|
static struct page *ppc440spe_rxor_srcs[32];
|
|
|
|
/**
|
|
* ppc440spe_can_rxor - check if the operands may be processed with RXOR
|
|
*/
|
|
static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
|
|
{
|
|
int i, order = 0, state = 0;
|
|
int idx = 0;
|
|
|
|
if (unlikely(!(src_cnt > 1)))
|
|
return 0;
|
|
|
|
BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
|
|
|
|
/* Skip holes in the source list before checking */
|
|
for (i = 0; i < src_cnt; i++) {
|
|
if (!srcs[i])
|
|
continue;
|
|
ppc440spe_rxor_srcs[idx++] = srcs[i];
|
|
}
|
|
src_cnt = idx;
|
|
|
|
for (i = 1; i < src_cnt; i++) {
|
|
char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
|
|
char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
|
|
|
|
switch (state) {
|
|
case 0:
|
|
if (cur_addr == old_addr + len) {
|
|
/* direct RXOR */
|
|
order = 1;
|
|
state = 1;
|
|
} else if (old_addr == cur_addr + len) {
|
|
/* reverse RXOR */
|
|
order = -1;
|
|
state = 1;
|
|
} else
|
|
goto out;
|
|
break;
|
|
case 1:
|
|
if ((i == src_cnt - 2) ||
|
|
(order == -1 && cur_addr != old_addr - len)) {
|
|
order = 0;
|
|
state = 0;
|
|
} else if ((cur_addr == old_addr + len * order) ||
|
|
(cur_addr == old_addr + 2 * len) ||
|
|
(cur_addr == old_addr + 3 * len)) {
|
|
state = 2;
|
|
} else {
|
|
order = 0;
|
|
state = 0;
|
|
}
|
|
break;
|
|
case 2:
|
|
order = 0;
|
|
state = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (state == 1 || state == 2)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_device_estimate - estimate the efficiency of processing
|
|
* the operation given on this channel. It's assumed that 'chan' is
|
|
* capable to process 'cap' type of operation.
|
|
* @chan: channel to use
|
|
* @cap: type of transaction
|
|
* @dst_lst: array of destination pointers
|
|
* @dst_cnt: number of destination operands
|
|
* @src_lst: array of source pointers
|
|
* @src_cnt: number of source operands
|
|
* @src_sz: size of each source operand
|
|
*/
|
|
static int ppc440spe_adma_estimate(struct dma_chan *chan,
|
|
enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
|
|
struct page **src_lst, int src_cnt, size_t src_sz)
|
|
{
|
|
int ef = 1;
|
|
|
|
if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
|
|
/* If RAID-6 capabilities were not activated don't try
|
|
* to use them
|
|
*/
|
|
if (unlikely(!ppc440spe_r6_enabled))
|
|
return -1;
|
|
}
|
|
/* In the current implementation of ppc440spe ADMA driver it
|
|
* makes sense to pick out only pq case, because it may be
|
|
* processed:
|
|
* (1) either using Biskup method on DMA2;
|
|
* (2) or on DMA0/1.
|
|
* Thus we give a favour to (1) if the sources are suitable;
|
|
* else let it be processed on one of the DMA0/1 engines.
|
|
* In the sum_product case where destination is also the
|
|
* source process it on DMA0/1 only.
|
|
*/
|
|
if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
|
|
|
|
if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
|
|
ef = 0; /* sum_product case, process on DMA0/1 */
|
|
else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
|
|
ef = 3; /* override (DMA0/1 + idle) */
|
|
else
|
|
ef = 0; /* can't process on DMA2 if !rxor */
|
|
}
|
|
|
|
/* channel idleness increases the priority */
|
|
if (likely(ef) &&
|
|
!ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
|
|
ef++;
|
|
|
|
return ef;
|
|
}
|
|
|
|
struct dma_chan *
|
|
ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
|
|
struct page **dst_lst, int dst_cnt, struct page **src_lst,
|
|
int src_cnt, size_t src_sz)
|
|
{
|
|
struct dma_chan *best_chan = NULL;
|
|
struct ppc_dma_chan_ref *ref;
|
|
int best_rank = -1;
|
|
|
|
if (unlikely(!src_sz))
|
|
return NULL;
|
|
if (src_sz > PAGE_SIZE) {
|
|
/*
|
|
* should a user of the api ever pass > PAGE_SIZE requests
|
|
* we sort out cases where temporary page-sized buffers
|
|
* are used.
|
|
*/
|
|
switch (cap) {
|
|
case DMA_PQ:
|
|
if (src_cnt == 1 && dst_lst[1] == src_lst[0])
|
|
return NULL;
|
|
if (src_cnt == 2 && dst_lst[1] == src_lst[1])
|
|
return NULL;
|
|
break;
|
|
case DMA_PQ_VAL:
|
|
case DMA_XOR_VAL:
|
|
return NULL;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
|
|
if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
|
|
int rank;
|
|
|
|
rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
|
|
dst_cnt, src_lst, src_cnt, src_sz);
|
|
if (rank > best_rank) {
|
|
best_rank = rank;
|
|
best_chan = ref->chan;
|
|
}
|
|
}
|
|
}
|
|
|
|
return best_chan;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
|
|
|
|
/**
|
|
* ppc440spe_get_group_entry - get group entry with index idx
|
|
* @tdesc: is the last allocated slot in the group.
|
|
*/
|
|
static struct ppc440spe_adma_desc_slot *
|
|
ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
|
|
int i = 0;
|
|
|
|
if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
|
|
printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
|
|
__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
|
|
BUG();
|
|
}
|
|
|
|
list_for_each_entry(iter, &tdesc->group_list, chain_node) {
|
|
if (i++ == entry_idx)
|
|
break;
|
|
}
|
|
return iter;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_free_slots - flags descriptor slots for reuse
|
|
* @slot: Slot to free
|
|
* Caller must hold &ppc440spe_chan->lock while calling this function
|
|
*/
|
|
static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
|
|
struct ppc440spe_adma_chan *chan)
|
|
{
|
|
int stride = slot->slots_per_op;
|
|
|
|
while (stride--) {
|
|
slot->slots_per_op = 0;
|
|
slot = list_entry(slot->slot_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
slot_node);
|
|
}
|
|
}
|
|
|
|
static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
|
|
struct ppc440spe_adma_desc_slot *desc)
|
|
{
|
|
u32 src_cnt, dst_cnt;
|
|
dma_addr_t addr;
|
|
|
|
/*
|
|
* get the number of sources & destination
|
|
* included in this descriptor and unmap
|
|
* them all
|
|
*/
|
|
src_cnt = ppc440spe_desc_get_src_num(desc, chan);
|
|
dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
|
|
|
|
/* unmap destinations */
|
|
if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
|
|
while (dst_cnt--) {
|
|
addr = ppc440spe_desc_get_dest_addr(
|
|
desc, chan, dst_cnt);
|
|
dma_unmap_page(chan->device->dev,
|
|
addr, desc->unmap_len,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
}
|
|
|
|
/* unmap sources */
|
|
if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
|
|
while (src_cnt--) {
|
|
addr = ppc440spe_desc_get_src_addr(
|
|
desc, chan, src_cnt);
|
|
dma_unmap_page(chan->device->dev,
|
|
addr, desc->unmap_len,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_run_tx_complete_actions - call functions to be called
|
|
* upon completion
|
|
*/
|
|
static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan,
|
|
dma_cookie_t cookie)
|
|
{
|
|
int i;
|
|
|
|
BUG_ON(desc->async_tx.cookie < 0);
|
|
if (desc->async_tx.cookie > 0) {
|
|
cookie = desc->async_tx.cookie;
|
|
desc->async_tx.cookie = 0;
|
|
|
|
/* call the callback (must not sleep or submit new
|
|
* operations to this channel)
|
|
*/
|
|
if (desc->async_tx.callback)
|
|
desc->async_tx.callback(
|
|
desc->async_tx.callback_param);
|
|
|
|
/* unmap dma addresses
|
|
* (unmap_single vs unmap_page?)
|
|
*
|
|
* actually, ppc's dma_unmap_page() functions are empty, so
|
|
* the following code is just for the sake of completeness
|
|
*/
|
|
if (chan && chan->needs_unmap && desc->group_head &&
|
|
desc->unmap_len) {
|
|
struct ppc440spe_adma_desc_slot *unmap =
|
|
desc->group_head;
|
|
/* assume 1 slot per op always */
|
|
u32 slot_count = unmap->slot_cnt;
|
|
|
|
/* Run through the group list and unmap addresses */
|
|
for (i = 0; i < slot_count; i++) {
|
|
BUG_ON(!unmap);
|
|
ppc440spe_adma_unmap(chan, unmap);
|
|
unmap = unmap->hw_next;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* run dependent operations */
|
|
dma_run_dependencies(&desc->async_tx);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
|
|
*/
|
|
static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_adma_chan *chan)
|
|
{
|
|
/* the client is allowed to attach dependent operations
|
|
* until 'ack' is set
|
|
*/
|
|
if (!async_tx_test_ack(&desc->async_tx))
|
|
return 0;
|
|
|
|
/* leave the last descriptor in the chain
|
|
* so we can append to it
|
|
*/
|
|
if (list_is_last(&desc->chain_node, &chan->chain) ||
|
|
desc->phys == ppc440spe_chan_get_current_descriptor(chan))
|
|
return 1;
|
|
|
|
if (chan->device->id != PPC440SPE_XOR_ID) {
|
|
/* our DMA interrupt handler clears opc field of
|
|
* each processed descriptor. For all types of
|
|
* operations except for ZeroSum we do not actually
|
|
* need ack from the interrupt handler. ZeroSum is a
|
|
* special case since the result of this operation
|
|
* is available from the handler only, so if we see
|
|
* such type of descriptor (which is unprocessed yet)
|
|
* then leave it in chain.
|
|
*/
|
|
struct dma_cdb *cdb = desc->hw_desc;
|
|
if (cdb->opc == DMA_CDB_OPC_DCHECK128)
|
|
return 1;
|
|
}
|
|
|
|
dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
|
|
desc->phys, desc->idx, desc->slots_per_op);
|
|
|
|
list_del(&desc->chain_node);
|
|
ppc440spe_adma_free_slots(desc, chan);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
|
|
* which runs through the channel CDBs list until reach the descriptor
|
|
* currently processed. When routine determines that all CDBs of group
|
|
* are completed then corresponding callbacks (if any) are called and slots
|
|
* are freed.
|
|
*/
|
|
static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
|
|
dma_cookie_t cookie = 0;
|
|
u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
|
|
int busy = ppc440spe_chan_is_busy(chan);
|
|
int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
|
|
|
|
dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
|
|
chan->device->id, __func__);
|
|
|
|
if (!current_desc) {
|
|
/* There were no transactions yet, so
|
|
* nothing to clean
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* free completed slots from the chain starting with
|
|
* the oldest descriptor
|
|
*/
|
|
list_for_each_entry_safe(iter, _iter, &chan->chain,
|
|
chain_node) {
|
|
dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
|
|
"busy: %d this_desc: %#llx next_desc: %#x "
|
|
"cur: %#x ack: %d\n",
|
|
iter->async_tx.cookie, iter->idx, busy, iter->phys,
|
|
ppc440spe_desc_get_link(iter, chan), current_desc,
|
|
async_tx_test_ack(&iter->async_tx));
|
|
prefetch(_iter);
|
|
prefetch(&_iter->async_tx);
|
|
|
|
/* do not advance past the current descriptor loaded into the
|
|
* hardware channel,subsequent descriptors are either in process
|
|
* or have not been submitted
|
|
*/
|
|
if (seen_current)
|
|
break;
|
|
|
|
/* stop the search if we reach the current descriptor and the
|
|
* channel is busy, or if it appears that the current descriptor
|
|
* needs to be re-read (i.e. has been appended to)
|
|
*/
|
|
if (iter->phys == current_desc) {
|
|
BUG_ON(seen_current++);
|
|
if (busy || ppc440spe_desc_get_link(iter, chan)) {
|
|
/* not all descriptors of the group have
|
|
* been completed; exit.
|
|
*/
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* detect the start of a group transaction */
|
|
if (!slot_cnt && !slots_per_op) {
|
|
slot_cnt = iter->slot_cnt;
|
|
slots_per_op = iter->slots_per_op;
|
|
if (slot_cnt <= slots_per_op) {
|
|
slot_cnt = 0;
|
|
slots_per_op = 0;
|
|
}
|
|
}
|
|
|
|
if (slot_cnt) {
|
|
if (!group_start)
|
|
group_start = iter;
|
|
slot_cnt -= slots_per_op;
|
|
}
|
|
|
|
/* all the members of a group are complete */
|
|
if (slots_per_op != 0 && slot_cnt == 0) {
|
|
struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
|
|
int end_of_chain = 0;
|
|
|
|
/* clean up the group */
|
|
slot_cnt = group_start->slot_cnt;
|
|
grp_iter = group_start;
|
|
list_for_each_entry_safe_from(grp_iter, _grp_iter,
|
|
&chan->chain, chain_node) {
|
|
|
|
cookie = ppc440spe_adma_run_tx_complete_actions(
|
|
grp_iter, chan, cookie);
|
|
|
|
slot_cnt -= slots_per_op;
|
|
end_of_chain = ppc440spe_adma_clean_slot(
|
|
grp_iter, chan);
|
|
if (end_of_chain && slot_cnt) {
|
|
/* Should wait for ZeroSum completion */
|
|
if (cookie > 0)
|
|
chan->common.completed_cookie = cookie;
|
|
return;
|
|
}
|
|
|
|
if (slot_cnt == 0 || end_of_chain)
|
|
break;
|
|
}
|
|
|
|
/* the group should be complete at this point */
|
|
BUG_ON(slot_cnt);
|
|
|
|
slots_per_op = 0;
|
|
group_start = NULL;
|
|
if (end_of_chain)
|
|
break;
|
|
else
|
|
continue;
|
|
} else if (slots_per_op) /* wait for group completion */
|
|
continue;
|
|
|
|
cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
|
|
cookie);
|
|
|
|
if (ppc440spe_adma_clean_slot(iter, chan))
|
|
break;
|
|
}
|
|
|
|
BUG_ON(!seen_current);
|
|
|
|
if (cookie > 0) {
|
|
chan->common.completed_cookie = cookie;
|
|
pr_debug("\tcompleted cookie %d\n", cookie);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_tasklet - clean up watch-dog initiator
|
|
*/
|
|
static void ppc440spe_adma_tasklet(unsigned long data)
|
|
{
|
|
struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
|
|
|
|
spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
|
|
__ppc440spe_adma_slot_cleanup(chan);
|
|
spin_unlock(&chan->lock);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_slot_cleanup - clean up scheduled initiator
|
|
*/
|
|
static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
spin_lock_bh(&chan->lock);
|
|
__ppc440spe_adma_slot_cleanup(chan);
|
|
spin_unlock_bh(&chan->lock);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_alloc_slots - allocate free slots (if any)
|
|
*/
|
|
static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
|
|
struct ppc440spe_adma_chan *chan, int num_slots,
|
|
int slots_per_op)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
|
|
struct ppc440spe_adma_desc_slot *alloc_start = NULL;
|
|
struct list_head chain = LIST_HEAD_INIT(chain);
|
|
int slots_found, retry = 0;
|
|
|
|
|
|
BUG_ON(!num_slots || !slots_per_op);
|
|
/* start search from the last allocated descrtiptor
|
|
* if a contiguous allocation can not be found start searching
|
|
* from the beginning of the list
|
|
*/
|
|
retry:
|
|
slots_found = 0;
|
|
if (retry == 0)
|
|
iter = chan->last_used;
|
|
else
|
|
iter = list_entry(&chan->all_slots,
|
|
struct ppc440spe_adma_desc_slot,
|
|
slot_node);
|
|
list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
|
|
slot_node) {
|
|
prefetch(_iter);
|
|
prefetch(&_iter->async_tx);
|
|
if (iter->slots_per_op) {
|
|
slots_found = 0;
|
|
continue;
|
|
}
|
|
|
|
/* start the allocation if the slot is correctly aligned */
|
|
if (!slots_found++)
|
|
alloc_start = iter;
|
|
|
|
if (slots_found == num_slots) {
|
|
struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
|
|
struct ppc440spe_adma_desc_slot *last_used = NULL;
|
|
|
|
iter = alloc_start;
|
|
while (num_slots) {
|
|
int i;
|
|
/* pre-ack all but the last descriptor */
|
|
if (num_slots != slots_per_op)
|
|
async_tx_ack(&iter->async_tx);
|
|
|
|
list_add_tail(&iter->chain_node, &chain);
|
|
alloc_tail = iter;
|
|
iter->async_tx.cookie = 0;
|
|
iter->hw_next = NULL;
|
|
iter->flags = 0;
|
|
iter->slot_cnt = num_slots;
|
|
iter->xor_check_result = NULL;
|
|
for (i = 0; i < slots_per_op; i++) {
|
|
iter->slots_per_op = slots_per_op - i;
|
|
last_used = iter;
|
|
iter = list_entry(iter->slot_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
slot_node);
|
|
}
|
|
num_slots -= slots_per_op;
|
|
}
|
|
alloc_tail->group_head = alloc_start;
|
|
alloc_tail->async_tx.cookie = -EBUSY;
|
|
list_splice(&chain, &alloc_tail->group_list);
|
|
chan->last_used = last_used;
|
|
return alloc_tail;
|
|
}
|
|
}
|
|
if (!retry++)
|
|
goto retry;
|
|
|
|
/* try to free some slots if the allocation fails */
|
|
tasklet_schedule(&chan->irq_tasklet);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
|
|
*/
|
|
static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
struct ppc440spe_adma_desc_slot *slot = NULL;
|
|
char *hw_desc;
|
|
int i, db_sz;
|
|
int init;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
init = ppc440spe_chan->slots_allocated ? 0 : 1;
|
|
chan->chan_id = ppc440spe_chan->device->id;
|
|
|
|
/* Allocate descriptor slots */
|
|
i = ppc440spe_chan->slots_allocated;
|
|
if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
|
|
db_sz = sizeof(struct dma_cdb);
|
|
else
|
|
db_sz = sizeof(struct xor_cb);
|
|
|
|
for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
|
|
slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
|
|
GFP_KERNEL);
|
|
if (!slot) {
|
|
printk(KERN_INFO "SPE ADMA Channel only initialized"
|
|
" %d descriptor slots", i--);
|
|
break;
|
|
}
|
|
|
|
hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
|
|
slot->hw_desc = (void *) &hw_desc[i * db_sz];
|
|
dma_async_tx_descriptor_init(&slot->async_tx, chan);
|
|
slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
|
|
INIT_LIST_HEAD(&slot->chain_node);
|
|
INIT_LIST_HEAD(&slot->slot_node);
|
|
INIT_LIST_HEAD(&slot->group_list);
|
|
slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
|
|
slot->idx = i;
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
ppc440spe_chan->slots_allocated++;
|
|
list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
}
|
|
|
|
if (i && !ppc440spe_chan->last_used) {
|
|
ppc440spe_chan->last_used =
|
|
list_entry(ppc440spe_chan->all_slots.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
slot_node);
|
|
}
|
|
|
|
dev_dbg(ppc440spe_chan->device->common.dev,
|
|
"ppc440spe adma%d: allocated %d descriptor slots\n",
|
|
ppc440spe_chan->device->id, i);
|
|
|
|
/* initialize the channel and the chain with a null operation */
|
|
if (init) {
|
|
switch (ppc440spe_chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
ppc440spe_chan->hw_chain_inited = 0;
|
|
/* Use WXOR for self-testing */
|
|
if (!ppc440spe_r6_tchan)
|
|
ppc440spe_r6_tchan = ppc440spe_chan;
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
ppc440spe_chan_start_null_xor(ppc440spe_chan);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
ppc440spe_chan->needs_unmap = 1;
|
|
}
|
|
|
|
return (i > 0) ? i : -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_rxor_set_region_data -
|
|
*/
|
|
static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
|
|
u8 xor_arg_no, u32 mask)
|
|
{
|
|
struct xor_cb *xcb = desc->hw_desc;
|
|
|
|
xcb->ops[xor_arg_no].h |= mask;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_rxor_set_src -
|
|
*/
|
|
static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
|
|
u8 xor_arg_no, dma_addr_t addr)
|
|
{
|
|
struct xor_cb *xcb = desc->hw_desc;
|
|
|
|
xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
|
|
xcb->ops[xor_arg_no].l = addr;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_rxor_set_mult -
|
|
*/
|
|
static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
|
|
u8 xor_arg_no, u8 idx, u8 mult)
|
|
{
|
|
struct xor_cb *xcb = desc->hw_desc;
|
|
|
|
xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
|
|
* has been achieved
|
|
*/
|
|
static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
|
|
chan->device->id, chan->pending);
|
|
|
|
if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
|
|
chan->pending = 0;
|
|
ppc440spe_chan_append(chan);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_tx_submit - submit new descriptor group to the channel
|
|
* (it's not necessary that descriptors will be submitted to the h/w
|
|
* chains too right now)
|
|
*/
|
|
static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *sw_desc;
|
|
struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
|
|
struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
|
|
int slot_cnt;
|
|
int slots_per_op;
|
|
dma_cookie_t cookie;
|
|
|
|
sw_desc = tx_to_ppc440spe_adma_slot(tx);
|
|
|
|
group_start = sw_desc->group_head;
|
|
slot_cnt = group_start->slot_cnt;
|
|
slots_per_op = group_start->slots_per_op;
|
|
|
|
spin_lock_bh(&chan->lock);
|
|
cookie = dma_cookie_assign(tx);
|
|
|
|
if (unlikely(list_empty(&chan->chain))) {
|
|
/* first peer */
|
|
list_splice_init(&sw_desc->group_list, &chan->chain);
|
|
chan_first_cdb[chan->device->id] = group_start;
|
|
} else {
|
|
/* isn't first peer, bind CDBs to chain */
|
|
old_chain_tail = list_entry(chan->chain.prev,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
list_splice_init(&sw_desc->group_list,
|
|
&old_chain_tail->chain_node);
|
|
/* fix up the hardware chain */
|
|
ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
|
|
}
|
|
|
|
/* increment the pending count by the number of operations */
|
|
chan->pending += slot_cnt / slots_per_op;
|
|
ppc440spe_adma_check_threshold(chan);
|
|
spin_unlock_bh(&chan->lock);
|
|
|
|
dev_dbg(chan->device->common.dev,
|
|
"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
|
|
chan->device->id, __func__,
|
|
sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
|
|
*/
|
|
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
|
|
struct dma_chan *chan, unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
|
|
int slot_cnt, slots_per_op;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
|
|
dev_dbg(ppc440spe_chan->device->common.dev,
|
|
"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
|
|
__func__);
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
slot_cnt = slots_per_op = 1;
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
|
|
slots_per_op);
|
|
if (sw_desc) {
|
|
group_start = sw_desc->group_head;
|
|
ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
|
|
group_start->unmap_len = 0;
|
|
sw_desc->async_tx.flags = flags;
|
|
}
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
|
|
return sw_desc ? &sw_desc->async_tx : NULL;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
|
|
*/
|
|
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
|
|
struct dma_chan *chan, dma_addr_t dma_dest,
|
|
dma_addr_t dma_src, size_t len, unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
|
|
int slot_cnt, slots_per_op;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
|
|
if (unlikely(!len))
|
|
return NULL;
|
|
|
|
BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
|
|
dev_dbg(ppc440spe_chan->device->common.dev,
|
|
"ppc440spe adma%d: %s len: %u int_en %d\n",
|
|
ppc440spe_chan->device->id, __func__, len,
|
|
flags & DMA_PREP_INTERRUPT ? 1 : 0);
|
|
slot_cnt = slots_per_op = 1;
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
|
|
slots_per_op);
|
|
if (sw_desc) {
|
|
group_start = sw_desc->group_head;
|
|
ppc440spe_desc_init_memcpy(group_start, flags);
|
|
ppc440spe_adma_set_dest(group_start, dma_dest, 0);
|
|
ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
|
|
ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
|
|
sw_desc->unmap_len = len;
|
|
sw_desc->async_tx.flags = flags;
|
|
}
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
|
|
return sw_desc ? &sw_desc->async_tx : NULL;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_prep_dma_memset - prepare CDB for a MEMSET operation
|
|
*/
|
|
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memset(
|
|
struct dma_chan *chan, dma_addr_t dma_dest, int value,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
|
|
int slot_cnt, slots_per_op;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
|
|
if (unlikely(!len))
|
|
return NULL;
|
|
|
|
BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
|
|
dev_dbg(ppc440spe_chan->device->common.dev,
|
|
"ppc440spe adma%d: %s cal: %u len: %u int_en %d\n",
|
|
ppc440spe_chan->device->id, __func__, value, len,
|
|
flags & DMA_PREP_INTERRUPT ? 1 : 0);
|
|
|
|
slot_cnt = slots_per_op = 1;
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
|
|
slots_per_op);
|
|
if (sw_desc) {
|
|
group_start = sw_desc->group_head;
|
|
ppc440spe_desc_init_memset(group_start, value, flags);
|
|
ppc440spe_adma_set_dest(group_start, dma_dest, 0);
|
|
ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
|
|
sw_desc->unmap_len = len;
|
|
sw_desc->async_tx.flags = flags;
|
|
}
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
|
|
return sw_desc ? &sw_desc->async_tx : NULL;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
|
|
*/
|
|
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
|
|
struct dma_chan *chan, dma_addr_t dma_dest,
|
|
dma_addr_t *dma_src, u32 src_cnt, size_t len,
|
|
unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
|
|
int slot_cnt, slots_per_op;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
|
|
ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
|
|
dma_dest, dma_src, src_cnt));
|
|
if (unlikely(!len))
|
|
return NULL;
|
|
BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
|
|
|
|
dev_dbg(ppc440spe_chan->device->common.dev,
|
|
"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
|
|
ppc440spe_chan->device->id, __func__, src_cnt, len,
|
|
flags & DMA_PREP_INTERRUPT ? 1 : 0);
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
|
|
slots_per_op);
|
|
if (sw_desc) {
|
|
group_start = sw_desc->group_head;
|
|
ppc440spe_desc_init_xor(group_start, src_cnt, flags);
|
|
ppc440spe_adma_set_dest(group_start, dma_dest, 0);
|
|
while (src_cnt--)
|
|
ppc440spe_adma_memcpy_xor_set_src(group_start,
|
|
dma_src[src_cnt], src_cnt);
|
|
ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
|
|
sw_desc->unmap_len = len;
|
|
sw_desc->async_tx.flags = flags;
|
|
}
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
|
|
return sw_desc ? &sw_desc->async_tx : NULL;
|
|
}
|
|
|
|
static inline void
|
|
ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
|
|
int src_cnt);
|
|
static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
|
|
|
|
/**
|
|
* ppc440spe_adma_init_dma2rxor_slot -
|
|
*/
|
|
static void ppc440spe_adma_init_dma2rxor_slot(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
dma_addr_t *src, int src_cnt)
|
|
{
|
|
int i;
|
|
|
|
/* initialize CDB */
|
|
for (i = 0; i < src_cnt; i++) {
|
|
ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
|
|
desc->src_cnt, (u32)src[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_dma01_prep_mult -
|
|
* for Q operation where destination is also the source
|
|
*/
|
|
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
|
|
struct ppc440spe_adma_chan *ppc440spe_chan,
|
|
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
|
|
const unsigned char *scf, size_t len, unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
|
|
unsigned long op = 0;
|
|
int slot_cnt;
|
|
|
|
set_bit(PPC440SPE_DESC_WXOR, &op);
|
|
slot_cnt = 2;
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
|
|
/* use WXOR, each descriptor occupies one slot */
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
|
|
if (sw_desc) {
|
|
struct ppc440spe_adma_chan *chan;
|
|
struct ppc440spe_adma_desc_slot *iter;
|
|
struct dma_cdb *hw_desc;
|
|
|
|
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
|
|
set_bits(op, &sw_desc->flags);
|
|
sw_desc->src_cnt = src_cnt;
|
|
sw_desc->dst_cnt = dst_cnt;
|
|
/* First descriptor, zero data in the destination and copy it
|
|
* to q page using MULTICAST transfer.
|
|
*/
|
|
iter = list_first_entry(&sw_desc->group_list,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
/* set 'next' pointer */
|
|
iter->hw_next = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MULTICAST;
|
|
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
DMA_CUED_XOR_BASE, dst[0], 0);
|
|
ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
|
|
src[0]);
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
|
|
iter->unmap_len = len;
|
|
|
|
/*
|
|
* Second descriptor, multiply data from the q page
|
|
* and store the result in real destination.
|
|
*/
|
|
iter = list_first_entry(&iter->chain_node,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
iter->hw_next = NULL;
|
|
if (flags & DMA_PREP_INTERRUPT)
|
|
set_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
else
|
|
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0,
|
|
DMA_CUED_XOR_HB, dst[1]);
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
DMA_CUED_XOR_BASE, dst[0], 0);
|
|
|
|
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
|
|
DMA_CDB_SG_DST1, scf[0]);
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
|
|
iter->unmap_len = len;
|
|
sw_desc->async_tx.flags = flags;
|
|
}
|
|
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
|
|
return sw_desc;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_dma01_prep_sum_product -
|
|
* Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
|
|
* the source.
|
|
*/
|
|
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
|
|
struct ppc440spe_adma_chan *ppc440spe_chan,
|
|
dma_addr_t *dst, dma_addr_t *src, int src_cnt,
|
|
const unsigned char *scf, size_t len, unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
|
|
unsigned long op = 0;
|
|
int slot_cnt;
|
|
|
|
set_bit(PPC440SPE_DESC_WXOR, &op);
|
|
slot_cnt = 3;
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
|
|
/* WXOR, each descriptor occupies one slot */
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
|
|
if (sw_desc) {
|
|
struct ppc440spe_adma_chan *chan;
|
|
struct ppc440spe_adma_desc_slot *iter;
|
|
struct dma_cdb *hw_desc;
|
|
|
|
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
|
|
set_bits(op, &sw_desc->flags);
|
|
sw_desc->src_cnt = src_cnt;
|
|
sw_desc->dst_cnt = 1;
|
|
/* 1st descriptor, src[1] data to q page and zero destination */
|
|
iter = list_first_entry(&sw_desc->group_list,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
iter->hw_next = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MULTICAST;
|
|
|
|
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
|
|
*dst, 0);
|
|
ppc440spe_desc_set_dest_addr(iter, chan, 0,
|
|
ppc440spe_chan->qdest, 1);
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
|
|
src[1]);
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
|
|
iter->unmap_len = len;
|
|
|
|
/* 2nd descriptor, multiply src[1] data and store the
|
|
* result in destination */
|
|
iter = list_first_entry(&iter->chain_node,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
/* set 'next' pointer */
|
|
iter->hw_next = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
if (flags & DMA_PREP_INTERRUPT)
|
|
set_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
else
|
|
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
|
|
ppc440spe_chan->qdest);
|
|
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
|
|
*dst, 0);
|
|
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
|
|
DMA_CDB_SG_DST1, scf[1]);
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
|
|
iter->unmap_len = len;
|
|
|
|
/*
|
|
* 3rd descriptor, multiply src[0] data and xor it
|
|
* with destination
|
|
*/
|
|
iter = list_first_entry(&iter->chain_node,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
iter->hw_next = NULL;
|
|
if (flags & DMA_PREP_INTERRUPT)
|
|
set_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
else
|
|
clear_bit(PPC440SPE_DESC_INT, &iter->flags);
|
|
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
|
|
src[0]);
|
|
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
|
|
*dst, 0);
|
|
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
|
|
DMA_CDB_SG_DST1, scf[0]);
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
|
|
iter->unmap_len = len;
|
|
sw_desc->async_tx.flags = flags;
|
|
}
|
|
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
|
|
return sw_desc;
|
|
}
|
|
|
|
static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
|
|
struct ppc440spe_adma_chan *ppc440spe_chan,
|
|
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
|
|
const unsigned char *scf, size_t len, unsigned long flags)
|
|
{
|
|
int slot_cnt;
|
|
struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
|
|
unsigned long op = 0;
|
|
unsigned char mult = 1;
|
|
|
|
pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
|
|
__func__, dst_cnt, src_cnt, len);
|
|
/* select operations WXOR/RXOR depending on the
|
|
* source addresses of operators and the number
|
|
* of destinations (RXOR support only Q-parity calculations)
|
|
*/
|
|
set_bit(PPC440SPE_DESC_WXOR, &op);
|
|
if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
|
|
/* no active RXOR;
|
|
* do RXOR if:
|
|
* - there are more than 1 source,
|
|
* - len is aligned on 512-byte boundary,
|
|
* - source addresses fit to one of 4 possible regions.
|
|
*/
|
|
if (src_cnt > 1 &&
|
|
!(len & MQ0_CF2H_RXOR_BS_MASK) &&
|
|
(src[0] + len) == src[1]) {
|
|
/* may do RXOR R1 R2 */
|
|
set_bit(PPC440SPE_DESC_RXOR, &op);
|
|
if (src_cnt != 2) {
|
|
/* may try to enhance region of RXOR */
|
|
if ((src[1] + len) == src[2]) {
|
|
/* do RXOR R1 R2 R3 */
|
|
set_bit(PPC440SPE_DESC_RXOR123,
|
|
&op);
|
|
} else if ((src[1] + len * 2) == src[2]) {
|
|
/* do RXOR R1 R2 R4 */
|
|
set_bit(PPC440SPE_DESC_RXOR124, &op);
|
|
} else if ((src[1] + len * 3) == src[2]) {
|
|
/* do RXOR R1 R2 R5 */
|
|
set_bit(PPC440SPE_DESC_RXOR125,
|
|
&op);
|
|
} else {
|
|
/* do RXOR R1 R2 */
|
|
set_bit(PPC440SPE_DESC_RXOR12,
|
|
&op);
|
|
}
|
|
} else {
|
|
/* do RXOR R1 R2 */
|
|
set_bit(PPC440SPE_DESC_RXOR12, &op);
|
|
}
|
|
}
|
|
|
|
if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
|
|
/* can not do this operation with RXOR */
|
|
clear_bit(PPC440SPE_RXOR_RUN,
|
|
&ppc440spe_rxor_state);
|
|
} else {
|
|
/* can do; set block size right now */
|
|
ppc440spe_desc_set_rxor_block_size(len);
|
|
}
|
|
}
|
|
|
|
/* Number of necessary slots depends on operation type selected */
|
|
if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
|
|
/* This is a WXOR only chain. Need descriptors for each
|
|
* source to GF-XOR them with WXOR, and need descriptors
|
|
* for each destination to zero them with WXOR
|
|
*/
|
|
slot_cnt = src_cnt;
|
|
|
|
if (flags & DMA_PREP_ZERO_P) {
|
|
slot_cnt++;
|
|
set_bit(PPC440SPE_ZERO_P, &op);
|
|
}
|
|
if (flags & DMA_PREP_ZERO_Q) {
|
|
slot_cnt++;
|
|
set_bit(PPC440SPE_ZERO_Q, &op);
|
|
}
|
|
} else {
|
|
/* Need 1/2 descriptor for RXOR operation, and
|
|
* need (src_cnt - (2 or 3)) for WXOR of sources
|
|
* remained (if any)
|
|
*/
|
|
slot_cnt = dst_cnt;
|
|
|
|
if (flags & DMA_PREP_ZERO_P)
|
|
set_bit(PPC440SPE_ZERO_P, &op);
|
|
if (flags & DMA_PREP_ZERO_Q)
|
|
set_bit(PPC440SPE_ZERO_Q, &op);
|
|
|
|
if (test_bit(PPC440SPE_DESC_RXOR12, &op))
|
|
slot_cnt += src_cnt - 2;
|
|
else
|
|
slot_cnt += src_cnt - 3;
|
|
|
|
/* Thus we have either RXOR only chain or
|
|
* mixed RXOR/WXOR
|
|
*/
|
|
if (slot_cnt == dst_cnt)
|
|
/* RXOR only chain */
|
|
clear_bit(PPC440SPE_DESC_WXOR, &op);
|
|
}
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
/* for both RXOR/WXOR each descriptor occupies one slot */
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
|
|
if (sw_desc) {
|
|
ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
|
|
flags, op);
|
|
|
|
/* setup dst/src/mult */
|
|
pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
|
|
__func__, dst[0], dst[1]);
|
|
ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
|
|
while (src_cnt--) {
|
|
ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
|
|
src_cnt);
|
|
|
|
/* NOTE: "Multi = 0 is equivalent to = 1" as it
|
|
* stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
|
|
* doesn't work for RXOR with DMA0/1! Instead, multi=0
|
|
* leads to zeroing source data after RXOR.
|
|
* So, for P case set-up mult=1 explicitly.
|
|
*/
|
|
if (!(flags & DMA_PREP_PQ_DISABLE_Q))
|
|
mult = scf[src_cnt];
|
|
ppc440spe_adma_pq_set_src_mult(sw_desc,
|
|
mult, src_cnt, dst_cnt - 1);
|
|
}
|
|
|
|
/* Setup byte count foreach slot just allocated */
|
|
sw_desc->async_tx.flags = flags;
|
|
list_for_each_entry(iter, &sw_desc->group_list,
|
|
chain_node) {
|
|
ppc440spe_desc_set_byte_count(iter,
|
|
ppc440spe_chan, len);
|
|
iter->unmap_len = len;
|
|
}
|
|
}
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
|
|
return sw_desc;
|
|
}
|
|
|
|
static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
|
|
struct ppc440spe_adma_chan *ppc440spe_chan,
|
|
dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
|
|
const unsigned char *scf, size_t len, unsigned long flags)
|
|
{
|
|
int slot_cnt, descs_per_op;
|
|
struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
|
|
unsigned long op = 0;
|
|
unsigned char mult = 1;
|
|
|
|
BUG_ON(!dst_cnt);
|
|
/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
|
|
__func__, dst_cnt, src_cnt, len);*/
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
|
|
if (descs_per_op < 0) {
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
return NULL;
|
|
}
|
|
|
|
/* depending on number of sources we have 1 or 2 RXOR chains */
|
|
slot_cnt = descs_per_op * dst_cnt;
|
|
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
|
|
if (sw_desc) {
|
|
op = slot_cnt;
|
|
sw_desc->async_tx.flags = flags;
|
|
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
|
|
ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
|
|
--op ? 0 : flags);
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
|
|
len);
|
|
iter->unmap_len = len;
|
|
|
|
ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
|
|
iter->rxor_cursor.len = len;
|
|
iter->descs_per_op = descs_per_op;
|
|
}
|
|
op = 0;
|
|
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
|
|
op++;
|
|
if (op % descs_per_op == 0)
|
|
ppc440spe_adma_init_dma2rxor_slot(iter, src,
|
|
src_cnt);
|
|
if (likely(!list_is_last(&iter->chain_node,
|
|
&sw_desc->group_list))) {
|
|
/* set 'next' pointer */
|
|
iter->hw_next =
|
|
list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
ppc440spe_xor_set_link(iter, iter->hw_next);
|
|
} else {
|
|
/* this is the last descriptor. */
|
|
iter->hw_next = NULL;
|
|
}
|
|
}
|
|
|
|
/* fixup head descriptor */
|
|
sw_desc->dst_cnt = dst_cnt;
|
|
if (flags & DMA_PREP_ZERO_P)
|
|
set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
|
|
if (flags & DMA_PREP_ZERO_Q)
|
|
set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
|
|
|
|
/* setup dst/src/mult */
|
|
ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
|
|
|
|
while (src_cnt--) {
|
|
/* handle descriptors (if dst_cnt == 2) inside
|
|
* the ppc440spe_adma_pq_set_srcxxx() functions
|
|
*/
|
|
ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
|
|
src_cnt);
|
|
if (!(flags & DMA_PREP_PQ_DISABLE_Q))
|
|
mult = scf[src_cnt];
|
|
ppc440spe_adma_pq_set_src_mult(sw_desc,
|
|
mult, src_cnt, dst_cnt - 1);
|
|
}
|
|
}
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
ppc440spe_desc_set_rxor_block_size(len);
|
|
return sw_desc;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
|
|
*/
|
|
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
|
|
struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf,
|
|
size_t len, unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
struct ppc440spe_adma_desc_slot *sw_desc = NULL;
|
|
int dst_cnt = 0;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
|
|
ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
|
|
dst, src, src_cnt));
|
|
BUG_ON(!len);
|
|
BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
|
|
BUG_ON(!src_cnt);
|
|
|
|
if (src_cnt == 1 && dst[1] == src[0]) {
|
|
dma_addr_t dest[2];
|
|
|
|
/* dst[1] is real destination (Q) */
|
|
dest[0] = dst[1];
|
|
/* this is the page to multicast source data to */
|
|
dest[1] = ppc440spe_chan->qdest;
|
|
sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
|
|
dest, 2, src, src_cnt, scf, len, flags);
|
|
return sw_desc ? &sw_desc->async_tx : NULL;
|
|
}
|
|
|
|
if (src_cnt == 2 && dst[1] == src[1]) {
|
|
sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
|
|
&dst[1], src, 2, scf, len, flags);
|
|
return sw_desc ? &sw_desc->async_tx : NULL;
|
|
}
|
|
|
|
if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
|
|
BUG_ON(!dst[0]);
|
|
dst_cnt++;
|
|
flags |= DMA_PREP_ZERO_P;
|
|
}
|
|
|
|
if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
|
|
BUG_ON(!dst[1]);
|
|
dst_cnt++;
|
|
flags |= DMA_PREP_ZERO_Q;
|
|
}
|
|
|
|
BUG_ON(!dst_cnt);
|
|
|
|
dev_dbg(ppc440spe_chan->device->common.dev,
|
|
"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
|
|
ppc440spe_chan->device->id, __func__, src_cnt, len,
|
|
flags & DMA_PREP_INTERRUPT ? 1 : 0);
|
|
|
|
switch (ppc440spe_chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
|
|
dst, dst_cnt, src, src_cnt, scf,
|
|
len, flags);
|
|
break;
|
|
|
|
case PPC440SPE_XOR_ID:
|
|
sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
|
|
dst, dst_cnt, src, src_cnt, scf,
|
|
len, flags);
|
|
break;
|
|
}
|
|
|
|
return sw_desc ? &sw_desc->async_tx : NULL;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
|
|
* a PQ_ZERO_SUM operation
|
|
*/
|
|
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
|
|
struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
|
|
unsigned int src_cnt, const unsigned char *scf, size_t len,
|
|
enum sum_check_flags *pqres, unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
struct ppc440spe_adma_desc_slot *sw_desc, *iter;
|
|
dma_addr_t pdest, qdest;
|
|
int slot_cnt, slots_per_op, idst, dst_cnt;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
|
|
if (flags & DMA_PREP_PQ_DISABLE_P)
|
|
pdest = 0;
|
|
else
|
|
pdest = pq[0];
|
|
|
|
if (flags & DMA_PREP_PQ_DISABLE_Q)
|
|
qdest = 0;
|
|
else
|
|
qdest = pq[1];
|
|
|
|
ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
|
|
src, src_cnt, scf));
|
|
|
|
/* Always use WXOR for P/Q calculations (two destinations).
|
|
* Need 1 or 2 extra slots to verify results are zero.
|
|
*/
|
|
idst = dst_cnt = (pdest && qdest) ? 2 : 1;
|
|
|
|
/* One additional slot per destination to clone P/Q
|
|
* before calculation (we have to preserve destinations).
|
|
*/
|
|
slot_cnt = src_cnt + dst_cnt * 2;
|
|
slots_per_op = 1;
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
|
|
slots_per_op);
|
|
if (sw_desc) {
|
|
ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
|
|
|
|
/* Setup byte count for each slot just allocated */
|
|
sw_desc->async_tx.flags = flags;
|
|
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
|
|
len);
|
|
iter->unmap_len = len;
|
|
}
|
|
|
|
if (pdest) {
|
|
struct dma_cdb *hw_desc;
|
|
struct ppc440spe_adma_chan *chan;
|
|
|
|
iter = sw_desc->group_head;
|
|
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
iter->hw_next = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
iter->src_cnt = 0;
|
|
iter->dst_cnt = 0;
|
|
ppc440spe_desc_set_dest_addr(iter, chan, 0,
|
|
ppc440spe_chan->pdest, 0);
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
|
|
len);
|
|
iter->unmap_len = 0;
|
|
/* override pdest to preserve original P */
|
|
pdest = ppc440spe_chan->pdest;
|
|
}
|
|
if (qdest) {
|
|
struct dma_cdb *hw_desc;
|
|
struct ppc440spe_adma_chan *chan;
|
|
|
|
iter = list_first_entry(&sw_desc->group_list,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
|
|
|
|
if (pdest) {
|
|
iter = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
}
|
|
|
|
memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
|
|
iter->hw_next = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
hw_desc = iter->hw_desc;
|
|
hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
|
|
iter->src_cnt = 0;
|
|
iter->dst_cnt = 0;
|
|
ppc440spe_desc_set_dest_addr(iter, chan, 0,
|
|
ppc440spe_chan->qdest, 0);
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
|
|
ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
|
|
len);
|
|
iter->unmap_len = 0;
|
|
/* override qdest to preserve original Q */
|
|
qdest = ppc440spe_chan->qdest;
|
|
}
|
|
|
|
/* Setup destinations for P/Q ops */
|
|
ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
|
|
|
|
/* Setup zero QWORDs into DCHECK CDBs */
|
|
idst = dst_cnt;
|
|
list_for_each_entry_reverse(iter, &sw_desc->group_list,
|
|
chain_node) {
|
|
/*
|
|
* The last CDB corresponds to Q-parity check,
|
|
* the one before last CDB corresponds
|
|
* P-parity check
|
|
*/
|
|
if (idst == DMA_DEST_MAX_NUM) {
|
|
if (idst == dst_cnt) {
|
|
set_bit(PPC440SPE_DESC_QCHECK,
|
|
&iter->flags);
|
|
} else {
|
|
set_bit(PPC440SPE_DESC_PCHECK,
|
|
&iter->flags);
|
|
}
|
|
} else {
|
|
if (qdest) {
|
|
set_bit(PPC440SPE_DESC_QCHECK,
|
|
&iter->flags);
|
|
} else {
|
|
set_bit(PPC440SPE_DESC_PCHECK,
|
|
&iter->flags);
|
|
}
|
|
}
|
|
iter->xor_check_result = pqres;
|
|
|
|
/*
|
|
* set it to zero, if check fail then result will
|
|
* be updated
|
|
*/
|
|
*iter->xor_check_result = 0;
|
|
ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
|
|
ppc440spe_qword);
|
|
|
|
if (!(--dst_cnt))
|
|
break;
|
|
}
|
|
|
|
/* Setup sources and mults for P/Q ops */
|
|
list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
|
|
chain_node) {
|
|
struct ppc440spe_adma_chan *chan;
|
|
u32 mult_dst;
|
|
|
|
chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0,
|
|
DMA_CUED_XOR_HB,
|
|
src[src_cnt - 1]);
|
|
if (qdest) {
|
|
mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
|
|
DMA_CDB_SG_DST1;
|
|
ppc440spe_desc_set_src_mult(iter, chan,
|
|
DMA_CUED_MULT1_OFF,
|
|
mult_dst,
|
|
scf[src_cnt - 1]);
|
|
}
|
|
if (!(--src_cnt))
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
return sw_desc ? &sw_desc->async_tx : NULL;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
|
|
* XOR ZERO_SUM operation
|
|
*/
|
|
static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
|
|
struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
|
|
size_t len, enum sum_check_flags *result, unsigned long flags)
|
|
{
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_addr_t pq[2];
|
|
|
|
/* validate P, disable Q */
|
|
pq[0] = src[0];
|
|
pq[1] = 0;
|
|
flags |= DMA_PREP_PQ_DISABLE_Q;
|
|
|
|
tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
|
|
src_cnt - 1, 0, len,
|
|
result, flags);
|
|
return tx;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_set_dest - set destination address into descriptor
|
|
*/
|
|
static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
|
|
dma_addr_t addr, int index)
|
|
{
|
|
struct ppc440spe_adma_chan *chan;
|
|
|
|
BUG_ON(index >= sw_desc->dst_cnt);
|
|
|
|
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
/* to do: support transfers lengths >
|
|
* PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
|
|
*/
|
|
ppc440spe_desc_set_dest_addr(sw_desc->group_head,
|
|
chan, 0, addr, index);
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
sw_desc = ppc440spe_get_group_entry(sw_desc, index);
|
|
ppc440spe_desc_set_dest_addr(sw_desc,
|
|
chan, 0, addr, index);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
|
|
struct ppc440spe_adma_chan *chan, dma_addr_t addr)
|
|
{
|
|
/* To clear destinations update the descriptor
|
|
* (P or Q depending on index) as follows:
|
|
* addr is destination (0 corresponds to SG2):
|
|
*/
|
|
ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
|
|
|
|
/* ... and the addr is source: */
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
|
|
|
|
/* addr is always SG2 then the mult is always DST1 */
|
|
ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
|
|
DMA_CDB_SG_DST1, 1);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_pq_set_dest - set destination address into descriptor
|
|
* for the PQXOR operation
|
|
*/
|
|
static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
|
|
dma_addr_t *addrs, unsigned long flags)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *iter;
|
|
struct ppc440spe_adma_chan *chan;
|
|
dma_addr_t paddr, qaddr;
|
|
dma_addr_t addr = 0, ppath, qpath;
|
|
int index = 0, i;
|
|
|
|
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
|
|
|
|
if (flags & DMA_PREP_PQ_DISABLE_P)
|
|
paddr = 0;
|
|
else
|
|
paddr = addrs[0];
|
|
|
|
if (flags & DMA_PREP_PQ_DISABLE_Q)
|
|
qaddr = 0;
|
|
else
|
|
qaddr = addrs[1];
|
|
|
|
if (!paddr || !qaddr)
|
|
addr = paddr ? paddr : qaddr;
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
/* walk through the WXOR source list and set P/Q-destinations
|
|
* for each slot:
|
|
*/
|
|
if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
|
|
/* This is WXOR-only chain; may have 1/2 zero descs */
|
|
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
|
|
index++;
|
|
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
|
|
index++;
|
|
|
|
iter = ppc440spe_get_group_entry(sw_desc, index);
|
|
if (addr) {
|
|
/* one destination */
|
|
list_for_each_entry_from(iter,
|
|
&sw_desc->group_list, chain_node)
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
DMA_CUED_XOR_BASE, addr, 0);
|
|
} else {
|
|
/* two destinations */
|
|
list_for_each_entry_from(iter,
|
|
&sw_desc->group_list, chain_node) {
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
DMA_CUED_XOR_BASE, paddr, 0);
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
DMA_CUED_XOR_BASE, qaddr, 1);
|
|
}
|
|
}
|
|
|
|
if (index) {
|
|
/* To clear destinations update the descriptor
|
|
* (1st,2nd, or both depending on flags)
|
|
*/
|
|
index = 0;
|
|
if (test_bit(PPC440SPE_ZERO_P,
|
|
&sw_desc->flags)) {
|
|
iter = ppc440spe_get_group_entry(
|
|
sw_desc, index++);
|
|
ppc440spe_adma_pq_zero_op(iter, chan,
|
|
paddr);
|
|
}
|
|
|
|
if (test_bit(PPC440SPE_ZERO_Q,
|
|
&sw_desc->flags)) {
|
|
iter = ppc440spe_get_group_entry(
|
|
sw_desc, index++);
|
|
ppc440spe_adma_pq_zero_op(iter, chan,
|
|
qaddr);
|
|
}
|
|
|
|
return;
|
|
}
|
|
} else {
|
|
/* This is RXOR-only or RXOR/WXOR mixed chain */
|
|
|
|
/* If we want to include destination into calculations,
|
|
* then make dest addresses cued with mult=1 (XOR).
|
|
*/
|
|
ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
|
|
DMA_CUED_XOR_HB :
|
|
DMA_CUED_XOR_BASE |
|
|
(1 << DMA_CUED_MULT1_OFF);
|
|
qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
|
|
DMA_CUED_XOR_HB :
|
|
DMA_CUED_XOR_BASE |
|
|
(1 << DMA_CUED_MULT1_OFF);
|
|
|
|
/* Setup destination(s) in RXOR slot(s) */
|
|
iter = ppc440spe_get_group_entry(sw_desc, index++);
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
paddr ? ppath : qpath,
|
|
paddr ? paddr : qaddr, 0);
|
|
if (!addr) {
|
|
/* two destinations */
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
index++);
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
qpath, qaddr, 0);
|
|
}
|
|
|
|
if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
|
|
/* Setup destination(s) in remaining WXOR
|
|
* slots
|
|
*/
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
index);
|
|
if (addr) {
|
|
/* one destination */
|
|
list_for_each_entry_from(iter,
|
|
&sw_desc->group_list,
|
|
chain_node)
|
|
ppc440spe_desc_set_dest_addr(
|
|
iter, chan,
|
|
DMA_CUED_XOR_BASE,
|
|
addr, 0);
|
|
|
|
} else {
|
|
/* two destinations */
|
|
list_for_each_entry_from(iter,
|
|
&sw_desc->group_list,
|
|
chain_node) {
|
|
ppc440spe_desc_set_dest_addr(
|
|
iter, chan,
|
|
DMA_CUED_XOR_BASE,
|
|
paddr, 0);
|
|
ppc440spe_desc_set_dest_addr(
|
|
iter, chan,
|
|
DMA_CUED_XOR_BASE,
|
|
qaddr, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
break;
|
|
|
|
case PPC440SPE_XOR_ID:
|
|
/* DMA2 descriptors have only 1 destination, so there are
|
|
* two chains - one for each dest.
|
|
* If we want to include destination into calculations,
|
|
* then make dest addresses cued with mult=1 (XOR).
|
|
*/
|
|
ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
|
|
DMA_CUED_XOR_HB :
|
|
DMA_CUED_XOR_BASE |
|
|
(1 << DMA_CUED_MULT1_OFF);
|
|
|
|
qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
|
|
DMA_CUED_XOR_HB :
|
|
DMA_CUED_XOR_BASE |
|
|
(1 << DMA_CUED_MULT1_OFF);
|
|
|
|
iter = ppc440spe_get_group_entry(sw_desc, 0);
|
|
for (i = 0; i < sw_desc->descs_per_op; i++) {
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
paddr ? ppath : qpath,
|
|
paddr ? paddr : qaddr, 0);
|
|
iter = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
}
|
|
|
|
if (!addr) {
|
|
/* Two destinations; setup Q here */
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
sw_desc->descs_per_op);
|
|
for (i = 0; i < sw_desc->descs_per_op; i++) {
|
|
ppc440spe_desc_set_dest_addr(iter,
|
|
chan, qpath, qaddr, 0);
|
|
iter = list_entry(iter->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
|
|
* for the PQ_ZERO_SUM operation
|
|
*/
|
|
static void ppc440spe_adma_pqzero_sum_set_dest(
|
|
struct ppc440spe_adma_desc_slot *sw_desc,
|
|
dma_addr_t paddr, dma_addr_t qaddr)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *iter, *end;
|
|
struct ppc440spe_adma_chan *chan;
|
|
dma_addr_t addr = 0;
|
|
int idx;
|
|
|
|
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
|
|
|
|
/* walk through the WXOR source list and set P/Q-destinations
|
|
* for each slot
|
|
*/
|
|
idx = (paddr && qaddr) ? 2 : 1;
|
|
/* set end */
|
|
list_for_each_entry_reverse(end, &sw_desc->group_list,
|
|
chain_node) {
|
|
if (!(--idx))
|
|
break;
|
|
}
|
|
/* set start */
|
|
idx = (paddr && qaddr) ? 2 : 1;
|
|
iter = ppc440spe_get_group_entry(sw_desc, idx);
|
|
|
|
if (paddr && qaddr) {
|
|
/* two destinations */
|
|
list_for_each_entry_from(iter, &sw_desc->group_list,
|
|
chain_node) {
|
|
if (unlikely(iter == end))
|
|
break;
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
DMA_CUED_XOR_BASE, paddr, 0);
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
DMA_CUED_XOR_BASE, qaddr, 1);
|
|
}
|
|
} else {
|
|
/* one destination */
|
|
addr = paddr ? paddr : qaddr;
|
|
list_for_each_entry_from(iter, &sw_desc->group_list,
|
|
chain_node) {
|
|
if (unlikely(iter == end))
|
|
break;
|
|
ppc440spe_desc_set_dest_addr(iter, chan,
|
|
DMA_CUED_XOR_BASE, addr, 0);
|
|
}
|
|
}
|
|
|
|
/* The remaining descriptors are DATACHECK. These have no need in
|
|
* destination. Actually, these destinations are used there
|
|
* as sources for check operation. So, set addr as source.
|
|
*/
|
|
ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
|
|
|
|
if (!addr) {
|
|
end = list_entry(end->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot, chain_node);
|
|
ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
|
|
*/
|
|
static inline void ppc440spe_desc_set_xor_src_cnt(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
int src_cnt)
|
|
{
|
|
struct xor_cb *hw_desc = desc->hw_desc;
|
|
|
|
hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
|
|
hw_desc->cbc |= src_cnt;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_pq_set_src - set source address into descriptor
|
|
*/
|
|
static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
|
|
dma_addr_t addr, int index)
|
|
{
|
|
struct ppc440spe_adma_chan *chan;
|
|
dma_addr_t haddr = 0;
|
|
struct ppc440spe_adma_desc_slot *iter = NULL;
|
|
|
|
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
|
|
*/
|
|
if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
|
|
/* RXOR-only or RXOR/WXOR operation */
|
|
int iskip = test_bit(PPC440SPE_DESC_RXOR12,
|
|
&sw_desc->flags) ? 2 : 3;
|
|
|
|
if (index == 0) {
|
|
/* 1st slot (RXOR) */
|
|
/* setup sources region (R1-2-3, R1-2-4,
|
|
* or R1-2-5)
|
|
*/
|
|
if (test_bit(PPC440SPE_DESC_RXOR12,
|
|
&sw_desc->flags))
|
|
haddr = DMA_RXOR12 <<
|
|
DMA_CUED_REGION_OFF;
|
|
else if (test_bit(PPC440SPE_DESC_RXOR123,
|
|
&sw_desc->flags))
|
|
haddr = DMA_RXOR123 <<
|
|
DMA_CUED_REGION_OFF;
|
|
else if (test_bit(PPC440SPE_DESC_RXOR124,
|
|
&sw_desc->flags))
|
|
haddr = DMA_RXOR124 <<
|
|
DMA_CUED_REGION_OFF;
|
|
else if (test_bit(PPC440SPE_DESC_RXOR125,
|
|
&sw_desc->flags))
|
|
haddr = DMA_RXOR125 <<
|
|
DMA_CUED_REGION_OFF;
|
|
else
|
|
BUG();
|
|
haddr |= DMA_CUED_XOR_BASE;
|
|
iter = ppc440spe_get_group_entry(sw_desc, 0);
|
|
} else if (index < iskip) {
|
|
/* 1st slot (RXOR)
|
|
* shall actually set source address only once
|
|
* instead of first <iskip>
|
|
*/
|
|
iter = NULL;
|
|
} else {
|
|
/* 2nd/3d and next slots (WXOR);
|
|
* skip first slot with RXOR
|
|
*/
|
|
haddr = DMA_CUED_XOR_HB;
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
index - iskip + sw_desc->dst_cnt);
|
|
}
|
|
} else {
|
|
int znum = 0;
|
|
|
|
/* WXOR-only operation; skip first slots with
|
|
* zeroing destinations
|
|
*/
|
|
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
|
|
znum++;
|
|
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
|
|
znum++;
|
|
|
|
haddr = DMA_CUED_XOR_HB;
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
index + znum);
|
|
}
|
|
|
|
if (likely(iter)) {
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
|
|
|
|
if (!index &&
|
|
test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
|
|
sw_desc->dst_cnt == 2) {
|
|
/* if we have two destinations for RXOR, then
|
|
* setup source in the second descr too
|
|
*/
|
|
iter = ppc440spe_get_group_entry(sw_desc, 1);
|
|
ppc440spe_desc_set_src_addr(iter, chan, 0,
|
|
haddr, addr);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case PPC440SPE_XOR_ID:
|
|
/* DMA2 may do Biskup */
|
|
iter = sw_desc->group_head;
|
|
if (iter->dst_cnt == 2) {
|
|
/* both P & Q calculations required; set P src here */
|
|
ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
|
|
|
|
/* this is for Q */
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
sw_desc->descs_per_op);
|
|
}
|
|
ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
|
|
*/
|
|
static void ppc440spe_adma_memcpy_xor_set_src(
|
|
struct ppc440spe_adma_desc_slot *sw_desc,
|
|
dma_addr_t addr, int index)
|
|
{
|
|
struct ppc440spe_adma_chan *chan;
|
|
|
|
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
|
|
sw_desc = sw_desc->group_head;
|
|
|
|
if (likely(sw_desc))
|
|
ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_dma2rxor_inc_addr -
|
|
*/
|
|
static void ppc440spe_adma_dma2rxor_inc_addr(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
struct ppc440spe_rxor *cursor, int index, int src_cnt)
|
|
{
|
|
cursor->addr_count++;
|
|
if (index == src_cnt - 1) {
|
|
ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
|
|
} else if (cursor->addr_count == XOR_MAX_OPS) {
|
|
ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
|
|
cursor->addr_count = 0;
|
|
cursor->desc_count++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
|
|
*/
|
|
static int ppc440spe_adma_dma2rxor_prep_src(
|
|
struct ppc440spe_adma_desc_slot *hdesc,
|
|
struct ppc440spe_rxor *cursor, int index,
|
|
int src_cnt, u32 addr)
|
|
{
|
|
int rval = 0;
|
|
u32 sign;
|
|
struct ppc440spe_adma_desc_slot *desc = hdesc;
|
|
int i;
|
|
|
|
for (i = 0; i < cursor->desc_count; i++) {
|
|
desc = list_entry(hdesc->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
}
|
|
|
|
switch (cursor->state) {
|
|
case 0:
|
|
if (addr == cursor->addrl + cursor->len) {
|
|
/* direct RXOR */
|
|
cursor->state = 1;
|
|
cursor->xor_count++;
|
|
if (index == src_cnt-1) {
|
|
ppc440spe_rxor_set_region(desc,
|
|
cursor->addr_count,
|
|
DMA_RXOR12 << DMA_CUED_REGION_OFF);
|
|
ppc440spe_adma_dma2rxor_inc_addr(
|
|
desc, cursor, index, src_cnt);
|
|
}
|
|
} else if (cursor->addrl == addr + cursor->len) {
|
|
/* reverse RXOR */
|
|
cursor->state = 1;
|
|
cursor->xor_count++;
|
|
set_bit(cursor->addr_count, &desc->reverse_flags[0]);
|
|
if (index == src_cnt-1) {
|
|
ppc440spe_rxor_set_region(desc,
|
|
cursor->addr_count,
|
|
DMA_RXOR12 << DMA_CUED_REGION_OFF);
|
|
ppc440spe_adma_dma2rxor_inc_addr(
|
|
desc, cursor, index, src_cnt);
|
|
}
|
|
} else {
|
|
printk(KERN_ERR "Cannot build "
|
|
"DMA2 RXOR command block.\n");
|
|
BUG();
|
|
}
|
|
break;
|
|
case 1:
|
|
sign = test_bit(cursor->addr_count,
|
|
desc->reverse_flags)
|
|
? -1 : 1;
|
|
if (index == src_cnt-2 || (sign == -1
|
|
&& addr != cursor->addrl - 2*cursor->len)) {
|
|
cursor->state = 0;
|
|
cursor->xor_count = 1;
|
|
cursor->addrl = addr;
|
|
ppc440spe_rxor_set_region(desc,
|
|
cursor->addr_count,
|
|
DMA_RXOR12 << DMA_CUED_REGION_OFF);
|
|
ppc440spe_adma_dma2rxor_inc_addr(
|
|
desc, cursor, index, src_cnt);
|
|
} else if (addr == cursor->addrl + 2*sign*cursor->len) {
|
|
cursor->state = 2;
|
|
cursor->xor_count = 0;
|
|
ppc440spe_rxor_set_region(desc,
|
|
cursor->addr_count,
|
|
DMA_RXOR123 << DMA_CUED_REGION_OFF);
|
|
if (index == src_cnt-1) {
|
|
ppc440spe_adma_dma2rxor_inc_addr(
|
|
desc, cursor, index, src_cnt);
|
|
}
|
|
} else if (addr == cursor->addrl + 3*cursor->len) {
|
|
cursor->state = 2;
|
|
cursor->xor_count = 0;
|
|
ppc440spe_rxor_set_region(desc,
|
|
cursor->addr_count,
|
|
DMA_RXOR124 << DMA_CUED_REGION_OFF);
|
|
if (index == src_cnt-1) {
|
|
ppc440spe_adma_dma2rxor_inc_addr(
|
|
desc, cursor, index, src_cnt);
|
|
}
|
|
} else if (addr == cursor->addrl + 4*cursor->len) {
|
|
cursor->state = 2;
|
|
cursor->xor_count = 0;
|
|
ppc440spe_rxor_set_region(desc,
|
|
cursor->addr_count,
|
|
DMA_RXOR125 << DMA_CUED_REGION_OFF);
|
|
if (index == src_cnt-1) {
|
|
ppc440spe_adma_dma2rxor_inc_addr(
|
|
desc, cursor, index, src_cnt);
|
|
}
|
|
} else {
|
|
cursor->state = 0;
|
|
cursor->xor_count = 1;
|
|
cursor->addrl = addr;
|
|
ppc440spe_rxor_set_region(desc,
|
|
cursor->addr_count,
|
|
DMA_RXOR12 << DMA_CUED_REGION_OFF);
|
|
ppc440spe_adma_dma2rxor_inc_addr(
|
|
desc, cursor, index, src_cnt);
|
|
}
|
|
break;
|
|
case 2:
|
|
cursor->state = 0;
|
|
cursor->addrl = addr;
|
|
cursor->xor_count++;
|
|
if (index) {
|
|
ppc440spe_adma_dma2rxor_inc_addr(
|
|
desc, cursor, index, src_cnt);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return rval;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
|
|
* ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
|
|
*/
|
|
static void ppc440spe_adma_dma2rxor_set_src(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
int index, dma_addr_t addr)
|
|
{
|
|
struct xor_cb *xcb = desc->hw_desc;
|
|
int k = 0, op = 0, lop = 0;
|
|
|
|
/* get the RXOR operand which corresponds to index addr */
|
|
while (op <= index) {
|
|
lop = op;
|
|
if (k == XOR_MAX_OPS) {
|
|
k = 0;
|
|
desc = list_entry(desc->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot, chain_node);
|
|
xcb = desc->hw_desc;
|
|
|
|
}
|
|
if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
|
|
(DMA_RXOR12 << DMA_CUED_REGION_OFF))
|
|
op += 2;
|
|
else
|
|
op += 3;
|
|
}
|
|
|
|
BUG_ON(k < 1);
|
|
|
|
if (test_bit(k-1, desc->reverse_flags)) {
|
|
/* reverse operand order; put last op in RXOR group */
|
|
if (index == op - 1)
|
|
ppc440spe_rxor_set_src(desc, k - 1, addr);
|
|
} else {
|
|
/* direct operand order; put first op in RXOR group */
|
|
if (index == lop)
|
|
ppc440spe_rxor_set_src(desc, k - 1, addr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
|
|
* ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
|
|
*/
|
|
static void ppc440spe_adma_dma2rxor_set_mult(
|
|
struct ppc440spe_adma_desc_slot *desc,
|
|
int index, u8 mult)
|
|
{
|
|
struct xor_cb *xcb = desc->hw_desc;
|
|
int k = 0, op = 0, lop = 0;
|
|
|
|
/* get the RXOR operand which corresponds to index mult */
|
|
while (op <= index) {
|
|
lop = op;
|
|
if (k == XOR_MAX_OPS) {
|
|
k = 0;
|
|
desc = list_entry(desc->chain_node.next,
|
|
struct ppc440spe_adma_desc_slot,
|
|
chain_node);
|
|
xcb = desc->hw_desc;
|
|
|
|
}
|
|
if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
|
|
(DMA_RXOR12 << DMA_CUED_REGION_OFF))
|
|
op += 2;
|
|
else
|
|
op += 3;
|
|
}
|
|
|
|
BUG_ON(k < 1);
|
|
if (test_bit(k-1, desc->reverse_flags)) {
|
|
/* reverse order */
|
|
ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
|
|
} else {
|
|
/* direct order */
|
|
ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_init_rxor_cursor -
|
|
*/
|
|
static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
|
|
{
|
|
memset(cursor, 0, sizeof(struct ppc440spe_rxor));
|
|
cursor->state = 2;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
|
|
* descriptor for the PQXOR operation
|
|
*/
|
|
static void ppc440spe_adma_pq_set_src_mult(
|
|
struct ppc440spe_adma_desc_slot *sw_desc,
|
|
unsigned char mult, int index, int dst_pos)
|
|
{
|
|
struct ppc440spe_adma_chan *chan;
|
|
u32 mult_idx, mult_dst;
|
|
struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
|
|
|
|
chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
|
|
|
|
switch (chan->device->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
|
|
int region = test_bit(PPC440SPE_DESC_RXOR12,
|
|
&sw_desc->flags) ? 2 : 3;
|
|
|
|
if (index < region) {
|
|
/* RXOR multipliers */
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
sw_desc->dst_cnt - 1);
|
|
if (sw_desc->dst_cnt == 2)
|
|
iter1 = ppc440spe_get_group_entry(
|
|
sw_desc, 0);
|
|
|
|
mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
|
|
mult_dst = DMA_CDB_SG_SRC;
|
|
} else {
|
|
/* WXOR multiplier */
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
index - region +
|
|
sw_desc->dst_cnt);
|
|
mult_idx = DMA_CUED_MULT1_OFF;
|
|
mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
|
|
DMA_CDB_SG_DST1;
|
|
}
|
|
} else {
|
|
int znum = 0;
|
|
|
|
/* WXOR-only;
|
|
* skip first slots with destinations (if ZERO_DST has
|
|
* place)
|
|
*/
|
|
if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
|
|
znum++;
|
|
if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
|
|
znum++;
|
|
|
|
iter = ppc440spe_get_group_entry(sw_desc, index + znum);
|
|
mult_idx = DMA_CUED_MULT1_OFF;
|
|
mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
|
|
}
|
|
|
|
if (likely(iter)) {
|
|
ppc440spe_desc_set_src_mult(iter, chan,
|
|
mult_idx, mult_dst, mult);
|
|
|
|
if (unlikely(iter1)) {
|
|
/* if we have two destinations for RXOR, then
|
|
* we've just set Q mult. Set-up P now.
|
|
*/
|
|
ppc440spe_desc_set_src_mult(iter1, chan,
|
|
mult_idx, mult_dst, 1);
|
|
}
|
|
|
|
}
|
|
break;
|
|
|
|
case PPC440SPE_XOR_ID:
|
|
iter = sw_desc->group_head;
|
|
if (sw_desc->dst_cnt == 2) {
|
|
/* both P & Q calculations required; set P mult here */
|
|
ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
|
|
|
|
/* and then set Q mult */
|
|
iter = ppc440spe_get_group_entry(sw_desc,
|
|
sw_desc->descs_per_op);
|
|
}
|
|
ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_free_chan_resources - free the resources allocated
|
|
*/
|
|
static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
struct ppc440spe_adma_desc_slot *iter, *_iter;
|
|
int in_use_descs = 0;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
ppc440spe_adma_slot_cleanup(ppc440spe_chan);
|
|
|
|
spin_lock_bh(&ppc440spe_chan->lock);
|
|
list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
|
|
chain_node) {
|
|
in_use_descs++;
|
|
list_del(&iter->chain_node);
|
|
}
|
|
list_for_each_entry_safe_reverse(iter, _iter,
|
|
&ppc440spe_chan->all_slots, slot_node) {
|
|
list_del(&iter->slot_node);
|
|
kfree(iter);
|
|
ppc440spe_chan->slots_allocated--;
|
|
}
|
|
ppc440spe_chan->last_used = NULL;
|
|
|
|
dev_dbg(ppc440spe_chan->device->common.dev,
|
|
"ppc440spe adma%d %s slots_allocated %d\n",
|
|
ppc440spe_chan->device->id,
|
|
__func__, ppc440spe_chan->slots_allocated);
|
|
spin_unlock_bh(&ppc440spe_chan->lock);
|
|
|
|
/* one is ok since we left it on there on purpose */
|
|
if (in_use_descs > 1)
|
|
printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
|
|
in_use_descs - 1);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_tx_status - poll the status of an ADMA transaction
|
|
* @chan: ADMA channel handle
|
|
* @cookie: ADMA transaction identifier
|
|
* @txstate: a holder for the current state of the channel
|
|
*/
|
|
static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie, struct dma_tx_state *txstate)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
enum dma_status ret;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
ret = dma_cookie_status(chan, cookie, txstate);
|
|
if (ret == DMA_SUCCESS)
|
|
return ret;
|
|
|
|
ppc440spe_adma_slot_cleanup(ppc440spe_chan);
|
|
|
|
return dma_cookie_status(chan, cookie, txstate);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_eot_handler - end of transfer interrupt handler
|
|
*/
|
|
static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
|
|
{
|
|
struct ppc440spe_adma_chan *chan = data;
|
|
|
|
dev_dbg(chan->device->common.dev,
|
|
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
|
|
|
|
tasklet_schedule(&chan->irq_tasklet);
|
|
ppc440spe_adma_device_clear_eot_status(chan);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_err_handler - DMA error interrupt handler;
|
|
* do the same things as a eot handler
|
|
*/
|
|
static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
|
|
{
|
|
struct ppc440spe_adma_chan *chan = data;
|
|
|
|
dev_dbg(chan->device->common.dev,
|
|
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
|
|
|
|
tasklet_schedule(&chan->irq_tasklet);
|
|
ppc440spe_adma_device_clear_eot_status(chan);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_test_callback - called when test operation has been done
|
|
*/
|
|
static void ppc440spe_test_callback(void *unused)
|
|
{
|
|
complete(&ppc440spe_r6_test_comp);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
|
|
*/
|
|
static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
dev_dbg(ppc440spe_chan->device->common.dev,
|
|
"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
|
|
__func__, ppc440spe_chan->pending);
|
|
|
|
if (ppc440spe_chan->pending) {
|
|
ppc440spe_chan->pending = 0;
|
|
ppc440spe_chan_append(ppc440spe_chan);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
|
|
* use FIFOs (as opposite to chains used in XOR) so this is a XOR
|
|
* specific operation)
|
|
*/
|
|
static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
|
|
dma_cookie_t cookie;
|
|
int slot_cnt, slots_per_op;
|
|
|
|
dev_dbg(chan->device->common.dev,
|
|
"ppc440spe adma%d: %s\n", chan->device->id, __func__);
|
|
|
|
spin_lock_bh(&chan->lock);
|
|
slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
|
|
sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
|
|
if (sw_desc) {
|
|
group_start = sw_desc->group_head;
|
|
list_splice_init(&sw_desc->group_list, &chan->chain);
|
|
async_tx_ack(&sw_desc->async_tx);
|
|
ppc440spe_desc_init_null_xor(group_start);
|
|
|
|
cookie = dma_cookie_assign(&sw_desc->async_tx);
|
|
|
|
/* initialize the completed cookie to be less than
|
|
* the most recently used cookie
|
|
*/
|
|
chan->common.completed_cookie = cookie - 1;
|
|
|
|
/* channel should not be busy */
|
|
BUG_ON(ppc440spe_chan_is_busy(chan));
|
|
|
|
/* set the descriptor address */
|
|
ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
|
|
|
|
/* run the descriptor */
|
|
ppc440spe_chan_run(chan);
|
|
} else
|
|
printk(KERN_ERR "ppc440spe adma%d"
|
|
" failed to allocate null descriptor\n",
|
|
chan->device->id);
|
|
spin_unlock_bh(&chan->lock);
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
|
|
* For this we just perform one WXOR operation with the same source
|
|
* and destination addresses, the GF-multiplier is 1; so if RAID-6
|
|
* capabilities are enabled then we'll get src/dst filled with zero.
|
|
*/
|
|
static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
|
|
{
|
|
struct ppc440spe_adma_desc_slot *sw_desc, *iter;
|
|
struct page *pg;
|
|
char *a;
|
|
dma_addr_t dma_addr, addrs[2];
|
|
unsigned long op = 0;
|
|
int rval = 0;
|
|
|
|
set_bit(PPC440SPE_DESC_WXOR, &op);
|
|
|
|
pg = alloc_page(GFP_KERNEL);
|
|
if (!pg)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_bh(&chan->lock);
|
|
sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
|
|
if (sw_desc) {
|
|
/* 1 src, 1 dsr, int_ena, WXOR */
|
|
ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
|
|
list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
|
|
ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
|
|
iter->unmap_len = PAGE_SIZE;
|
|
}
|
|
} else {
|
|
rval = -EFAULT;
|
|
spin_unlock_bh(&chan->lock);
|
|
goto exit;
|
|
}
|
|
spin_unlock_bh(&chan->lock);
|
|
|
|
/* Fill the test page with ones */
|
|
memset(page_address(pg), 0xFF, PAGE_SIZE);
|
|
dma_addr = dma_map_page(chan->device->dev, pg, 0,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
|
|
/* Setup addresses */
|
|
ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
|
|
ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
|
|
addrs[0] = dma_addr;
|
|
addrs[1] = 0;
|
|
ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
|
|
|
|
async_tx_ack(&sw_desc->async_tx);
|
|
sw_desc->async_tx.callback = ppc440spe_test_callback;
|
|
sw_desc->async_tx.callback_param = NULL;
|
|
|
|
init_completion(&ppc440spe_r6_test_comp);
|
|
|
|
ppc440spe_adma_tx_submit(&sw_desc->async_tx);
|
|
ppc440spe_adma_issue_pending(&chan->common);
|
|
|
|
wait_for_completion(&ppc440spe_r6_test_comp);
|
|
|
|
/* Now check if the test page is zeroed */
|
|
a = page_address(pg);
|
|
if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
|
|
/* page is zero - RAID-6 enabled */
|
|
rval = 0;
|
|
} else {
|
|
/* RAID-6 was not enabled */
|
|
rval = -EINVAL;
|
|
}
|
|
exit:
|
|
__free_page(pg);
|
|
return rval;
|
|
}
|
|
|
|
static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
|
|
{
|
|
switch (adev->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
|
|
dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
|
|
dma_cap_set(DMA_MEMSET, adev->common.cap_mask);
|
|
dma_cap_set(DMA_PQ, adev->common.cap_mask);
|
|
dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
|
|
dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
dma_cap_set(DMA_XOR, adev->common.cap_mask);
|
|
dma_cap_set(DMA_PQ, adev->common.cap_mask);
|
|
dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
|
|
adev->common.cap_mask = adev->common.cap_mask;
|
|
break;
|
|
}
|
|
|
|
/* Set base routines */
|
|
adev->common.device_alloc_chan_resources =
|
|
ppc440spe_adma_alloc_chan_resources;
|
|
adev->common.device_free_chan_resources =
|
|
ppc440spe_adma_free_chan_resources;
|
|
adev->common.device_tx_status = ppc440spe_adma_tx_status;
|
|
adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
|
|
|
|
/* Set prep routines based on capability */
|
|
if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
|
|
adev->common.device_prep_dma_memcpy =
|
|
ppc440spe_adma_prep_dma_memcpy;
|
|
}
|
|
if (dma_has_cap(DMA_MEMSET, adev->common.cap_mask)) {
|
|
adev->common.device_prep_dma_memset =
|
|
ppc440spe_adma_prep_dma_memset;
|
|
}
|
|
if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
|
|
adev->common.max_xor = XOR_MAX_OPS;
|
|
adev->common.device_prep_dma_xor =
|
|
ppc440spe_adma_prep_dma_xor;
|
|
}
|
|
if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
|
|
switch (adev->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
dma_set_maxpq(&adev->common,
|
|
DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
|
|
break;
|
|
case PPC440SPE_DMA1_ID:
|
|
dma_set_maxpq(&adev->common,
|
|
DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
|
|
break;
|
|
case PPC440SPE_XOR_ID:
|
|
adev->common.max_pq = XOR_MAX_OPS * 3;
|
|
break;
|
|
}
|
|
adev->common.device_prep_dma_pq =
|
|
ppc440spe_adma_prep_dma_pq;
|
|
}
|
|
if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
|
|
switch (adev->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
adev->common.max_pq = DMA0_FIFO_SIZE /
|
|
sizeof(struct dma_cdb);
|
|
break;
|
|
case PPC440SPE_DMA1_ID:
|
|
adev->common.max_pq = DMA1_FIFO_SIZE /
|
|
sizeof(struct dma_cdb);
|
|
break;
|
|
}
|
|
adev->common.device_prep_dma_pq_val =
|
|
ppc440spe_adma_prep_dma_pqzero_sum;
|
|
}
|
|
if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
|
|
switch (adev->id) {
|
|
case PPC440SPE_DMA0_ID:
|
|
adev->common.max_xor = DMA0_FIFO_SIZE /
|
|
sizeof(struct dma_cdb);
|
|
break;
|
|
case PPC440SPE_DMA1_ID:
|
|
adev->common.max_xor = DMA1_FIFO_SIZE /
|
|
sizeof(struct dma_cdb);
|
|
break;
|
|
}
|
|
adev->common.device_prep_dma_xor_val =
|
|
ppc440spe_adma_prep_dma_xor_zero_sum;
|
|
}
|
|
if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
|
|
adev->common.device_prep_dma_interrupt =
|
|
ppc440spe_adma_prep_dma_interrupt;
|
|
}
|
|
pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
|
|
"( %s%s%s%s%s%s%s)\n",
|
|
dev_name(adev->dev),
|
|
dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
|
|
dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
|
|
dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
|
|
dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
|
|
dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
|
|
dma_has_cap(DMA_MEMSET, adev->common.cap_mask) ? "memset " : "",
|
|
dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
|
|
}
|
|
|
|
static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
|
|
struct ppc440spe_adma_chan *chan,
|
|
int *initcode)
|
|
{
|
|
struct platform_device *ofdev;
|
|
struct device_node *np;
|
|
int ret;
|
|
|
|
ofdev = container_of(adev->dev, struct platform_device, dev);
|
|
np = ofdev->dev.of_node;
|
|
if (adev->id != PPC440SPE_XOR_ID) {
|
|
adev->err_irq = irq_of_parse_and_map(np, 1);
|
|
if (adev->err_irq == NO_IRQ) {
|
|
dev_warn(adev->dev, "no err irq resource?\n");
|
|
*initcode = PPC_ADMA_INIT_IRQ2;
|
|
adev->err_irq = -ENXIO;
|
|
} else
|
|
atomic_inc(&ppc440spe_adma_err_irq_ref);
|
|
} else {
|
|
adev->err_irq = -ENXIO;
|
|
}
|
|
|
|
adev->irq = irq_of_parse_and_map(np, 0);
|
|
if (adev->irq == NO_IRQ) {
|
|
dev_err(adev->dev, "no irq resource\n");
|
|
*initcode = PPC_ADMA_INIT_IRQ1;
|
|
ret = -ENXIO;
|
|
goto err_irq_map;
|
|
}
|
|
dev_dbg(adev->dev, "irq %d, err irq %d\n",
|
|
adev->irq, adev->err_irq);
|
|
|
|
ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
|
|
0, dev_driver_string(adev->dev), chan);
|
|
if (ret) {
|
|
dev_err(adev->dev, "can't request irq %d\n",
|
|
adev->irq);
|
|
*initcode = PPC_ADMA_INIT_IRQ1;
|
|
ret = -EIO;
|
|
goto err_req1;
|
|
}
|
|
|
|
/* only DMA engines have a separate error IRQ
|
|
* so it's Ok if err_irq < 0 in XOR engine case.
|
|
*/
|
|
if (adev->err_irq > 0) {
|
|
/* both DMA engines share common error IRQ */
|
|
ret = request_irq(adev->err_irq,
|
|
ppc440spe_adma_err_handler,
|
|
IRQF_SHARED,
|
|
dev_driver_string(adev->dev),
|
|
chan);
|
|
if (ret) {
|
|
dev_err(adev->dev, "can't request irq %d\n",
|
|
adev->err_irq);
|
|
*initcode = PPC_ADMA_INIT_IRQ2;
|
|
ret = -EIO;
|
|
goto err_req2;
|
|
}
|
|
}
|
|
|
|
if (adev->id == PPC440SPE_XOR_ID) {
|
|
/* enable XOR engine interrupts */
|
|
iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
|
|
XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
|
|
&adev->xor_reg->ier);
|
|
} else {
|
|
u32 mask, enable;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
|
|
if (!np) {
|
|
pr_err("%s: can't find I2O device tree node\n",
|
|
__func__);
|
|
ret = -ENODEV;
|
|
goto err_req2;
|
|
}
|
|
adev->i2o_reg = of_iomap(np, 0);
|
|
if (!adev->i2o_reg) {
|
|
pr_err("%s: failed to map I2O registers\n", __func__);
|
|
of_node_put(np);
|
|
ret = -EINVAL;
|
|
goto err_req2;
|
|
}
|
|
of_node_put(np);
|
|
/* Unmask 'CS FIFO Attention' interrupts and
|
|
* enable generating interrupts on errors
|
|
*/
|
|
enable = (adev->id == PPC440SPE_DMA0_ID) ?
|
|
~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
|
|
~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
|
|
mask = ioread32(&adev->i2o_reg->iopim) & enable;
|
|
iowrite32(mask, &adev->i2o_reg->iopim);
|
|
}
|
|
return 0;
|
|
|
|
err_req2:
|
|
free_irq(adev->irq, chan);
|
|
err_req1:
|
|
irq_dispose_mapping(adev->irq);
|
|
err_irq_map:
|
|
if (adev->err_irq > 0) {
|
|
if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
|
|
irq_dispose_mapping(adev->err_irq);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
|
|
struct ppc440spe_adma_chan *chan)
|
|
{
|
|
u32 mask, disable;
|
|
|
|
if (adev->id == PPC440SPE_XOR_ID) {
|
|
/* disable XOR engine interrupts */
|
|
mask = ioread32be(&adev->xor_reg->ier);
|
|
mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
|
|
XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
|
|
iowrite32be(mask, &adev->xor_reg->ier);
|
|
} else {
|
|
/* disable DMAx engine interrupts */
|
|
disable = (adev->id == PPC440SPE_DMA0_ID) ?
|
|
(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
|
|
(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
|
|
mask = ioread32(&adev->i2o_reg->iopim) | disable;
|
|
iowrite32(mask, &adev->i2o_reg->iopim);
|
|
}
|
|
free_irq(adev->irq, chan);
|
|
irq_dispose_mapping(adev->irq);
|
|
if (adev->err_irq > 0) {
|
|
free_irq(adev->err_irq, chan);
|
|
if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
|
|
irq_dispose_mapping(adev->err_irq);
|
|
iounmap(adev->i2o_reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_probe - probe the asynch device
|
|
*/
|
|
static int ppc440spe_adma_probe(struct platform_device *ofdev)
|
|
{
|
|
struct device_node *np = ofdev->dev.of_node;
|
|
struct resource res;
|
|
struct ppc440spe_adma_device *adev;
|
|
struct ppc440spe_adma_chan *chan;
|
|
struct ppc_dma_chan_ref *ref, *_ref;
|
|
int ret = 0, initcode = PPC_ADMA_INIT_OK;
|
|
const u32 *idx;
|
|
int len;
|
|
void *regs;
|
|
u32 id, pool_size;
|
|
|
|
if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
|
|
id = PPC440SPE_XOR_ID;
|
|
/* As far as the XOR engine is concerned, it does not
|
|
* use FIFOs but uses linked list. So there is no dependency
|
|
* between pool size to allocate and the engine configuration.
|
|
*/
|
|
pool_size = PAGE_SIZE << 1;
|
|
} else {
|
|
/* it is DMA0 or DMA1 */
|
|
idx = of_get_property(np, "cell-index", &len);
|
|
if (!idx || (len != sizeof(u32))) {
|
|
dev_err(&ofdev->dev, "Device node %s has missing "
|
|
"or invalid cell-index property\n",
|
|
np->full_name);
|
|
return -EINVAL;
|
|
}
|
|
id = *idx;
|
|
/* DMA0,1 engines use FIFO to maintain CDBs, so we
|
|
* should allocate the pool accordingly to size of this
|
|
* FIFO. Thus, the pool size depends on the FIFO depth:
|
|
* how much CDBs pointers the FIFO may contain then so
|
|
* much CDBs we should provide in the pool.
|
|
* That is
|
|
* CDB size = 32B;
|
|
* CDBs number = (DMA0_FIFO_SIZE >> 3);
|
|
* Pool size = CDBs number * CDB size =
|
|
* = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
|
|
*/
|
|
pool_size = (id == PPC440SPE_DMA0_ID) ?
|
|
DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
|
|
pool_size <<= 2;
|
|
}
|
|
|
|
if (of_address_to_resource(np, 0, &res)) {
|
|
dev_err(&ofdev->dev, "failed to get memory resource\n");
|
|
initcode = PPC_ADMA_INIT_MEMRES;
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
if (!request_mem_region(res.start, resource_size(&res),
|
|
dev_driver_string(&ofdev->dev))) {
|
|
dev_err(&ofdev->dev, "failed to request memory region %pR\n",
|
|
&res);
|
|
initcode = PPC_ADMA_INIT_MEMREG;
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
/* create a device */
|
|
adev = kzalloc(sizeof(*adev), GFP_KERNEL);
|
|
if (!adev) {
|
|
dev_err(&ofdev->dev, "failed to allocate device\n");
|
|
initcode = PPC_ADMA_INIT_ALLOC;
|
|
ret = -ENOMEM;
|
|
goto err_adev_alloc;
|
|
}
|
|
|
|
adev->id = id;
|
|
adev->pool_size = pool_size;
|
|
/* allocate coherent memory for hardware descriptors */
|
|
adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
|
|
adev->pool_size, &adev->dma_desc_pool,
|
|
GFP_KERNEL);
|
|
if (adev->dma_desc_pool_virt == NULL) {
|
|
dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
|
|
"memory for hardware descriptors\n",
|
|
adev->pool_size);
|
|
initcode = PPC_ADMA_INIT_COHERENT;
|
|
ret = -ENOMEM;
|
|
goto err_dma_alloc;
|
|
}
|
|
dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
|
|
adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
|
|
|
|
regs = ioremap(res.start, resource_size(&res));
|
|
if (!regs) {
|
|
dev_err(&ofdev->dev, "failed to ioremap regs!\n");
|
|
goto err_regs_alloc;
|
|
}
|
|
|
|
if (adev->id == PPC440SPE_XOR_ID) {
|
|
adev->xor_reg = regs;
|
|
/* Reset XOR */
|
|
iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
|
|
iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
|
|
} else {
|
|
size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
|
|
DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
|
|
adev->dma_reg = regs;
|
|
/* DMAx_FIFO_SIZE is defined in bytes,
|
|
* <fsiz> - is defined in number of CDB pointers (8byte).
|
|
* DMA FIFO Length = CSlength + CPlength, where
|
|
* CSlength = CPlength = (fsiz + 1) * 8.
|
|
*/
|
|
iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
|
|
&adev->dma_reg->fsiz);
|
|
/* Configure DMA engine */
|
|
iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
|
|
&adev->dma_reg->cfg);
|
|
/* Clear Status */
|
|
iowrite32(~0, &adev->dma_reg->dsts);
|
|
}
|
|
|
|
adev->dev = &ofdev->dev;
|
|
adev->common.dev = &ofdev->dev;
|
|
INIT_LIST_HEAD(&adev->common.channels);
|
|
dev_set_drvdata(&ofdev->dev, adev);
|
|
|
|
/* create a channel */
|
|
chan = kzalloc(sizeof(*chan), GFP_KERNEL);
|
|
if (!chan) {
|
|
dev_err(&ofdev->dev, "can't allocate channel structure\n");
|
|
initcode = PPC_ADMA_INIT_CHANNEL;
|
|
ret = -ENOMEM;
|
|
goto err_chan_alloc;
|
|
}
|
|
|
|
spin_lock_init(&chan->lock);
|
|
INIT_LIST_HEAD(&chan->chain);
|
|
INIT_LIST_HEAD(&chan->all_slots);
|
|
chan->device = adev;
|
|
chan->common.device = &adev->common;
|
|
dma_cookie_init(&chan->common);
|
|
list_add_tail(&chan->common.device_node, &adev->common.channels);
|
|
tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
|
|
(unsigned long)chan);
|
|
|
|
/* allocate and map helper pages for async validation or
|
|
* async_mult/async_sum_product operations on DMA0/1.
|
|
*/
|
|
if (adev->id != PPC440SPE_XOR_ID) {
|
|
chan->pdest_page = alloc_page(GFP_KERNEL);
|
|
chan->qdest_page = alloc_page(GFP_KERNEL);
|
|
if (!chan->pdest_page ||
|
|
!chan->qdest_page) {
|
|
if (chan->pdest_page)
|
|
__free_page(chan->pdest_page);
|
|
if (chan->qdest_page)
|
|
__free_page(chan->qdest_page);
|
|
ret = -ENOMEM;
|
|
goto err_page_alloc;
|
|
}
|
|
chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
ref = kmalloc(sizeof(*ref), GFP_KERNEL);
|
|
if (ref) {
|
|
ref->chan = &chan->common;
|
|
INIT_LIST_HEAD(&ref->node);
|
|
list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
|
|
} else {
|
|
dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
|
|
ret = -ENOMEM;
|
|
goto err_ref_alloc;
|
|
}
|
|
|
|
ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
|
|
if (ret)
|
|
goto err_irq;
|
|
|
|
ppc440spe_adma_init_capabilities(adev);
|
|
|
|
ret = dma_async_device_register(&adev->common);
|
|
if (ret) {
|
|
initcode = PPC_ADMA_INIT_REGISTER;
|
|
dev_err(&ofdev->dev, "failed to register dma device\n");
|
|
goto err_dev_reg;
|
|
}
|
|
|
|
goto out;
|
|
|
|
err_dev_reg:
|
|
ppc440spe_adma_release_irqs(adev, chan);
|
|
err_irq:
|
|
list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
|
|
if (chan == to_ppc440spe_adma_chan(ref->chan)) {
|
|
list_del(&ref->node);
|
|
kfree(ref);
|
|
}
|
|
}
|
|
err_ref_alloc:
|
|
if (adev->id != PPC440SPE_XOR_ID) {
|
|
dma_unmap_page(&ofdev->dev, chan->pdest,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
dma_unmap_page(&ofdev->dev, chan->qdest,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
__free_page(chan->pdest_page);
|
|
__free_page(chan->qdest_page);
|
|
}
|
|
err_page_alloc:
|
|
kfree(chan);
|
|
err_chan_alloc:
|
|
if (adev->id == PPC440SPE_XOR_ID)
|
|
iounmap(adev->xor_reg);
|
|
else
|
|
iounmap(adev->dma_reg);
|
|
err_regs_alloc:
|
|
dma_free_coherent(adev->dev, adev->pool_size,
|
|
adev->dma_desc_pool_virt,
|
|
adev->dma_desc_pool);
|
|
err_dma_alloc:
|
|
kfree(adev);
|
|
err_adev_alloc:
|
|
release_mem_region(res.start, resource_size(&res));
|
|
out:
|
|
if (id < PPC440SPE_ADMA_ENGINES_NUM)
|
|
ppc440spe_adma_devices[id] = initcode;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ppc440spe_adma_remove - remove the asynch device
|
|
*/
|
|
static int ppc440spe_adma_remove(struct platform_device *ofdev)
|
|
{
|
|
struct ppc440spe_adma_device *adev = dev_get_drvdata(&ofdev->dev);
|
|
struct device_node *np = ofdev->dev.of_node;
|
|
struct resource res;
|
|
struct dma_chan *chan, *_chan;
|
|
struct ppc_dma_chan_ref *ref, *_ref;
|
|
struct ppc440spe_adma_chan *ppc440spe_chan;
|
|
|
|
dev_set_drvdata(&ofdev->dev, NULL);
|
|
if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
|
|
ppc440spe_adma_devices[adev->id] = -1;
|
|
|
|
dma_async_device_unregister(&adev->common);
|
|
|
|
list_for_each_entry_safe(chan, _chan, &adev->common.channels,
|
|
device_node) {
|
|
ppc440spe_chan = to_ppc440spe_adma_chan(chan);
|
|
ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
|
|
tasklet_kill(&ppc440spe_chan->irq_tasklet);
|
|
if (adev->id != PPC440SPE_XOR_ID) {
|
|
dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
|
|
PAGE_SIZE, DMA_BIDIRECTIONAL);
|
|
__free_page(ppc440spe_chan->pdest_page);
|
|
__free_page(ppc440spe_chan->qdest_page);
|
|
}
|
|
list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
|
|
node) {
|
|
if (ppc440spe_chan ==
|
|
to_ppc440spe_adma_chan(ref->chan)) {
|
|
list_del(&ref->node);
|
|
kfree(ref);
|
|
}
|
|
}
|
|
list_del(&chan->device_node);
|
|
kfree(ppc440spe_chan);
|
|
}
|
|
|
|
dma_free_coherent(adev->dev, adev->pool_size,
|
|
adev->dma_desc_pool_virt, adev->dma_desc_pool);
|
|
if (adev->id == PPC440SPE_XOR_ID)
|
|
iounmap(adev->xor_reg);
|
|
else
|
|
iounmap(adev->dma_reg);
|
|
of_address_to_resource(np, 0, &res);
|
|
release_mem_region(res.start, resource_size(&res));
|
|
kfree(adev);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* /sys driver interface to enable h/w RAID-6 capabilities
|
|
* Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
|
|
* directory are "devices", "enable" and "poly".
|
|
* "devices" shows available engines.
|
|
* "enable" is used to enable RAID-6 capabilities or to check
|
|
* whether these has been activated.
|
|
* "poly" allows setting/checking used polynomial (for PPC440SPe only).
|
|
*/
|
|
|
|
static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
|
|
{
|
|
ssize_t size = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
|
|
if (ppc440spe_adma_devices[i] == -1)
|
|
continue;
|
|
size += snprintf(buf + size, PAGE_SIZE - size,
|
|
"PPC440SP(E)-ADMA.%d: %s\n", i,
|
|
ppc_adma_errors[ppc440spe_adma_devices[i]]);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
|
|
{
|
|
return snprintf(buf, PAGE_SIZE,
|
|
"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
|
|
ppc440spe_r6_enabled ? "EN" : "DIS");
|
|
}
|
|
|
|
static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long val;
|
|
|
|
if (!count || count > 11)
|
|
return -EINVAL;
|
|
|
|
if (!ppc440spe_r6_tchan)
|
|
return -EFAULT;
|
|
|
|
/* Write a key */
|
|
sscanf(buf, "%lx", &val);
|
|
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
|
|
isync();
|
|
|
|
/* Verify whether it really works now */
|
|
if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
|
|
pr_info("PPC440SP(e) RAID-6 has been activated "
|
|
"successfully\n");
|
|
ppc440spe_r6_enabled = 1;
|
|
} else {
|
|
pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
|
|
" Error key ?\n");
|
|
ppc440spe_r6_enabled = 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
|
|
{
|
|
ssize_t size = 0;
|
|
u32 reg;
|
|
|
|
#ifdef CONFIG_440SP
|
|
/* 440SP has fixed polynomial */
|
|
reg = 0x4d;
|
|
#else
|
|
reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
|
|
reg >>= MQ0_CFBHL_POLY;
|
|
reg &= 0xFF;
|
|
#endif
|
|
|
|
size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
|
|
"uses 0x1%02x polynomial.\n", reg);
|
|
return size;
|
|
}
|
|
|
|
static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long reg, val;
|
|
|
|
#ifdef CONFIG_440SP
|
|
/* 440SP uses default 0x14D polynomial only */
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
if (!count || count > 6)
|
|
return -EINVAL;
|
|
|
|
/* e.g., 0x14D or 0x11D */
|
|
sscanf(buf, "%lx", &val);
|
|
|
|
if (val & ~0x1FF)
|
|
return -EINVAL;
|
|
|
|
val &= 0xFF;
|
|
reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
|
|
reg &= ~(0xFF << MQ0_CFBHL_POLY);
|
|
reg |= val << MQ0_CFBHL_POLY;
|
|
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
|
|
|
|
return count;
|
|
}
|
|
|
|
static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
|
|
static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
|
|
store_ppc440spe_r6enable);
|
|
static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
|
|
store_ppc440spe_r6poly);
|
|
|
|
/*
|
|
* Common initialisation for RAID engines; allocate memory for
|
|
* DMAx FIFOs, perform configuration common for all DMA engines.
|
|
* Further DMA engine specific configuration is done at probe time.
|
|
*/
|
|
static int ppc440spe_configure_raid_devices(void)
|
|
{
|
|
struct device_node *np;
|
|
struct resource i2o_res;
|
|
struct i2o_regs __iomem *i2o_reg;
|
|
dcr_host_t i2o_dcr_host;
|
|
unsigned int dcr_base, dcr_len;
|
|
int i, ret;
|
|
|
|
np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
|
|
if (!np) {
|
|
pr_err("%s: can't find I2O device tree node\n",
|
|
__func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (of_address_to_resource(np, 0, &i2o_res)) {
|
|
of_node_put(np);
|
|
return -EINVAL;
|
|
}
|
|
|
|
i2o_reg = of_iomap(np, 0);
|
|
if (!i2o_reg) {
|
|
pr_err("%s: failed to map I2O registers\n", __func__);
|
|
of_node_put(np);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Get I2O DCRs base */
|
|
dcr_base = dcr_resource_start(np, 0);
|
|
dcr_len = dcr_resource_len(np, 0);
|
|
if (!dcr_base && !dcr_len) {
|
|
pr_err("%s: can't get DCR registers base/len!\n",
|
|
np->full_name);
|
|
of_node_put(np);
|
|
iounmap(i2o_reg);
|
|
return -ENODEV;
|
|
}
|
|
|
|
i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
|
|
if (!DCR_MAP_OK(i2o_dcr_host)) {
|
|
pr_err("%s: failed to map DCRs!\n", np->full_name);
|
|
of_node_put(np);
|
|
iounmap(i2o_reg);
|
|
return -ENODEV;
|
|
}
|
|
of_node_put(np);
|
|
|
|
/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
|
|
* the base address of FIFO memory space.
|
|
* Actually we need twice more physical memory than programmed in the
|
|
* <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
|
|
*/
|
|
ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
|
|
GFP_KERNEL);
|
|
if (!ppc440spe_dma_fifo_buf) {
|
|
pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
|
|
iounmap(i2o_reg);
|
|
dcr_unmap(i2o_dcr_host, dcr_len);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Configure h/w
|
|
*/
|
|
/* Reset I2O/DMA */
|
|
mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
|
|
mtdcri(SDR0, DCRN_SDR0_SRST, 0);
|
|
|
|
/* Setup the base address of mmaped registers */
|
|
dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
|
|
dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
|
|
I2O_REG_ENABLE);
|
|
dcr_unmap(i2o_dcr_host, dcr_len);
|
|
|
|
/* Setup FIFO memory space base address */
|
|
iowrite32(0, &i2o_reg->ifbah);
|
|
iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
|
|
|
|
/* set zero FIFO size for I2O, so the whole
|
|
* ppc440spe_dma_fifo_buf is used by DMAs.
|
|
* DMAx_FIFOs will be configured while probe.
|
|
*/
|
|
iowrite32(0, &i2o_reg->ifsiz);
|
|
iounmap(i2o_reg);
|
|
|
|
/* To prepare WXOR/RXOR functionality we need access to
|
|
* Memory Queue Module DCRs (finally it will be enabled
|
|
* via /sys interface of the ppc440spe ADMA driver).
|
|
*/
|
|
np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
|
|
if (!np) {
|
|
pr_err("%s: can't find MQ device tree node\n",
|
|
__func__);
|
|
ret = -ENODEV;
|
|
goto out_free;
|
|
}
|
|
|
|
/* Get MQ DCRs base */
|
|
dcr_base = dcr_resource_start(np, 0);
|
|
dcr_len = dcr_resource_len(np, 0);
|
|
if (!dcr_base && !dcr_len) {
|
|
pr_err("%s: can't get DCR registers base/len!\n",
|
|
np->full_name);
|
|
ret = -ENODEV;
|
|
goto out_mq;
|
|
}
|
|
|
|
ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
|
|
if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
|
|
pr_err("%s: failed to map DCRs!\n", np->full_name);
|
|
ret = -ENODEV;
|
|
goto out_mq;
|
|
}
|
|
of_node_put(np);
|
|
ppc440spe_mq_dcr_len = dcr_len;
|
|
|
|
/* Set HB alias */
|
|
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
|
|
|
|
/* Set:
|
|
* - LL transaction passing limit to 1;
|
|
* - Memory controller cycle limit to 1;
|
|
* - Galois Polynomial to 0x14d (default)
|
|
*/
|
|
dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
|
|
(1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
|
|
(PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
|
|
|
|
atomic_set(&ppc440spe_adma_err_irq_ref, 0);
|
|
for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
|
|
ppc440spe_adma_devices[i] = -1;
|
|
|
|
return 0;
|
|
|
|
out_mq:
|
|
of_node_put(np);
|
|
out_free:
|
|
kfree(ppc440spe_dma_fifo_buf);
|
|
return ret;
|
|
}
|
|
|
|
static const struct of_device_id ppc440spe_adma_of_match[] = {
|
|
{ .compatible = "ibm,dma-440spe", },
|
|
{ .compatible = "amcc,xor-accelerator", },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
|
|
|
|
static struct platform_driver ppc440spe_adma_driver = {
|
|
.probe = ppc440spe_adma_probe,
|
|
.remove = ppc440spe_adma_remove,
|
|
.driver = {
|
|
.name = "PPC440SP(E)-ADMA",
|
|
.owner = THIS_MODULE,
|
|
.of_match_table = ppc440spe_adma_of_match,
|
|
},
|
|
};
|
|
|
|
static __init int ppc440spe_adma_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = ppc440spe_configure_raid_devices();
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = platform_driver_register(&ppc440spe_adma_driver);
|
|
if (ret) {
|
|
pr_err("%s: failed to register platform driver\n",
|
|
__func__);
|
|
goto out_reg;
|
|
}
|
|
|
|
/* Initialization status */
|
|
ret = driver_create_file(&ppc440spe_adma_driver.driver,
|
|
&driver_attr_devices);
|
|
if (ret)
|
|
goto out_dev;
|
|
|
|
/* RAID-6 h/w enable entry */
|
|
ret = driver_create_file(&ppc440spe_adma_driver.driver,
|
|
&driver_attr_enable);
|
|
if (ret)
|
|
goto out_en;
|
|
|
|
/* GF polynomial to use */
|
|
ret = driver_create_file(&ppc440spe_adma_driver.driver,
|
|
&driver_attr_poly);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
driver_remove_file(&ppc440spe_adma_driver.driver,
|
|
&driver_attr_enable);
|
|
out_en:
|
|
driver_remove_file(&ppc440spe_adma_driver.driver,
|
|
&driver_attr_devices);
|
|
out_dev:
|
|
/* User will not be able to enable h/w RAID-6 */
|
|
pr_err("%s: failed to create RAID-6 driver interface\n",
|
|
__func__);
|
|
platform_driver_unregister(&ppc440spe_adma_driver);
|
|
out_reg:
|
|
dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
|
|
kfree(ppc440spe_dma_fifo_buf);
|
|
return ret;
|
|
}
|
|
|
|
static void __exit ppc440spe_adma_exit(void)
|
|
{
|
|
driver_remove_file(&ppc440spe_adma_driver.driver,
|
|
&driver_attr_poly);
|
|
driver_remove_file(&ppc440spe_adma_driver.driver,
|
|
&driver_attr_enable);
|
|
driver_remove_file(&ppc440spe_adma_driver.driver,
|
|
&driver_attr_devices);
|
|
platform_driver_unregister(&ppc440spe_adma_driver);
|
|
dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
|
|
kfree(ppc440spe_dma_fifo_buf);
|
|
}
|
|
|
|
arch_initcall(ppc440spe_adma_init);
|
|
module_exit(ppc440spe_adma_exit);
|
|
|
|
MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
|
|
MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
|
|
MODULE_LICENSE("GPL");
|