mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-16 06:31:46 +00:00
66188fae3b
At some point we added credits to people who actively helped to bring k/hr-timers along. This was lost in the big code revamp. Add it back. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
827 lines
18 KiB
C
827 lines
18 KiB
C
/*
|
|
* linux/kernel/hrtimer.c
|
|
*
|
|
* Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
|
|
*
|
|
* High-resolution kernel timers
|
|
*
|
|
* In contrast to the low-resolution timeout API implemented in
|
|
* kernel/timer.c, hrtimers provide finer resolution and accuracy
|
|
* depending on system configuration and capabilities.
|
|
*
|
|
* These timers are currently used for:
|
|
* - itimers
|
|
* - POSIX timers
|
|
* - nanosleep
|
|
* - precise in-kernel timing
|
|
*
|
|
* Started by: Thomas Gleixner and Ingo Molnar
|
|
*
|
|
* Credits:
|
|
* based on kernel/timer.c
|
|
*
|
|
* Help, testing, suggestions, bugfixes, improvements were
|
|
* provided by:
|
|
*
|
|
* George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
|
|
* et. al.
|
|
*
|
|
* For licencing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/module.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
|
|
/**
|
|
* ktime_get - get the monotonic time in ktime_t format
|
|
*
|
|
* returns the time in ktime_t format
|
|
*/
|
|
static ktime_t ktime_get(void)
|
|
{
|
|
struct timespec now;
|
|
|
|
ktime_get_ts(&now);
|
|
|
|
return timespec_to_ktime(now);
|
|
}
|
|
|
|
/**
|
|
* ktime_get_real - get the real (wall-) time in ktime_t format
|
|
*
|
|
* returns the time in ktime_t format
|
|
*/
|
|
static ktime_t ktime_get_real(void)
|
|
{
|
|
struct timespec now;
|
|
|
|
getnstimeofday(&now);
|
|
|
|
return timespec_to_ktime(now);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ktime_get_real);
|
|
|
|
/*
|
|
* The timer bases:
|
|
*
|
|
* Note: If we want to add new timer bases, we have to skip the two
|
|
* clock ids captured by the cpu-timers. We do this by holding empty
|
|
* entries rather than doing math adjustment of the clock ids.
|
|
* This ensures that we capture erroneous accesses to these clock ids
|
|
* rather than moving them into the range of valid clock id's.
|
|
*/
|
|
|
|
#define MAX_HRTIMER_BASES 2
|
|
|
|
static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
|
|
{
|
|
{
|
|
.index = CLOCK_REALTIME,
|
|
.get_time = &ktime_get_real,
|
|
.resolution = KTIME_REALTIME_RES,
|
|
},
|
|
{
|
|
.index = CLOCK_MONOTONIC,
|
|
.get_time = &ktime_get,
|
|
.resolution = KTIME_MONOTONIC_RES,
|
|
},
|
|
};
|
|
|
|
/**
|
|
* ktime_get_ts - get the monotonic clock in timespec format
|
|
*
|
|
* @ts: pointer to timespec variable
|
|
*
|
|
* The function calculates the monotonic clock from the realtime
|
|
* clock and the wall_to_monotonic offset and stores the result
|
|
* in normalized timespec format in the variable pointed to by ts.
|
|
*/
|
|
void ktime_get_ts(struct timespec *ts)
|
|
{
|
|
struct timespec tomono;
|
|
unsigned long seq;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
getnstimeofday(ts);
|
|
tomono = wall_to_monotonic;
|
|
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
|
|
set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
|
|
ts->tv_nsec + tomono.tv_nsec);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ktime_get_ts);
|
|
|
|
/*
|
|
* Functions and macros which are different for UP/SMP systems are kept in a
|
|
* single place
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
|
|
#define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
|
|
|
|
/*
|
|
* We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
|
|
* means that all timers which are tied to this base via timer->base are
|
|
* locked, and the base itself is locked too.
|
|
*
|
|
* So __run_timers/migrate_timers can safely modify all timers which could
|
|
* be found on the lists/queues.
|
|
*
|
|
* When the timer's base is locked, and the timer removed from list, it is
|
|
* possible to set timer->base = NULL and drop the lock: the timer remains
|
|
* locked.
|
|
*/
|
|
static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
|
|
unsigned long *flags)
|
|
{
|
|
struct hrtimer_base *base;
|
|
|
|
for (;;) {
|
|
base = timer->base;
|
|
if (likely(base != NULL)) {
|
|
spin_lock_irqsave(&base->lock, *flags);
|
|
if (likely(base == timer->base))
|
|
return base;
|
|
/* The timer has migrated to another CPU: */
|
|
spin_unlock_irqrestore(&base->lock, *flags);
|
|
}
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Switch the timer base to the current CPU when possible.
|
|
*/
|
|
static inline struct hrtimer_base *
|
|
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
|
|
{
|
|
struct hrtimer_base *new_base;
|
|
|
|
new_base = &__get_cpu_var(hrtimer_bases[base->index]);
|
|
|
|
if (base != new_base) {
|
|
/*
|
|
* We are trying to schedule the timer on the local CPU.
|
|
* However we can't change timer's base while it is running,
|
|
* so we keep it on the same CPU. No hassle vs. reprogramming
|
|
* the event source in the high resolution case. The softirq
|
|
* code will take care of this when the timer function has
|
|
* completed. There is no conflict as we hold the lock until
|
|
* the timer is enqueued.
|
|
*/
|
|
if (unlikely(base->curr_timer == timer))
|
|
return base;
|
|
|
|
/* See the comment in lock_timer_base() */
|
|
timer->base = NULL;
|
|
spin_unlock(&base->lock);
|
|
spin_lock(&new_base->lock);
|
|
timer->base = new_base;
|
|
}
|
|
return new_base;
|
|
}
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
#define set_curr_timer(b, t) do { } while (0)
|
|
|
|
static inline struct hrtimer_base *
|
|
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
|
|
{
|
|
struct hrtimer_base *base = timer->base;
|
|
|
|
spin_lock_irqsave(&base->lock, *flags);
|
|
|
|
return base;
|
|
}
|
|
|
|
#define switch_hrtimer_base(t, b) (b)
|
|
|
|
#endif /* !CONFIG_SMP */
|
|
|
|
/*
|
|
* Functions for the union type storage format of ktime_t which are
|
|
* too large for inlining:
|
|
*/
|
|
#if BITS_PER_LONG < 64
|
|
# ifndef CONFIG_KTIME_SCALAR
|
|
/**
|
|
* ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
|
|
*
|
|
* @kt: addend
|
|
* @nsec: the scalar nsec value to add
|
|
*
|
|
* Returns the sum of kt and nsec in ktime_t format
|
|
*/
|
|
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
|
|
{
|
|
ktime_t tmp;
|
|
|
|
if (likely(nsec < NSEC_PER_SEC)) {
|
|
tmp.tv64 = nsec;
|
|
} else {
|
|
unsigned long rem = do_div(nsec, NSEC_PER_SEC);
|
|
|
|
tmp = ktime_set((long)nsec, rem);
|
|
}
|
|
|
|
return ktime_add(kt, tmp);
|
|
}
|
|
|
|
#else /* CONFIG_KTIME_SCALAR */
|
|
|
|
# endif /* !CONFIG_KTIME_SCALAR */
|
|
|
|
/*
|
|
* Divide a ktime value by a nanosecond value
|
|
*/
|
|
static unsigned long ktime_divns(const ktime_t kt, nsec_t div)
|
|
{
|
|
u64 dclc, inc, dns;
|
|
int sft = 0;
|
|
|
|
dclc = dns = ktime_to_ns(kt);
|
|
inc = div;
|
|
/* Make sure the divisor is less than 2^32: */
|
|
while (div >> 32) {
|
|
sft++;
|
|
div >>= 1;
|
|
}
|
|
dclc >>= sft;
|
|
do_div(dclc, (unsigned long) div);
|
|
|
|
return (unsigned long) dclc;
|
|
}
|
|
|
|
#else /* BITS_PER_LONG < 64 */
|
|
# define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
|
|
#endif /* BITS_PER_LONG >= 64 */
|
|
|
|
/*
|
|
* Counterpart to lock_timer_base above:
|
|
*/
|
|
static inline
|
|
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
|
|
{
|
|
spin_unlock_irqrestore(&timer->base->lock, *flags);
|
|
}
|
|
|
|
/**
|
|
* hrtimer_forward - forward the timer expiry
|
|
*
|
|
* @timer: hrtimer to forward
|
|
* @interval: the interval to forward
|
|
*
|
|
* Forward the timer expiry so it will expire in the future.
|
|
* Returns the number of overruns.
|
|
*/
|
|
unsigned long
|
|
hrtimer_forward(struct hrtimer *timer, ktime_t interval)
|
|
{
|
|
unsigned long orun = 1;
|
|
ktime_t delta, now;
|
|
|
|
now = timer->base->get_time();
|
|
|
|
delta = ktime_sub(now, timer->expires);
|
|
|
|
if (delta.tv64 < 0)
|
|
return 0;
|
|
|
|
if (interval.tv64 < timer->base->resolution.tv64)
|
|
interval.tv64 = timer->base->resolution.tv64;
|
|
|
|
if (unlikely(delta.tv64 >= interval.tv64)) {
|
|
nsec_t incr = ktime_to_ns(interval);
|
|
|
|
orun = ktime_divns(delta, incr);
|
|
timer->expires = ktime_add_ns(timer->expires, incr * orun);
|
|
if (timer->expires.tv64 > now.tv64)
|
|
return orun;
|
|
/*
|
|
* This (and the ktime_add() below) is the
|
|
* correction for exact:
|
|
*/
|
|
orun++;
|
|
}
|
|
timer->expires = ktime_add(timer->expires, interval);
|
|
|
|
return orun;
|
|
}
|
|
|
|
/*
|
|
* enqueue_hrtimer - internal function to (re)start a timer
|
|
*
|
|
* The timer is inserted in expiry order. Insertion into the
|
|
* red black tree is O(log(n)). Must hold the base lock.
|
|
*/
|
|
static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
|
|
{
|
|
struct rb_node **link = &base->active.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct hrtimer *entry;
|
|
|
|
/*
|
|
* Find the right place in the rbtree:
|
|
*/
|
|
while (*link) {
|
|
parent = *link;
|
|
entry = rb_entry(parent, struct hrtimer, node);
|
|
/*
|
|
* We dont care about collisions. Nodes with
|
|
* the same expiry time stay together.
|
|
*/
|
|
if (timer->expires.tv64 < entry->expires.tv64)
|
|
link = &(*link)->rb_left;
|
|
else
|
|
link = &(*link)->rb_right;
|
|
}
|
|
|
|
/*
|
|
* Insert the timer to the rbtree and check whether it
|
|
* replaces the first pending timer
|
|
*/
|
|
rb_link_node(&timer->node, parent, link);
|
|
rb_insert_color(&timer->node, &base->active);
|
|
|
|
timer->state = HRTIMER_PENDING;
|
|
|
|
if (!base->first || timer->expires.tv64 <
|
|
rb_entry(base->first, struct hrtimer, node)->expires.tv64)
|
|
base->first = &timer->node;
|
|
}
|
|
|
|
/*
|
|
* __remove_hrtimer - internal function to remove a timer
|
|
*
|
|
* Caller must hold the base lock.
|
|
*/
|
|
static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
|
|
{
|
|
/*
|
|
* Remove the timer from the rbtree and replace the
|
|
* first entry pointer if necessary.
|
|
*/
|
|
if (base->first == &timer->node)
|
|
base->first = rb_next(&timer->node);
|
|
rb_erase(&timer->node, &base->active);
|
|
}
|
|
|
|
/*
|
|
* remove hrtimer, called with base lock held
|
|
*/
|
|
static inline int
|
|
remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
|
|
{
|
|
if (hrtimer_active(timer)) {
|
|
__remove_hrtimer(timer, base);
|
|
timer->state = HRTIMER_INACTIVE;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* hrtimer_start - (re)start an relative timer on the current CPU
|
|
*
|
|
* @timer: the timer to be added
|
|
* @tim: expiry time
|
|
* @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* 1 when the timer was active
|
|
*/
|
|
int
|
|
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
|
|
{
|
|
struct hrtimer_base *base, *new_base;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
base = lock_hrtimer_base(timer, &flags);
|
|
|
|
/* Remove an active timer from the queue: */
|
|
ret = remove_hrtimer(timer, base);
|
|
|
|
/* Switch the timer base, if necessary: */
|
|
new_base = switch_hrtimer_base(timer, base);
|
|
|
|
if (mode == HRTIMER_REL)
|
|
tim = ktime_add(tim, new_base->get_time());
|
|
timer->expires = tim;
|
|
|
|
enqueue_hrtimer(timer, new_base);
|
|
|
|
unlock_hrtimer_base(timer, &flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* hrtimer_try_to_cancel - try to deactivate a timer
|
|
*
|
|
* @timer: hrtimer to stop
|
|
*
|
|
* Returns:
|
|
* 0 when the timer was not active
|
|
* 1 when the timer was active
|
|
* -1 when the timer is currently excuting the callback function and
|
|
* can not be stopped
|
|
*/
|
|
int hrtimer_try_to_cancel(struct hrtimer *timer)
|
|
{
|
|
struct hrtimer_base *base;
|
|
unsigned long flags;
|
|
int ret = -1;
|
|
|
|
base = lock_hrtimer_base(timer, &flags);
|
|
|
|
if (base->curr_timer != timer)
|
|
ret = remove_hrtimer(timer, base);
|
|
|
|
unlock_hrtimer_base(timer, &flags);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/**
|
|
* hrtimer_cancel - cancel a timer and wait for the handler to finish.
|
|
*
|
|
* @timer: the timer to be cancelled
|
|
*
|
|
* Returns:
|
|
* 0 when the timer was not active
|
|
* 1 when the timer was active
|
|
*/
|
|
int hrtimer_cancel(struct hrtimer *timer)
|
|
{
|
|
for (;;) {
|
|
int ret = hrtimer_try_to_cancel(timer);
|
|
|
|
if (ret >= 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hrtimer_get_remaining - get remaining time for the timer
|
|
*
|
|
* @timer: the timer to read
|
|
*/
|
|
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
|
|
{
|
|
struct hrtimer_base *base;
|
|
unsigned long flags;
|
|
ktime_t rem;
|
|
|
|
base = lock_hrtimer_base(timer, &flags);
|
|
rem = ktime_sub(timer->expires, timer->base->get_time());
|
|
unlock_hrtimer_base(timer, &flags);
|
|
|
|
return rem;
|
|
}
|
|
|
|
/**
|
|
* hrtimer_init - initialize a timer to the given clock
|
|
*
|
|
* @timer: the timer to be initialized
|
|
* @clock_id: the clock to be used
|
|
* @mode: timer mode abs/rel
|
|
*/
|
|
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
|
|
enum hrtimer_mode mode)
|
|
{
|
|
struct hrtimer_base *bases;
|
|
|
|
memset(timer, 0, sizeof(struct hrtimer));
|
|
|
|
bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
|
|
|
|
if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
|
|
clock_id = CLOCK_MONOTONIC;
|
|
|
|
timer->base = &bases[clock_id];
|
|
}
|
|
|
|
/**
|
|
* hrtimer_get_res - get the timer resolution for a clock
|
|
*
|
|
* @which_clock: which clock to query
|
|
* @tp: pointer to timespec variable to store the resolution
|
|
*
|
|
* Store the resolution of the clock selected by which_clock in the
|
|
* variable pointed to by tp.
|
|
*/
|
|
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
|
|
{
|
|
struct hrtimer_base *bases;
|
|
|
|
bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
|
|
*tp = ktime_to_timespec(bases[which_clock].resolution);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Expire the per base hrtimer-queue:
|
|
*/
|
|
static inline void run_hrtimer_queue(struct hrtimer_base *base)
|
|
{
|
|
ktime_t now = base->get_time();
|
|
struct rb_node *node;
|
|
|
|
spin_lock_irq(&base->lock);
|
|
|
|
while ((node = base->first)) {
|
|
struct hrtimer *timer;
|
|
int (*fn)(void *);
|
|
int restart;
|
|
void *data;
|
|
|
|
timer = rb_entry(node, struct hrtimer, node);
|
|
if (now.tv64 <= timer->expires.tv64)
|
|
break;
|
|
|
|
fn = timer->function;
|
|
data = timer->data;
|
|
set_curr_timer(base, timer);
|
|
timer->state = HRTIMER_RUNNING;
|
|
__remove_hrtimer(timer, base);
|
|
spin_unlock_irq(&base->lock);
|
|
|
|
/*
|
|
* fn == NULL is special case for the simplest timer
|
|
* variant - wake up process and do not restart:
|
|
*/
|
|
if (!fn) {
|
|
wake_up_process(data);
|
|
restart = HRTIMER_NORESTART;
|
|
} else
|
|
restart = fn(data);
|
|
|
|
spin_lock_irq(&base->lock);
|
|
|
|
/* Another CPU has added back the timer */
|
|
if (timer->state != HRTIMER_RUNNING)
|
|
continue;
|
|
|
|
if (restart == HRTIMER_RESTART)
|
|
enqueue_hrtimer(timer, base);
|
|
else
|
|
timer->state = HRTIMER_EXPIRED;
|
|
}
|
|
set_curr_timer(base, NULL);
|
|
spin_unlock_irq(&base->lock);
|
|
}
|
|
|
|
/*
|
|
* Called from timer softirq every jiffy, expire hrtimers:
|
|
*/
|
|
void hrtimer_run_queues(void)
|
|
{
|
|
struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_HRTIMER_BASES; i++)
|
|
run_hrtimer_queue(&base[i]);
|
|
}
|
|
|
|
/*
|
|
* Sleep related functions:
|
|
*/
|
|
|
|
/**
|
|
* schedule_hrtimer - sleep until timeout
|
|
*
|
|
* @timer: hrtimer variable initialized with the correct clock base
|
|
* @mode: timeout value is abs/rel
|
|
*
|
|
* Make the current task sleep until @timeout is
|
|
* elapsed.
|
|
*
|
|
* You can set the task state as follows -
|
|
*
|
|
* %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to
|
|
* pass before the routine returns. The routine will return 0
|
|
*
|
|
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
|
|
* delivered to the current task. In this case the remaining time
|
|
* will be returned
|
|
*
|
|
* The current task state is guaranteed to be TASK_RUNNING when this
|
|
* routine returns.
|
|
*/
|
|
static ktime_t __sched
|
|
schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode)
|
|
{
|
|
/* fn stays NULL, meaning single-shot wakeup: */
|
|
timer->data = current;
|
|
|
|
hrtimer_start(timer, timer->expires, mode);
|
|
|
|
schedule();
|
|
hrtimer_cancel(timer);
|
|
|
|
/* Return the remaining time: */
|
|
if (timer->state != HRTIMER_EXPIRED)
|
|
return ktime_sub(timer->expires, timer->base->get_time());
|
|
else
|
|
return (ktime_t) {.tv64 = 0 };
|
|
}
|
|
|
|
static inline ktime_t __sched
|
|
schedule_hrtimer_interruptible(struct hrtimer *timer,
|
|
const enum hrtimer_mode mode)
|
|
{
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
return schedule_hrtimer(timer, mode);
|
|
}
|
|
|
|
static long __sched nanosleep_restart(struct restart_block *restart)
|
|
{
|
|
struct timespec __user *rmtp;
|
|
struct timespec tu;
|
|
void *rfn_save = restart->fn;
|
|
struct hrtimer timer;
|
|
ktime_t rem;
|
|
|
|
restart->fn = do_no_restart_syscall;
|
|
|
|
hrtimer_init(&timer, (clockid_t) restart->arg3, HRTIMER_ABS);
|
|
|
|
timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0;
|
|
|
|
rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS);
|
|
|
|
if (rem.tv64 <= 0)
|
|
return 0;
|
|
|
|
rmtp = (struct timespec __user *) restart->arg2;
|
|
tu = ktime_to_timespec(rem);
|
|
if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
|
|
return -EFAULT;
|
|
|
|
restart->fn = rfn_save;
|
|
|
|
/* The other values in restart are already filled in */
|
|
return -ERESTART_RESTARTBLOCK;
|
|
}
|
|
|
|
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
|
|
const enum hrtimer_mode mode, const clockid_t clockid)
|
|
{
|
|
struct restart_block *restart;
|
|
struct hrtimer timer;
|
|
struct timespec tu;
|
|
ktime_t rem;
|
|
|
|
hrtimer_init(&timer, clockid, mode);
|
|
|
|
timer.expires = timespec_to_ktime(*rqtp);
|
|
|
|
rem = schedule_hrtimer_interruptible(&timer, mode);
|
|
if (rem.tv64 <= 0)
|
|
return 0;
|
|
|
|
/* Absolute timers do not update the rmtp value and restart: */
|
|
if (mode == HRTIMER_ABS)
|
|
return -ERESTARTNOHAND;
|
|
|
|
tu = ktime_to_timespec(rem);
|
|
|
|
if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu)))
|
|
return -EFAULT;
|
|
|
|
restart = ¤t_thread_info()->restart_block;
|
|
restart->fn = nanosleep_restart;
|
|
restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF;
|
|
restart->arg1 = timer.expires.tv64 >> 32;
|
|
restart->arg2 = (unsigned long) rmtp;
|
|
restart->arg3 = (unsigned long) timer.base->index;
|
|
|
|
return -ERESTART_RESTARTBLOCK;
|
|
}
|
|
|
|
asmlinkage long
|
|
sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
|
|
{
|
|
struct timespec tu;
|
|
|
|
if (copy_from_user(&tu, rqtp, sizeof(tu)))
|
|
return -EFAULT;
|
|
|
|
if (!timespec_valid(&tu))
|
|
return -EINVAL;
|
|
|
|
return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
|
|
}
|
|
|
|
/*
|
|
* Functions related to boot-time initialization:
|
|
*/
|
|
static void __devinit init_hrtimers_cpu(int cpu)
|
|
{
|
|
struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_HRTIMER_BASES; i++, base++)
|
|
spin_lock_init(&base->lock);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
static void migrate_hrtimer_list(struct hrtimer_base *old_base,
|
|
struct hrtimer_base *new_base)
|
|
{
|
|
struct hrtimer *timer;
|
|
struct rb_node *node;
|
|
|
|
while ((node = rb_first(&old_base->active))) {
|
|
timer = rb_entry(node, struct hrtimer, node);
|
|
__remove_hrtimer(timer, old_base);
|
|
timer->base = new_base;
|
|
enqueue_hrtimer(timer, new_base);
|
|
}
|
|
}
|
|
|
|
static void migrate_hrtimers(int cpu)
|
|
{
|
|
struct hrtimer_base *old_base, *new_base;
|
|
int i;
|
|
|
|
BUG_ON(cpu_online(cpu));
|
|
old_base = per_cpu(hrtimer_bases, cpu);
|
|
new_base = get_cpu_var(hrtimer_bases);
|
|
|
|
local_irq_disable();
|
|
|
|
for (i = 0; i < MAX_HRTIMER_BASES; i++) {
|
|
|
|
spin_lock(&new_base->lock);
|
|
spin_lock(&old_base->lock);
|
|
|
|
BUG_ON(old_base->curr_timer);
|
|
|
|
migrate_hrtimer_list(old_base, new_base);
|
|
|
|
spin_unlock(&old_base->lock);
|
|
spin_unlock(&new_base->lock);
|
|
old_base++;
|
|
new_base++;
|
|
}
|
|
|
|
local_irq_enable();
|
|
put_cpu_var(hrtimer_bases);
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static int __devinit hrtimer_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
long cpu = (long)hcpu;
|
|
|
|
switch (action) {
|
|
|
|
case CPU_UP_PREPARE:
|
|
init_hrtimers_cpu(cpu);
|
|
break;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
case CPU_DEAD:
|
|
migrate_hrtimers(cpu);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __devinitdata hrtimers_nb = {
|
|
.notifier_call = hrtimer_cpu_notify,
|
|
};
|
|
|
|
void __init hrtimers_init(void)
|
|
{
|
|
hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
|
|
(void *)(long)smp_processor_id());
|
|
register_cpu_notifier(&hrtimers_nb);
|
|
}
|
|
|