linux/fs/ocfs2/aops.c
Joel Becker 0cf2f7632b ocfs2: Pass struct ocfs2_caching_info to the journal functions.
The next step in divorcing metadata I/O management from struct inode is
to pass struct ocfs2_caching_info to the journal functions.  Thus the
journal locks a metadata cache with the cache io_lock function.  It also
can compare ci_last_trans and ci_created_trans directly.

This is a large patch because of all the places we change
ocfs2_journal_access..(handle, inode, ...) to
ocfs2_journal_access..(handle, INODE_CACHE(inode), ...).

Signed-off-by: Joel Becker <joel.becker@oracle.com>
2009-09-04 16:07:50 -07:00

2001 lines
50 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <asm/byteorder.h>
#include <linux/swap.h>
#include <linux/pipe_fs_i.h>
#include <linux/mpage.h>
#include <linux/quotaops.h>
#define MLOG_MASK_PREFIX ML_FILE_IO
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "aops.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "file.h"
#include "inode.h"
#include "journal.h"
#include "suballoc.h"
#include "super.h"
#include "symlink.h"
#include "buffer_head_io.h"
static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
int err = -EIO;
int status;
struct ocfs2_dinode *fe = NULL;
struct buffer_head *bh = NULL;
struct buffer_head *buffer_cache_bh = NULL;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
void *kaddr;
mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
(unsigned long long)iblock, bh_result, create);
BUG_ON(ocfs2_inode_is_fast_symlink(inode));
if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
(unsigned long long)iblock);
goto bail;
}
status = ocfs2_read_inode_block(inode, &bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
fe = (struct ocfs2_dinode *) bh->b_data;
if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
le32_to_cpu(fe->i_clusters))) {
mlog(ML_ERROR, "block offset is outside the allocated size: "
"%llu\n", (unsigned long long)iblock);
goto bail;
}
/* We don't use the page cache to create symlink data, so if
* need be, copy it over from the buffer cache. */
if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
iblock;
buffer_cache_bh = sb_getblk(osb->sb, blkno);
if (!buffer_cache_bh) {
mlog(ML_ERROR, "couldn't getblock for symlink!\n");
goto bail;
}
/* we haven't locked out transactions, so a commit
* could've happened. Since we've got a reference on
* the bh, even if it commits while we're doing the
* copy, the data is still good. */
if (buffer_jbd(buffer_cache_bh)
&& ocfs2_inode_is_new(inode)) {
kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
if (!kaddr) {
mlog(ML_ERROR, "couldn't kmap!\n");
goto bail;
}
memcpy(kaddr + (bh_result->b_size * iblock),
buffer_cache_bh->b_data,
bh_result->b_size);
kunmap_atomic(kaddr, KM_USER0);
set_buffer_uptodate(bh_result);
}
brelse(buffer_cache_bh);
}
map_bh(bh_result, inode->i_sb,
le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
err = 0;
bail:
brelse(bh);
mlog_exit(err);
return err;
}
static int ocfs2_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
int err = 0;
unsigned int ext_flags;
u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
u64 p_blkno, count, past_eof;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
(unsigned long long)iblock, bh_result, create);
if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
inode, inode->i_ino);
if (S_ISLNK(inode->i_mode)) {
/* this always does I/O for some reason. */
err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
goto bail;
}
err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
&ext_flags);
if (err) {
mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
"%llu, NULL)\n", err, inode, (unsigned long long)iblock,
(unsigned long long)p_blkno);
goto bail;
}
if (max_blocks < count)
count = max_blocks;
/*
* ocfs2 never allocates in this function - the only time we
* need to use BH_New is when we're extending i_size on a file
* system which doesn't support holes, in which case BH_New
* allows block_prepare_write() to zero.
*
* If we see this on a sparse file system, then a truncate has
* raced us and removed the cluster. In this case, we clear
* the buffers dirty and uptodate bits and let the buffer code
* ignore it as a hole.
*/
if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
clear_buffer_dirty(bh_result);
clear_buffer_uptodate(bh_result);
goto bail;
}
/* Treat the unwritten extent as a hole for zeroing purposes. */
if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
map_bh(bh_result, inode->i_sb, p_blkno);
bh_result->b_size = count << inode->i_blkbits;
if (!ocfs2_sparse_alloc(osb)) {
if (p_blkno == 0) {
err = -EIO;
mlog(ML_ERROR,
"iblock = %llu p_blkno = %llu blkno=(%llu)\n",
(unsigned long long)iblock,
(unsigned long long)p_blkno,
(unsigned long long)OCFS2_I(inode)->ip_blkno);
mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
dump_stack();
goto bail;
}
past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
(unsigned long long)past_eof);
if (create && (iblock >= past_eof))
set_buffer_new(bh_result);
}
bail:
if (err < 0)
err = -EIO;
mlog_exit(err);
return err;
}
int ocfs2_read_inline_data(struct inode *inode, struct page *page,
struct buffer_head *di_bh)
{
void *kaddr;
loff_t size;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
(unsigned long long)OCFS2_I(inode)->ip_blkno);
return -EROFS;
}
size = i_size_read(inode);
if (size > PAGE_CACHE_SIZE ||
size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
ocfs2_error(inode->i_sb,
"Inode %llu has with inline data has bad size: %Lu",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)size);
return -EROFS;
}
kaddr = kmap_atomic(page, KM_USER0);
if (size)
memcpy(kaddr, di->id2.i_data.id_data, size);
/* Clear the remaining part of the page */
memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
SetPageUptodate(page);
return 0;
}
static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
{
int ret;
struct buffer_head *di_bh = NULL;
BUG_ON(!PageLocked(page));
BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
ret = ocfs2_read_inode_block(inode, &di_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_read_inline_data(inode, page, di_bh);
out:
unlock_page(page);
brelse(di_bh);
return ret;
}
static int ocfs2_readpage(struct file *file, struct page *page)
{
struct inode *inode = page->mapping->host;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
int ret, unlock = 1;
mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
if (ret != 0) {
if (ret == AOP_TRUNCATED_PAGE)
unlock = 0;
mlog_errno(ret);
goto out;
}
if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
ret = AOP_TRUNCATED_PAGE;
goto out_inode_unlock;
}
/*
* i_size might have just been updated as we grabed the meta lock. We
* might now be discovering a truncate that hit on another node.
* block_read_full_page->get_block freaks out if it is asked to read
* beyond the end of a file, so we check here. Callers
* (generic_file_read, vm_ops->fault) are clever enough to check i_size
* and notice that the page they just read isn't needed.
*
* XXX sys_readahead() seems to get that wrong?
*/
if (start >= i_size_read(inode)) {
zero_user(page, 0, PAGE_SIZE);
SetPageUptodate(page);
ret = 0;
goto out_alloc;
}
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
ret = ocfs2_readpage_inline(inode, page);
else
ret = block_read_full_page(page, ocfs2_get_block);
unlock = 0;
out_alloc:
up_read(&OCFS2_I(inode)->ip_alloc_sem);
out_inode_unlock:
ocfs2_inode_unlock(inode, 0);
out:
if (unlock)
unlock_page(page);
mlog_exit(ret);
return ret;
}
/*
* This is used only for read-ahead. Failures or difficult to handle
* situations are safe to ignore.
*
* Right now, we don't bother with BH_Boundary - in-inode extent lists
* are quite large (243 extents on 4k blocks), so most inodes don't
* grow out to a tree. If need be, detecting boundary extents could
* trivially be added in a future version of ocfs2_get_block().
*/
static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
int ret, err = -EIO;
struct inode *inode = mapping->host;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
loff_t start;
struct page *last;
/*
* Use the nonblocking flag for the dlm code to avoid page
* lock inversion, but don't bother with retrying.
*/
ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
if (ret)
return err;
if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
ocfs2_inode_unlock(inode, 0);
return err;
}
/*
* Don't bother with inline-data. There isn't anything
* to read-ahead in that case anyway...
*/
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
goto out_unlock;
/*
* Check whether a remote node truncated this file - we just
* drop out in that case as it's not worth handling here.
*/
last = list_entry(pages->prev, struct page, lru);
start = (loff_t)last->index << PAGE_CACHE_SHIFT;
if (start >= i_size_read(inode))
goto out_unlock;
err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
out_unlock:
up_read(&oi->ip_alloc_sem);
ocfs2_inode_unlock(inode, 0);
return err;
}
/* Note: Because we don't support holes, our allocation has
* already happened (allocation writes zeros to the file data)
* so we don't have to worry about ordered writes in
* ocfs2_writepage.
*
* ->writepage is called during the process of invalidating the page cache
* during blocked lock processing. It can't block on any cluster locks
* to during block mapping. It's relying on the fact that the block
* mapping can't have disappeared under the dirty pages that it is
* being asked to write back.
*/
static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
{
int ret;
mlog_entry("(0x%p)\n", page);
ret = block_write_full_page(page, ocfs2_get_block, wbc);
mlog_exit(ret);
return ret;
}
/*
* This is called from ocfs2_write_zero_page() which has handled it's
* own cluster locking and has ensured allocation exists for those
* blocks to be written.
*/
int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
unsigned from, unsigned to)
{
int ret;
ret = block_prepare_write(page, from, to, ocfs2_get_block);
return ret;
}
/* Taken from ext3. We don't necessarily need the full blown
* functionality yet, but IMHO it's better to cut and paste the whole
* thing so we can avoid introducing our own bugs (and easily pick up
* their fixes when they happen) --Mark */
int walk_page_buffers( handle_t *handle,
struct buffer_head *head,
unsigned from,
unsigned to,
int *partial,
int (*fn)( handle_t *handle,
struct buffer_head *bh))
{
struct buffer_head *bh;
unsigned block_start, block_end;
unsigned blocksize = head->b_size;
int err, ret = 0;
struct buffer_head *next;
for ( bh = head, block_start = 0;
ret == 0 && (bh != head || !block_start);
block_start = block_end, bh = next)
{
next = bh->b_this_page;
block_end = block_start + blocksize;
if (block_end <= from || block_start >= to) {
if (partial && !buffer_uptodate(bh))
*partial = 1;
continue;
}
err = (*fn)(handle, bh);
if (!ret)
ret = err;
}
return ret;
}
handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
struct page *page,
unsigned from,
unsigned to)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle;
int ret = 0;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
if (ocfs2_should_order_data(inode)) {
ret = ocfs2_jbd2_file_inode(handle, inode);
if (ret < 0)
mlog_errno(ret);
}
out:
if (ret) {
if (!IS_ERR(handle))
ocfs2_commit_trans(osb, handle);
handle = ERR_PTR(ret);
}
return handle;
}
static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
{
sector_t status;
u64 p_blkno = 0;
int err = 0;
struct inode *inode = mapping->host;
mlog_entry("(block = %llu)\n", (unsigned long long)block);
/* We don't need to lock journal system files, since they aren't
* accessed concurrently from multiple nodes.
*/
if (!INODE_JOURNAL(inode)) {
err = ocfs2_inode_lock(inode, NULL, 0);
if (err) {
if (err != -ENOENT)
mlog_errno(err);
goto bail;
}
down_read(&OCFS2_I(inode)->ip_alloc_sem);
}
if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
NULL);
if (!INODE_JOURNAL(inode)) {
up_read(&OCFS2_I(inode)->ip_alloc_sem);
ocfs2_inode_unlock(inode, 0);
}
if (err) {
mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
(unsigned long long)block);
mlog_errno(err);
goto bail;
}
bail:
status = err ? 0 : p_blkno;
mlog_exit((int)status);
return status;
}
/*
* TODO: Make this into a generic get_blocks function.
*
* From do_direct_io in direct-io.c:
* "So what we do is to permit the ->get_blocks function to populate
* bh.b_size with the size of IO which is permitted at this offset and
* this i_blkbits."
*
* This function is called directly from get_more_blocks in direct-io.c.
*
* called like this: dio->get_blocks(dio->inode, fs_startblk,
* fs_count, map_bh, dio->rw == WRITE);
*/
static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
int ret;
u64 p_blkno, inode_blocks, contig_blocks;
unsigned int ext_flags;
unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
/* This function won't even be called if the request isn't all
* nicely aligned and of the right size, so there's no need
* for us to check any of that. */
inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
/*
* Any write past EOF is not allowed because we'd be extending.
*/
if (create && (iblock + max_blocks) > inode_blocks) {
ret = -EIO;
goto bail;
}
/* This figures out the size of the next contiguous block, and
* our logical offset */
ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
&contig_blocks, &ext_flags);
if (ret) {
mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
(unsigned long long)iblock);
ret = -EIO;
goto bail;
}
if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
ocfs2_error(inode->i_sb,
"Inode %llu has a hole at block %llu\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)iblock);
ret = -EROFS;
goto bail;
}
/*
* get_more_blocks() expects us to describe a hole by clearing
* the mapped bit on bh_result().
*
* Consider an unwritten extent as a hole.
*/
if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
map_bh(bh_result, inode->i_sb, p_blkno);
else {
/*
* ocfs2_prepare_inode_for_write() should have caught
* the case where we'd be filling a hole and triggered
* a buffered write instead.
*/
if (create) {
ret = -EIO;
mlog_errno(ret);
goto bail;
}
clear_buffer_mapped(bh_result);
}
/* make sure we don't map more than max_blocks blocks here as
that's all the kernel will handle at this point. */
if (max_blocks < contig_blocks)
contig_blocks = max_blocks;
bh_result->b_size = contig_blocks << blocksize_bits;
bail:
return ret;
}
/*
* ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
* particularly interested in the aio/dio case. Like the core uses
* i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
* truncation on another.
*/
static void ocfs2_dio_end_io(struct kiocb *iocb,
loff_t offset,
ssize_t bytes,
void *private)
{
struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
int level;
/* this io's submitter should not have unlocked this before we could */
BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
ocfs2_iocb_clear_rw_locked(iocb);
level = ocfs2_iocb_rw_locked_level(iocb);
if (!level)
up_read(&inode->i_alloc_sem);
ocfs2_rw_unlock(inode, level);
}
/*
* ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
* from ext3. PageChecked() bits have been removed as OCFS2 does not
* do journalled data.
*/
static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
{
journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
jbd2_journal_invalidatepage(journal, page, offset);
}
static int ocfs2_releasepage(struct page *page, gfp_t wait)
{
journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
if (!page_has_buffers(page))
return 0;
return jbd2_journal_try_to_free_buffers(journal, page, wait);
}
static ssize_t ocfs2_direct_IO(int rw,
struct kiocb *iocb,
const struct iovec *iov,
loff_t offset,
unsigned long nr_segs)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
int ret;
mlog_entry_void();
/*
* Fallback to buffered I/O if we see an inode without
* extents.
*/
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
return 0;
ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
inode->i_sb->s_bdev, iov, offset,
nr_segs,
ocfs2_direct_IO_get_blocks,
ocfs2_dio_end_io);
mlog_exit(ret);
return ret;
}
static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
u32 cpos,
unsigned int *start,
unsigned int *end)
{
unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
unsigned int cpp;
cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
cluster_start = cpos % cpp;
cluster_start = cluster_start << osb->s_clustersize_bits;
cluster_end = cluster_start + osb->s_clustersize;
}
BUG_ON(cluster_start > PAGE_SIZE);
BUG_ON(cluster_end > PAGE_SIZE);
if (start)
*start = cluster_start;
if (end)
*end = cluster_end;
}
/*
* 'from' and 'to' are the region in the page to avoid zeroing.
*
* If pagesize > clustersize, this function will avoid zeroing outside
* of the cluster boundary.
*
* from == to == 0 is code for "zero the entire cluster region"
*/
static void ocfs2_clear_page_regions(struct page *page,
struct ocfs2_super *osb, u32 cpos,
unsigned from, unsigned to)
{
void *kaddr;
unsigned int cluster_start, cluster_end;
ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
kaddr = kmap_atomic(page, KM_USER0);
if (from || to) {
if (from > cluster_start)
memset(kaddr + cluster_start, 0, from - cluster_start);
if (to < cluster_end)
memset(kaddr + to, 0, cluster_end - to);
} else {
memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
}
kunmap_atomic(kaddr, KM_USER0);
}
/*
* Nonsparse file systems fully allocate before we get to the write
* code. This prevents ocfs2_write() from tagging the write as an
* allocating one, which means ocfs2_map_page_blocks() might try to
* read-in the blocks at the tail of our file. Avoid reading them by
* testing i_size against each block offset.
*/
static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
unsigned int block_start)
{
u64 offset = page_offset(page) + block_start;
if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
return 1;
if (i_size_read(inode) > offset)
return 1;
return 0;
}
/*
* Some of this taken from block_prepare_write(). We already have our
* mapping by now though, and the entire write will be allocating or
* it won't, so not much need to use BH_New.
*
* This will also skip zeroing, which is handled externally.
*/
int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
struct inode *inode, unsigned int from,
unsigned int to, int new)
{
int ret = 0;
struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
unsigned int block_end, block_start;
unsigned int bsize = 1 << inode->i_blkbits;
if (!page_has_buffers(page))
create_empty_buffers(page, bsize, 0);
head = page_buffers(page);
for (bh = head, block_start = 0; bh != head || !block_start;
bh = bh->b_this_page, block_start += bsize) {
block_end = block_start + bsize;
clear_buffer_new(bh);
/*
* Ignore blocks outside of our i/o range -
* they may belong to unallocated clusters.
*/
if (block_start >= to || block_end <= from) {
if (PageUptodate(page))
set_buffer_uptodate(bh);
continue;
}
/*
* For an allocating write with cluster size >= page
* size, we always write the entire page.
*/
if (new)
set_buffer_new(bh);
if (!buffer_mapped(bh)) {
map_bh(bh, inode->i_sb, *p_blkno);
unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
}
if (PageUptodate(page)) {
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
!buffer_new(bh) &&
ocfs2_should_read_blk(inode, page, block_start) &&
(block_start < from || block_end > to)) {
ll_rw_block(READ, 1, &bh);
*wait_bh++=bh;
}
*p_blkno = *p_blkno + 1;
}
/*
* If we issued read requests - let them complete.
*/
while(wait_bh > wait) {
wait_on_buffer(*--wait_bh);
if (!buffer_uptodate(*wait_bh))
ret = -EIO;
}
if (ret == 0 || !new)
return ret;
/*
* If we get -EIO above, zero out any newly allocated blocks
* to avoid exposing stale data.
*/
bh = head;
block_start = 0;
do {
block_end = block_start + bsize;
if (block_end <= from)
goto next_bh;
if (block_start >= to)
break;
zero_user(page, block_start, bh->b_size);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
next_bh:
block_start = block_end;
bh = bh->b_this_page;
} while (bh != head);
return ret;
}
#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
#define OCFS2_MAX_CTXT_PAGES 1
#else
#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
#endif
#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
/*
* Describe the state of a single cluster to be written to.
*/
struct ocfs2_write_cluster_desc {
u32 c_cpos;
u32 c_phys;
/*
* Give this a unique field because c_phys eventually gets
* filled.
*/
unsigned c_new;
unsigned c_unwritten;
unsigned c_needs_zero;
};
struct ocfs2_write_ctxt {
/* Logical cluster position / len of write */
u32 w_cpos;
u32 w_clen;
/* First cluster allocated in a nonsparse extend */
u32 w_first_new_cpos;
struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
/*
* This is true if page_size > cluster_size.
*
* It triggers a set of special cases during write which might
* have to deal with allocating writes to partial pages.
*/
unsigned int w_large_pages;
/*
* Pages involved in this write.
*
* w_target_page is the page being written to by the user.
*
* w_pages is an array of pages which always contains
* w_target_page, and in the case of an allocating write with
* page_size < cluster size, it will contain zero'd and mapped
* pages adjacent to w_target_page which need to be written
* out in so that future reads from that region will get
* zero's.
*/
struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
unsigned int w_num_pages;
struct page *w_target_page;
/*
* ocfs2_write_end() uses this to know what the real range to
* write in the target should be.
*/
unsigned int w_target_from;
unsigned int w_target_to;
/*
* We could use journal_current_handle() but this is cleaner,
* IMHO -Mark
*/
handle_t *w_handle;
struct buffer_head *w_di_bh;
struct ocfs2_cached_dealloc_ctxt w_dealloc;
};
void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
{
int i;
for(i = 0; i < num_pages; i++) {
if (pages[i]) {
unlock_page(pages[i]);
mark_page_accessed(pages[i]);
page_cache_release(pages[i]);
}
}
}
static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
{
ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
brelse(wc->w_di_bh);
kfree(wc);
}
static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
struct ocfs2_super *osb, loff_t pos,
unsigned len, struct buffer_head *di_bh)
{
u32 cend;
struct ocfs2_write_ctxt *wc;
wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
if (!wc)
return -ENOMEM;
wc->w_cpos = pos >> osb->s_clustersize_bits;
wc->w_first_new_cpos = UINT_MAX;
cend = (pos + len - 1) >> osb->s_clustersize_bits;
wc->w_clen = cend - wc->w_cpos + 1;
get_bh(di_bh);
wc->w_di_bh = di_bh;
if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
wc->w_large_pages = 1;
else
wc->w_large_pages = 0;
ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
*wcp = wc;
return 0;
}
/*
* If a page has any new buffers, zero them out here, and mark them uptodate
* and dirty so they'll be written out (in order to prevent uninitialised
* block data from leaking). And clear the new bit.
*/
static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
{
unsigned int block_start, block_end;
struct buffer_head *head, *bh;
BUG_ON(!PageLocked(page));
if (!page_has_buffers(page))
return;
bh = head = page_buffers(page);
block_start = 0;
do {
block_end = block_start + bh->b_size;
if (buffer_new(bh)) {
if (block_end > from && block_start < to) {
if (!PageUptodate(page)) {
unsigned start, end;
start = max(from, block_start);
end = min(to, block_end);
zero_user_segment(page, start, end);
set_buffer_uptodate(bh);
}
clear_buffer_new(bh);
mark_buffer_dirty(bh);
}
}
block_start = block_end;
bh = bh->b_this_page;
} while (bh != head);
}
/*
* Only called when we have a failure during allocating write to write
* zero's to the newly allocated region.
*/
static void ocfs2_write_failure(struct inode *inode,
struct ocfs2_write_ctxt *wc,
loff_t user_pos, unsigned user_len)
{
int i;
unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
to = user_pos + user_len;
struct page *tmppage;
ocfs2_zero_new_buffers(wc->w_target_page, from, to);
for(i = 0; i < wc->w_num_pages; i++) {
tmppage = wc->w_pages[i];
if (page_has_buffers(tmppage)) {
if (ocfs2_should_order_data(inode))
ocfs2_jbd2_file_inode(wc->w_handle, inode);
block_commit_write(tmppage, from, to);
}
}
}
static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
struct ocfs2_write_ctxt *wc,
struct page *page, u32 cpos,
loff_t user_pos, unsigned user_len,
int new)
{
int ret;
unsigned int map_from = 0, map_to = 0;
unsigned int cluster_start, cluster_end;
unsigned int user_data_from = 0, user_data_to = 0;
ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
&cluster_start, &cluster_end);
if (page == wc->w_target_page) {
map_from = user_pos & (PAGE_CACHE_SIZE - 1);
map_to = map_from + user_len;
if (new)
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
cluster_start, cluster_end,
new);
else
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
map_from, map_to, new);
if (ret) {
mlog_errno(ret);
goto out;
}
user_data_from = map_from;
user_data_to = map_to;
if (new) {
map_from = cluster_start;
map_to = cluster_end;
}
} else {
/*
* If we haven't allocated the new page yet, we
* shouldn't be writing it out without copying user
* data. This is likely a math error from the caller.
*/
BUG_ON(!new);
map_from = cluster_start;
map_to = cluster_end;
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
cluster_start, cluster_end, new);
if (ret) {
mlog_errno(ret);
goto out;
}
}
/*
* Parts of newly allocated pages need to be zero'd.
*
* Above, we have also rewritten 'to' and 'from' - as far as
* the rest of the function is concerned, the entire cluster
* range inside of a page needs to be written.
*
* We can skip this if the page is up to date - it's already
* been zero'd from being read in as a hole.
*/
if (new && !PageUptodate(page))
ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
cpos, user_data_from, user_data_to);
flush_dcache_page(page);
out:
return ret;
}
/*
* This function will only grab one clusters worth of pages.
*/
static int ocfs2_grab_pages_for_write(struct address_space *mapping,
struct ocfs2_write_ctxt *wc,
u32 cpos, loff_t user_pos, int new,
struct page *mmap_page)
{
int ret = 0, i;
unsigned long start, target_index, index;
struct inode *inode = mapping->host;
target_index = user_pos >> PAGE_CACHE_SHIFT;
/*
* Figure out how many pages we'll be manipulating here. For
* non allocating write, we just change the one
* page. Otherwise, we'll need a whole clusters worth.
*/
if (new) {
wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
} else {
wc->w_num_pages = 1;
start = target_index;
}
for(i = 0; i < wc->w_num_pages; i++) {
index = start + i;
if (index == target_index && mmap_page) {
/*
* ocfs2_pagemkwrite() is a little different
* and wants us to directly use the page
* passed in.
*/
lock_page(mmap_page);
if (mmap_page->mapping != mapping) {
unlock_page(mmap_page);
/*
* Sanity check - the locking in
* ocfs2_pagemkwrite() should ensure
* that this code doesn't trigger.
*/
ret = -EINVAL;
mlog_errno(ret);
goto out;
}
page_cache_get(mmap_page);
wc->w_pages[i] = mmap_page;
} else {
wc->w_pages[i] = find_or_create_page(mapping, index,
GFP_NOFS);
if (!wc->w_pages[i]) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
}
if (index == target_index)
wc->w_target_page = wc->w_pages[i];
}
out:
return ret;
}
/*
* Prepare a single cluster for write one cluster into the file.
*/
static int ocfs2_write_cluster(struct address_space *mapping,
u32 phys, unsigned int unwritten,
unsigned int should_zero,
struct ocfs2_alloc_context *data_ac,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_write_ctxt *wc, u32 cpos,
loff_t user_pos, unsigned user_len)
{
int ret, i, new;
u64 v_blkno, p_blkno;
struct inode *inode = mapping->host;
struct ocfs2_extent_tree et;
new = phys == 0 ? 1 : 0;
if (new) {
u32 tmp_pos;
/*
* This is safe to call with the page locks - it won't take
* any additional semaphores or cluster locks.
*/
tmp_pos = cpos;
ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
&tmp_pos, 1, 0, wc->w_di_bh,
wc->w_handle, data_ac,
meta_ac, NULL);
/*
* This shouldn't happen because we must have already
* calculated the correct meta data allocation required. The
* internal tree allocation code should know how to increase
* transaction credits itself.
*
* If need be, we could handle -EAGAIN for a
* RESTART_TRANS here.
*/
mlog_bug_on_msg(ret == -EAGAIN,
"Inode %llu: EAGAIN return during allocation.\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
} else if (unwritten) {
ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
ret = ocfs2_mark_extent_written(inode, &et,
wc->w_handle, cpos, 1, phys,
meta_ac, &wc->w_dealloc);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
if (should_zero)
v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
else
v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
/*
* The only reason this should fail is due to an inability to
* find the extent added.
*/
ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
NULL);
if (ret < 0) {
ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
"at logical block %llu",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)v_blkno);
goto out;
}
BUG_ON(p_blkno == 0);
for(i = 0; i < wc->w_num_pages; i++) {
int tmpret;
tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
wc->w_pages[i], cpos,
user_pos, user_len,
should_zero);
if (tmpret) {
mlog_errno(tmpret);
if (ret == 0)
ret = tmpret;
}
}
/*
* We only have cleanup to do in case of allocating write.
*/
if (ret && new)
ocfs2_write_failure(inode, wc, user_pos, user_len);
out:
return ret;
}
static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
struct ocfs2_alloc_context *data_ac,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_write_ctxt *wc,
loff_t pos, unsigned len)
{
int ret, i;
loff_t cluster_off;
unsigned int local_len = len;
struct ocfs2_write_cluster_desc *desc;
struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
for (i = 0; i < wc->w_clen; i++) {
desc = &wc->w_desc[i];
/*
* We have to make sure that the total write passed in
* doesn't extend past a single cluster.
*/
local_len = len;
cluster_off = pos & (osb->s_clustersize - 1);
if ((cluster_off + local_len) > osb->s_clustersize)
local_len = osb->s_clustersize - cluster_off;
ret = ocfs2_write_cluster(mapping, desc->c_phys,
desc->c_unwritten,
desc->c_needs_zero,
data_ac, meta_ac,
wc, desc->c_cpos, pos, local_len);
if (ret) {
mlog_errno(ret);
goto out;
}
len -= local_len;
pos += local_len;
}
ret = 0;
out:
return ret;
}
/*
* ocfs2_write_end() wants to know which parts of the target page it
* should complete the write on. It's easiest to compute them ahead of
* time when a more complete view of the write is available.
*/
static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
struct ocfs2_write_ctxt *wc,
loff_t pos, unsigned len, int alloc)
{
struct ocfs2_write_cluster_desc *desc;
wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
wc->w_target_to = wc->w_target_from + len;
if (alloc == 0)
return;
/*
* Allocating write - we may have different boundaries based
* on page size and cluster size.
*
* NOTE: We can no longer compute one value from the other as
* the actual write length and user provided length may be
* different.
*/
if (wc->w_large_pages) {
/*
* We only care about the 1st and last cluster within
* our range and whether they should be zero'd or not. Either
* value may be extended out to the start/end of a
* newly allocated cluster.
*/
desc = &wc->w_desc[0];
if (desc->c_needs_zero)
ocfs2_figure_cluster_boundaries(osb,
desc->c_cpos,
&wc->w_target_from,
NULL);
desc = &wc->w_desc[wc->w_clen - 1];
if (desc->c_needs_zero)
ocfs2_figure_cluster_boundaries(osb,
desc->c_cpos,
NULL,
&wc->w_target_to);
} else {
wc->w_target_from = 0;
wc->w_target_to = PAGE_CACHE_SIZE;
}
}
/*
* Populate each single-cluster write descriptor in the write context
* with information about the i/o to be done.
*
* Returns the number of clusters that will have to be allocated, as
* well as a worst case estimate of the number of extent records that
* would have to be created during a write to an unwritten region.
*/
static int ocfs2_populate_write_desc(struct inode *inode,
struct ocfs2_write_ctxt *wc,
unsigned int *clusters_to_alloc,
unsigned int *extents_to_split)
{
int ret;
struct ocfs2_write_cluster_desc *desc;
unsigned int num_clusters = 0;
unsigned int ext_flags = 0;
u32 phys = 0;
int i;
*clusters_to_alloc = 0;
*extents_to_split = 0;
for (i = 0; i < wc->w_clen; i++) {
desc = &wc->w_desc[i];
desc->c_cpos = wc->w_cpos + i;
if (num_clusters == 0) {
/*
* Need to look up the next extent record.
*/
ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
&num_clusters, &ext_flags);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Assume worst case - that we're writing in
* the middle of the extent.
*
* We can assume that the write proceeds from
* left to right, in which case the extent
* insert code is smart enough to coalesce the
* next splits into the previous records created.
*/
if (ext_flags & OCFS2_EXT_UNWRITTEN)
*extents_to_split = *extents_to_split + 2;
} else if (phys) {
/*
* Only increment phys if it doesn't describe
* a hole.
*/
phys++;
}
/*
* If w_first_new_cpos is < UINT_MAX, we have a non-sparse
* file that got extended. w_first_new_cpos tells us
* where the newly allocated clusters are so we can
* zero them.
*/
if (desc->c_cpos >= wc->w_first_new_cpos) {
BUG_ON(phys == 0);
desc->c_needs_zero = 1;
}
desc->c_phys = phys;
if (phys == 0) {
desc->c_new = 1;
desc->c_needs_zero = 1;
*clusters_to_alloc = *clusters_to_alloc + 1;
}
if (ext_flags & OCFS2_EXT_UNWRITTEN) {
desc->c_unwritten = 1;
desc->c_needs_zero = 1;
}
num_clusters--;
}
ret = 0;
out:
return ret;
}
static int ocfs2_write_begin_inline(struct address_space *mapping,
struct inode *inode,
struct ocfs2_write_ctxt *wc)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct page *page;
handle_t *handle;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
page = find_or_create_page(mapping, 0, GFP_NOFS);
if (!page) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
/*
* If we don't set w_num_pages then this page won't get unlocked
* and freed on cleanup of the write context.
*/
wc->w_pages[0] = wc->w_target_page = page;
wc->w_num_pages = 1;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
ocfs2_commit_trans(osb, handle);
mlog_errno(ret);
goto out;
}
if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
ocfs2_set_inode_data_inline(inode, di);
if (!PageUptodate(page)) {
ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
if (ret) {
ocfs2_commit_trans(osb, handle);
goto out;
}
}
wc->w_handle = handle;
out:
return ret;
}
int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
{
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
return 1;
return 0;
}
static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
struct inode *inode, loff_t pos,
unsigned len, struct page *mmap_page,
struct ocfs2_write_ctxt *wc)
{
int ret, written = 0;
loff_t end = pos + len;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_dinode *di = NULL;
mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
(unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
oi->ip_dyn_features);
/*
* Handle inodes which already have inline data 1st.
*/
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
if (mmap_page == NULL &&
ocfs2_size_fits_inline_data(wc->w_di_bh, end))
goto do_inline_write;
/*
* The write won't fit - we have to give this inode an
* inline extent list now.
*/
ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
if (ret)
mlog_errno(ret);
goto out;
}
/*
* Check whether the inode can accept inline data.
*/
if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
return 0;
/*
* Check whether the write can fit.
*/
di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
if (mmap_page ||
end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
return 0;
do_inline_write:
ret = ocfs2_write_begin_inline(mapping, inode, wc);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* This signals to the caller that the data can be written
* inline.
*/
written = 1;
out:
return written ? written : ret;
}
/*
* This function only does anything for file systems which can't
* handle sparse files.
*
* What we want to do here is fill in any hole between the current end
* of allocation and the end of our write. That way the rest of the
* write path can treat it as an non-allocating write, which has no
* special case code for sparse/nonsparse files.
*/
static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
unsigned len,
struct ocfs2_write_ctxt *wc)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
loff_t newsize = pos + len;
if (ocfs2_sparse_alloc(osb))
return 0;
if (newsize <= i_size_read(inode))
return 0;
ret = ocfs2_extend_no_holes(inode, newsize, pos);
if (ret)
mlog_errno(ret);
wc->w_first_new_cpos =
ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
return ret;
}
int ocfs2_write_begin_nolock(struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata,
struct buffer_head *di_bh, struct page *mmap_page)
{
int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
unsigned int clusters_to_alloc, extents_to_split;
struct ocfs2_write_ctxt *wc;
struct inode *inode = mapping->host;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_dinode *di;
struct ocfs2_alloc_context *data_ac = NULL;
struct ocfs2_alloc_context *meta_ac = NULL;
handle_t *handle;
struct ocfs2_extent_tree et;
ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
if (ret) {
mlog_errno(ret);
return ret;
}
if (ocfs2_supports_inline_data(osb)) {
ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
mmap_page, wc);
if (ret == 1) {
ret = 0;
goto success;
}
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
&extents_to_split);
if (ret) {
mlog_errno(ret);
goto out;
}
di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
/*
* We set w_target_from, w_target_to here so that
* ocfs2_write_end() knows which range in the target page to
* write out. An allocation requires that we write the entire
* cluster range.
*/
if (clusters_to_alloc || extents_to_split) {
/*
* XXX: We are stretching the limits of
* ocfs2_lock_allocators(). It greatly over-estimates
* the work to be done.
*/
mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
" clusters_to_add = %u, extents_to_split = %u\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
clusters_to_alloc, extents_to_split);
ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
ret = ocfs2_lock_allocators(inode, &et,
clusters_to_alloc, extents_to_split,
&data_ac, &meta_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
credits = ocfs2_calc_extend_credits(inode->i_sb,
&di->id2.i_list,
clusters_to_alloc);
}
/*
* We have to zero sparse allocated clusters, unwritten extent clusters,
* and non-sparse clusters we just extended. For non-sparse writes,
* we know zeros will only be needed in the first and/or last cluster.
*/
if (clusters_to_alloc || extents_to_split ||
(wc->w_clen && (wc->w_desc[0].c_needs_zero ||
wc->w_desc[wc->w_clen - 1].c_needs_zero)))
cluster_of_pages = 1;
else
cluster_of_pages = 0;
ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
wc->w_handle = handle;
if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
ret = -EDQUOT;
goto out_commit;
}
/*
* We don't want this to fail in ocfs2_write_end(), so do it
* here.
*/
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_quota;
}
/*
* Fill our page array first. That way we've grabbed enough so
* that we can zero and flush if we error after adding the
* extent.
*/
ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
cluster_of_pages, mmap_page);
if (ret) {
mlog_errno(ret);
goto out_quota;
}
ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
len);
if (ret) {
mlog_errno(ret);
goto out_quota;
}
if (data_ac)
ocfs2_free_alloc_context(data_ac);
if (meta_ac)
ocfs2_free_alloc_context(meta_ac);
success:
*pagep = wc->w_target_page;
*fsdata = wc;
return 0;
out_quota:
if (clusters_to_alloc)
vfs_dq_free_space(inode,
ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
out_commit:
ocfs2_commit_trans(osb, handle);
out:
ocfs2_free_write_ctxt(wc);
if (data_ac)
ocfs2_free_alloc_context(data_ac);
if (meta_ac)
ocfs2_free_alloc_context(meta_ac);
return ret;
}
static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
int ret;
struct buffer_head *di_bh = NULL;
struct inode *inode = mapping->host;
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret) {
mlog_errno(ret);
return ret;
}
/*
* Take alloc sem here to prevent concurrent lookups. That way
* the mapping, zeroing and tree manipulation within
* ocfs2_write() will be safe against ->readpage(). This
* should also serve to lock out allocation from a shared
* writeable region.
*/
down_write(&OCFS2_I(inode)->ip_alloc_sem);
ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
fsdata, di_bh, NULL);
if (ret) {
mlog_errno(ret);
goto out_fail;
}
brelse(di_bh);
return 0;
out_fail:
up_write(&OCFS2_I(inode)->ip_alloc_sem);
brelse(di_bh);
ocfs2_inode_unlock(inode, 1);
return ret;
}
static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
unsigned len, unsigned *copied,
struct ocfs2_dinode *di,
struct ocfs2_write_ctxt *wc)
{
void *kaddr;
if (unlikely(*copied < len)) {
if (!PageUptodate(wc->w_target_page)) {
*copied = 0;
return;
}
}
kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
kunmap_atomic(kaddr, KM_USER0);
mlog(0, "Data written to inode at offset %llu. "
"id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
(unsigned long long)pos, *copied,
le16_to_cpu(di->id2.i_data.id_count),
le16_to_cpu(di->i_dyn_features));
}
int ocfs2_write_end_nolock(struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
int i;
unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
struct inode *inode = mapping->host;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_write_ctxt *wc = fsdata;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
handle_t *handle = wc->w_handle;
struct page *tmppage;
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
goto out_write_size;
}
if (unlikely(copied < len)) {
if (!PageUptodate(wc->w_target_page))
copied = 0;
ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
start+len);
}
flush_dcache_page(wc->w_target_page);
for(i = 0; i < wc->w_num_pages; i++) {
tmppage = wc->w_pages[i];
if (tmppage == wc->w_target_page) {
from = wc->w_target_from;
to = wc->w_target_to;
BUG_ON(from > PAGE_CACHE_SIZE ||
to > PAGE_CACHE_SIZE ||
to < from);
} else {
/*
* Pages adjacent to the target (if any) imply
* a hole-filling write in which case we want
* to flush their entire range.
*/
from = 0;
to = PAGE_CACHE_SIZE;
}
if (page_has_buffers(tmppage)) {
if (ocfs2_should_order_data(inode))
ocfs2_jbd2_file_inode(wc->w_handle, inode);
block_commit_write(tmppage, from, to);
}
}
out_write_size:
pos += copied;
if (pos > inode->i_size) {
i_size_write(inode, pos);
mark_inode_dirty(inode);
}
inode->i_blocks = ocfs2_inode_sector_count(inode);
di->i_size = cpu_to_le64((u64)i_size_read(inode));
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
ocfs2_journal_dirty(handle, wc->w_di_bh);
ocfs2_commit_trans(osb, handle);
ocfs2_run_deallocs(osb, &wc->w_dealloc);
ocfs2_free_write_ctxt(wc);
return copied;
}
static int ocfs2_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
int ret;
struct inode *inode = mapping->host;
ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
up_write(&OCFS2_I(inode)->ip_alloc_sem);
ocfs2_inode_unlock(inode, 1);
return ret;
}
const struct address_space_operations ocfs2_aops = {
.readpage = ocfs2_readpage,
.readpages = ocfs2_readpages,
.writepage = ocfs2_writepage,
.write_begin = ocfs2_write_begin,
.write_end = ocfs2_write_end,
.bmap = ocfs2_bmap,
.sync_page = block_sync_page,
.direct_IO = ocfs2_direct_IO,
.invalidatepage = ocfs2_invalidatepage,
.releasepage = ocfs2_releasepage,
.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
};