mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-25 03:59:29 +00:00
1064f874ab
Ever since mount propagation was introduced in cases where a mount in propagated to parent mount mountpoint pair that is already in use the code has placed the new mount behind the old mount in the mount hash table. This implementation detail is problematic as it allows creating arbitrary length mount hash chains. Furthermore it invalidates the constraint maintained elsewhere in the mount code that a parent mount and a mountpoint pair will have exactly one mount upon them. Making it hard to deal with and to talk about this special case in the mount code. Modify mount propagation to notice when there is already a mount at the parent mount and mountpoint where a new mount is propagating to and place that preexisting mount on top of the new mount. Modify unmount propagation to notice when a mount that is being unmounted has another mount on top of it (and no other children), and to replace the unmounted mount with the mount on top of it. Move the MNT_UMUONT test from __lookup_mnt_last into __propagate_umount as that is the only call of __lookup_mnt_last where MNT_UMOUNT may be set on any mount visible in the mount hash table. These modifications allow: - __lookup_mnt_last to be removed. - attach_shadows to be renamed __attach_mnt and its shadow handling to be removed. - commit_tree to be simplified - copy_tree to be simplified The result is an easier to understand tree of mounts that does not allow creation of arbitrary length hash chains in the mount hash table. The result is also a very slight userspace visible difference in semantics. The following two cases now behave identically, where before order mattered: case 1: (explicit user action) B is a slave of A mount something on A/a , it will propagate to B/a and than mount something on B/a case 2: (tucked mount) B is a slave of A mount something on B/a and than mount something on A/a Histroically umount A/a would fail in case 1 and succeed in case 2. Now umount A/a succeeds in both configurations. This very small change in semantics appears if anything to be a bug fix to me and my survey of userspace leads me to believe that no programs will notice or care of this subtle semantic change. v2: Updated to mnt_change_mountpoint to not call dput or mntput and instead to decrement the counts directly. It is guaranteed that there will be other references when mnt_change_mountpoint is called so this is safe. v3: Moved put_mountpoint under mount_lock in attach_recursive_mnt As the locking in fs/namespace.c changed between v2 and v3. v4: Reworked the logic in propagate_mount_busy and __propagate_umount that detects when a mount completely covers another mount. v5: Removed unnecessary tests whose result is alwasy true in find_topper and attach_recursive_mnt. v6: Document the user space visible semantic difference. Cc: stable@vger.kernel.org Fixes: b90fa9ae8f51 ("[PATCH] shared mount handling: bind and rbind") Tested-by: Andrei Vagin <avagin@virtuozzo.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
3508 lines
85 KiB
C
3508 lines
85 KiB
C
/*
|
|
* linux/fs/namespace.c
|
|
*
|
|
* (C) Copyright Al Viro 2000, 2001
|
|
* Released under GPL v2.
|
|
*
|
|
* Based on code from fs/super.c, copyright Linus Torvalds and others.
|
|
* Heavily rewritten.
|
|
*/
|
|
|
|
#include <linux/syscalls.h>
|
|
#include <linux/export.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/mnt_namespace.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/security.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/init.h> /* init_rootfs */
|
|
#include <linux/fs_struct.h> /* get_fs_root et.al. */
|
|
#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
|
|
#include <linux/uaccess.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/task_work.h>
|
|
#include "pnode.h"
|
|
#include "internal.h"
|
|
|
|
/* Maximum number of mounts in a mount namespace */
|
|
unsigned int sysctl_mount_max __read_mostly = 100000;
|
|
|
|
static unsigned int m_hash_mask __read_mostly;
|
|
static unsigned int m_hash_shift __read_mostly;
|
|
static unsigned int mp_hash_mask __read_mostly;
|
|
static unsigned int mp_hash_shift __read_mostly;
|
|
|
|
static __initdata unsigned long mhash_entries;
|
|
static int __init set_mhash_entries(char *str)
|
|
{
|
|
if (!str)
|
|
return 0;
|
|
mhash_entries = simple_strtoul(str, &str, 0);
|
|
return 1;
|
|
}
|
|
__setup("mhash_entries=", set_mhash_entries);
|
|
|
|
static __initdata unsigned long mphash_entries;
|
|
static int __init set_mphash_entries(char *str)
|
|
{
|
|
if (!str)
|
|
return 0;
|
|
mphash_entries = simple_strtoul(str, &str, 0);
|
|
return 1;
|
|
}
|
|
__setup("mphash_entries=", set_mphash_entries);
|
|
|
|
static u64 event;
|
|
static DEFINE_IDA(mnt_id_ida);
|
|
static DEFINE_IDA(mnt_group_ida);
|
|
static DEFINE_SPINLOCK(mnt_id_lock);
|
|
static int mnt_id_start = 0;
|
|
static int mnt_group_start = 1;
|
|
|
|
static struct hlist_head *mount_hashtable __read_mostly;
|
|
static struct hlist_head *mountpoint_hashtable __read_mostly;
|
|
static struct kmem_cache *mnt_cache __read_mostly;
|
|
static DECLARE_RWSEM(namespace_sem);
|
|
|
|
/* /sys/fs */
|
|
struct kobject *fs_kobj;
|
|
EXPORT_SYMBOL_GPL(fs_kobj);
|
|
|
|
/*
|
|
* vfsmount lock may be taken for read to prevent changes to the
|
|
* vfsmount hash, ie. during mountpoint lookups or walking back
|
|
* up the tree.
|
|
*
|
|
* It should be taken for write in all cases where the vfsmount
|
|
* tree or hash is modified or when a vfsmount structure is modified.
|
|
*/
|
|
__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
|
|
|
|
static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
|
|
{
|
|
unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
|
|
tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
|
|
tmp = tmp + (tmp >> m_hash_shift);
|
|
return &mount_hashtable[tmp & m_hash_mask];
|
|
}
|
|
|
|
static inline struct hlist_head *mp_hash(struct dentry *dentry)
|
|
{
|
|
unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
|
|
tmp = tmp + (tmp >> mp_hash_shift);
|
|
return &mountpoint_hashtable[tmp & mp_hash_mask];
|
|
}
|
|
|
|
static int mnt_alloc_id(struct mount *mnt)
|
|
{
|
|
int res;
|
|
|
|
retry:
|
|
ida_pre_get(&mnt_id_ida, GFP_KERNEL);
|
|
spin_lock(&mnt_id_lock);
|
|
res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
|
|
if (!res)
|
|
mnt_id_start = mnt->mnt_id + 1;
|
|
spin_unlock(&mnt_id_lock);
|
|
if (res == -EAGAIN)
|
|
goto retry;
|
|
|
|
return res;
|
|
}
|
|
|
|
static void mnt_free_id(struct mount *mnt)
|
|
{
|
|
int id = mnt->mnt_id;
|
|
spin_lock(&mnt_id_lock);
|
|
ida_remove(&mnt_id_ida, id);
|
|
if (mnt_id_start > id)
|
|
mnt_id_start = id;
|
|
spin_unlock(&mnt_id_lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new peer group ID
|
|
*
|
|
* mnt_group_ida is protected by namespace_sem
|
|
*/
|
|
static int mnt_alloc_group_id(struct mount *mnt)
|
|
{
|
|
int res;
|
|
|
|
if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
res = ida_get_new_above(&mnt_group_ida,
|
|
mnt_group_start,
|
|
&mnt->mnt_group_id);
|
|
if (!res)
|
|
mnt_group_start = mnt->mnt_group_id + 1;
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Release a peer group ID
|
|
*/
|
|
void mnt_release_group_id(struct mount *mnt)
|
|
{
|
|
int id = mnt->mnt_group_id;
|
|
ida_remove(&mnt_group_ida, id);
|
|
if (mnt_group_start > id)
|
|
mnt_group_start = id;
|
|
mnt->mnt_group_id = 0;
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for read
|
|
*/
|
|
static inline void mnt_add_count(struct mount *mnt, int n)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
this_cpu_add(mnt->mnt_pcp->mnt_count, n);
|
|
#else
|
|
preempt_disable();
|
|
mnt->mnt_count += n;
|
|
preempt_enable();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
unsigned int mnt_get_count(struct mount *mnt)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned int count = 0;
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
|
|
}
|
|
|
|
return count;
|
|
#else
|
|
return mnt->mnt_count;
|
|
#endif
|
|
}
|
|
|
|
static void drop_mountpoint(struct fs_pin *p)
|
|
{
|
|
struct mount *m = container_of(p, struct mount, mnt_umount);
|
|
dput(m->mnt_ex_mountpoint);
|
|
pin_remove(p);
|
|
mntput(&m->mnt);
|
|
}
|
|
|
|
static struct mount *alloc_vfsmnt(const char *name)
|
|
{
|
|
struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
|
|
if (mnt) {
|
|
int err;
|
|
|
|
err = mnt_alloc_id(mnt);
|
|
if (err)
|
|
goto out_free_cache;
|
|
|
|
if (name) {
|
|
mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
|
|
if (!mnt->mnt_devname)
|
|
goto out_free_id;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
|
|
if (!mnt->mnt_pcp)
|
|
goto out_free_devname;
|
|
|
|
this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
|
|
#else
|
|
mnt->mnt_count = 1;
|
|
mnt->mnt_writers = 0;
|
|
#endif
|
|
|
|
INIT_HLIST_NODE(&mnt->mnt_hash);
|
|
INIT_LIST_HEAD(&mnt->mnt_child);
|
|
INIT_LIST_HEAD(&mnt->mnt_mounts);
|
|
INIT_LIST_HEAD(&mnt->mnt_list);
|
|
INIT_LIST_HEAD(&mnt->mnt_expire);
|
|
INIT_LIST_HEAD(&mnt->mnt_share);
|
|
INIT_LIST_HEAD(&mnt->mnt_slave_list);
|
|
INIT_LIST_HEAD(&mnt->mnt_slave);
|
|
INIT_HLIST_NODE(&mnt->mnt_mp_list);
|
|
#ifdef CONFIG_FSNOTIFY
|
|
INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
|
|
#endif
|
|
init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
|
|
}
|
|
return mnt;
|
|
|
|
#ifdef CONFIG_SMP
|
|
out_free_devname:
|
|
kfree_const(mnt->mnt_devname);
|
|
#endif
|
|
out_free_id:
|
|
mnt_free_id(mnt);
|
|
out_free_cache:
|
|
kmem_cache_free(mnt_cache, mnt);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Most r/o checks on a fs are for operations that take
|
|
* discrete amounts of time, like a write() or unlink().
|
|
* We must keep track of when those operations start
|
|
* (for permission checks) and when they end, so that
|
|
* we can determine when writes are able to occur to
|
|
* a filesystem.
|
|
*/
|
|
/*
|
|
* __mnt_is_readonly: check whether a mount is read-only
|
|
* @mnt: the mount to check for its write status
|
|
*
|
|
* This shouldn't be used directly ouside of the VFS.
|
|
* It does not guarantee that the filesystem will stay
|
|
* r/w, just that it is right *now*. This can not and
|
|
* should not be used in place of IS_RDONLY(inode).
|
|
* mnt_want/drop_write() will _keep_ the filesystem
|
|
* r/w.
|
|
*/
|
|
int __mnt_is_readonly(struct vfsmount *mnt)
|
|
{
|
|
if (mnt->mnt_flags & MNT_READONLY)
|
|
return 1;
|
|
if (mnt->mnt_sb->s_flags & MS_RDONLY)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__mnt_is_readonly);
|
|
|
|
static inline void mnt_inc_writers(struct mount *mnt)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
this_cpu_inc(mnt->mnt_pcp->mnt_writers);
|
|
#else
|
|
mnt->mnt_writers++;
|
|
#endif
|
|
}
|
|
|
|
static inline void mnt_dec_writers(struct mount *mnt)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
this_cpu_dec(mnt->mnt_pcp->mnt_writers);
|
|
#else
|
|
mnt->mnt_writers--;
|
|
#endif
|
|
}
|
|
|
|
static unsigned int mnt_get_writers(struct mount *mnt)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned int count = 0;
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
|
|
}
|
|
|
|
return count;
|
|
#else
|
|
return mnt->mnt_writers;
|
|
#endif
|
|
}
|
|
|
|
static int mnt_is_readonly(struct vfsmount *mnt)
|
|
{
|
|
if (mnt->mnt_sb->s_readonly_remount)
|
|
return 1;
|
|
/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
|
|
smp_rmb();
|
|
return __mnt_is_readonly(mnt);
|
|
}
|
|
|
|
/*
|
|
* Most r/o & frozen checks on a fs are for operations that take discrete
|
|
* amounts of time, like a write() or unlink(). We must keep track of when
|
|
* those operations start (for permission checks) and when they end, so that we
|
|
* can determine when writes are able to occur to a filesystem.
|
|
*/
|
|
/**
|
|
* __mnt_want_write - get write access to a mount without freeze protection
|
|
* @m: the mount on which to take a write
|
|
*
|
|
* This tells the low-level filesystem that a write is about to be performed to
|
|
* it, and makes sure that writes are allowed (mnt it read-write) before
|
|
* returning success. This operation does not protect against filesystem being
|
|
* frozen. When the write operation is finished, __mnt_drop_write() must be
|
|
* called. This is effectively a refcount.
|
|
*/
|
|
int __mnt_want_write(struct vfsmount *m)
|
|
{
|
|
struct mount *mnt = real_mount(m);
|
|
int ret = 0;
|
|
|
|
preempt_disable();
|
|
mnt_inc_writers(mnt);
|
|
/*
|
|
* The store to mnt_inc_writers must be visible before we pass
|
|
* MNT_WRITE_HOLD loop below, so that the slowpath can see our
|
|
* incremented count after it has set MNT_WRITE_HOLD.
|
|
*/
|
|
smp_mb();
|
|
while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
|
|
cpu_relax();
|
|
/*
|
|
* After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
|
|
* be set to match its requirements. So we must not load that until
|
|
* MNT_WRITE_HOLD is cleared.
|
|
*/
|
|
smp_rmb();
|
|
if (mnt_is_readonly(m)) {
|
|
mnt_dec_writers(mnt);
|
|
ret = -EROFS;
|
|
}
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mnt_want_write - get write access to a mount
|
|
* @m: the mount on which to take a write
|
|
*
|
|
* This tells the low-level filesystem that a write is about to be performed to
|
|
* it, and makes sure that writes are allowed (mount is read-write, filesystem
|
|
* is not frozen) before returning success. When the write operation is
|
|
* finished, mnt_drop_write() must be called. This is effectively a refcount.
|
|
*/
|
|
int mnt_want_write(struct vfsmount *m)
|
|
{
|
|
int ret;
|
|
|
|
sb_start_write(m->mnt_sb);
|
|
ret = __mnt_want_write(m);
|
|
if (ret)
|
|
sb_end_write(m->mnt_sb);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mnt_want_write);
|
|
|
|
/**
|
|
* mnt_clone_write - get write access to a mount
|
|
* @mnt: the mount on which to take a write
|
|
*
|
|
* This is effectively like mnt_want_write, except
|
|
* it must only be used to take an extra write reference
|
|
* on a mountpoint that we already know has a write reference
|
|
* on it. This allows some optimisation.
|
|
*
|
|
* After finished, mnt_drop_write must be called as usual to
|
|
* drop the reference.
|
|
*/
|
|
int mnt_clone_write(struct vfsmount *mnt)
|
|
{
|
|
/* superblock may be r/o */
|
|
if (__mnt_is_readonly(mnt))
|
|
return -EROFS;
|
|
preempt_disable();
|
|
mnt_inc_writers(real_mount(mnt));
|
|
preempt_enable();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mnt_clone_write);
|
|
|
|
/**
|
|
* __mnt_want_write_file - get write access to a file's mount
|
|
* @file: the file who's mount on which to take a write
|
|
*
|
|
* This is like __mnt_want_write, but it takes a file and can
|
|
* do some optimisations if the file is open for write already
|
|
*/
|
|
int __mnt_want_write_file(struct file *file)
|
|
{
|
|
if (!(file->f_mode & FMODE_WRITER))
|
|
return __mnt_want_write(file->f_path.mnt);
|
|
else
|
|
return mnt_clone_write(file->f_path.mnt);
|
|
}
|
|
|
|
/**
|
|
* mnt_want_write_file - get write access to a file's mount
|
|
* @file: the file who's mount on which to take a write
|
|
*
|
|
* This is like mnt_want_write, but it takes a file and can
|
|
* do some optimisations if the file is open for write already
|
|
*/
|
|
int mnt_want_write_file(struct file *file)
|
|
{
|
|
int ret;
|
|
|
|
sb_start_write(file->f_path.mnt->mnt_sb);
|
|
ret = __mnt_want_write_file(file);
|
|
if (ret)
|
|
sb_end_write(file->f_path.mnt->mnt_sb);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mnt_want_write_file);
|
|
|
|
/**
|
|
* __mnt_drop_write - give up write access to a mount
|
|
* @mnt: the mount on which to give up write access
|
|
*
|
|
* Tells the low-level filesystem that we are done
|
|
* performing writes to it. Must be matched with
|
|
* __mnt_want_write() call above.
|
|
*/
|
|
void __mnt_drop_write(struct vfsmount *mnt)
|
|
{
|
|
preempt_disable();
|
|
mnt_dec_writers(real_mount(mnt));
|
|
preempt_enable();
|
|
}
|
|
|
|
/**
|
|
* mnt_drop_write - give up write access to a mount
|
|
* @mnt: the mount on which to give up write access
|
|
*
|
|
* Tells the low-level filesystem that we are done performing writes to it and
|
|
* also allows filesystem to be frozen again. Must be matched with
|
|
* mnt_want_write() call above.
|
|
*/
|
|
void mnt_drop_write(struct vfsmount *mnt)
|
|
{
|
|
__mnt_drop_write(mnt);
|
|
sb_end_write(mnt->mnt_sb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mnt_drop_write);
|
|
|
|
void __mnt_drop_write_file(struct file *file)
|
|
{
|
|
__mnt_drop_write(file->f_path.mnt);
|
|
}
|
|
|
|
void mnt_drop_write_file(struct file *file)
|
|
{
|
|
mnt_drop_write(file->f_path.mnt);
|
|
}
|
|
EXPORT_SYMBOL(mnt_drop_write_file);
|
|
|
|
static int mnt_make_readonly(struct mount *mnt)
|
|
{
|
|
int ret = 0;
|
|
|
|
lock_mount_hash();
|
|
mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
|
|
/*
|
|
* After storing MNT_WRITE_HOLD, we'll read the counters. This store
|
|
* should be visible before we do.
|
|
*/
|
|
smp_mb();
|
|
|
|
/*
|
|
* With writers on hold, if this value is zero, then there are
|
|
* definitely no active writers (although held writers may subsequently
|
|
* increment the count, they'll have to wait, and decrement it after
|
|
* seeing MNT_READONLY).
|
|
*
|
|
* It is OK to have counter incremented on one CPU and decremented on
|
|
* another: the sum will add up correctly. The danger would be when we
|
|
* sum up each counter, if we read a counter before it is incremented,
|
|
* but then read another CPU's count which it has been subsequently
|
|
* decremented from -- we would see more decrements than we should.
|
|
* MNT_WRITE_HOLD protects against this scenario, because
|
|
* mnt_want_write first increments count, then smp_mb, then spins on
|
|
* MNT_WRITE_HOLD, so it can't be decremented by another CPU while
|
|
* we're counting up here.
|
|
*/
|
|
if (mnt_get_writers(mnt) > 0)
|
|
ret = -EBUSY;
|
|
else
|
|
mnt->mnt.mnt_flags |= MNT_READONLY;
|
|
/*
|
|
* MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
|
|
* that become unheld will see MNT_READONLY.
|
|
*/
|
|
smp_wmb();
|
|
mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
|
|
unlock_mount_hash();
|
|
return ret;
|
|
}
|
|
|
|
static void __mnt_unmake_readonly(struct mount *mnt)
|
|
{
|
|
lock_mount_hash();
|
|
mnt->mnt.mnt_flags &= ~MNT_READONLY;
|
|
unlock_mount_hash();
|
|
}
|
|
|
|
int sb_prepare_remount_readonly(struct super_block *sb)
|
|
{
|
|
struct mount *mnt;
|
|
int err = 0;
|
|
|
|
/* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
|
|
if (atomic_long_read(&sb->s_remove_count))
|
|
return -EBUSY;
|
|
|
|
lock_mount_hash();
|
|
list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
|
|
if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
|
|
mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
|
|
smp_mb();
|
|
if (mnt_get_writers(mnt) > 0) {
|
|
err = -EBUSY;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!err && atomic_long_read(&sb->s_remove_count))
|
|
err = -EBUSY;
|
|
|
|
if (!err) {
|
|
sb->s_readonly_remount = 1;
|
|
smp_wmb();
|
|
}
|
|
list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
|
|
if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
|
|
mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
|
|
}
|
|
unlock_mount_hash();
|
|
|
|
return err;
|
|
}
|
|
|
|
static void free_vfsmnt(struct mount *mnt)
|
|
{
|
|
kfree_const(mnt->mnt_devname);
|
|
#ifdef CONFIG_SMP
|
|
free_percpu(mnt->mnt_pcp);
|
|
#endif
|
|
kmem_cache_free(mnt_cache, mnt);
|
|
}
|
|
|
|
static void delayed_free_vfsmnt(struct rcu_head *head)
|
|
{
|
|
free_vfsmnt(container_of(head, struct mount, mnt_rcu));
|
|
}
|
|
|
|
/* call under rcu_read_lock */
|
|
int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
|
|
{
|
|
struct mount *mnt;
|
|
if (read_seqretry(&mount_lock, seq))
|
|
return 1;
|
|
if (bastard == NULL)
|
|
return 0;
|
|
mnt = real_mount(bastard);
|
|
mnt_add_count(mnt, 1);
|
|
if (likely(!read_seqretry(&mount_lock, seq)))
|
|
return 0;
|
|
if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
|
|
mnt_add_count(mnt, -1);
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* call under rcu_read_lock */
|
|
bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
|
|
{
|
|
int res = __legitimize_mnt(bastard, seq);
|
|
if (likely(!res))
|
|
return true;
|
|
if (unlikely(res < 0)) {
|
|
rcu_read_unlock();
|
|
mntput(bastard);
|
|
rcu_read_lock();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* find the first mount at @dentry on vfsmount @mnt.
|
|
* call under rcu_read_lock()
|
|
*/
|
|
struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
|
|
{
|
|
struct hlist_head *head = m_hash(mnt, dentry);
|
|
struct mount *p;
|
|
|
|
hlist_for_each_entry_rcu(p, head, mnt_hash)
|
|
if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
|
|
return p;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* lookup_mnt - Return the first child mount mounted at path
|
|
*
|
|
* "First" means first mounted chronologically. If you create the
|
|
* following mounts:
|
|
*
|
|
* mount /dev/sda1 /mnt
|
|
* mount /dev/sda2 /mnt
|
|
* mount /dev/sda3 /mnt
|
|
*
|
|
* Then lookup_mnt() on the base /mnt dentry in the root mount will
|
|
* return successively the root dentry and vfsmount of /dev/sda1, then
|
|
* /dev/sda2, then /dev/sda3, then NULL.
|
|
*
|
|
* lookup_mnt takes a reference to the found vfsmount.
|
|
*/
|
|
struct vfsmount *lookup_mnt(const struct path *path)
|
|
{
|
|
struct mount *child_mnt;
|
|
struct vfsmount *m;
|
|
unsigned seq;
|
|
|
|
rcu_read_lock();
|
|
do {
|
|
seq = read_seqbegin(&mount_lock);
|
|
child_mnt = __lookup_mnt(path->mnt, path->dentry);
|
|
m = child_mnt ? &child_mnt->mnt : NULL;
|
|
} while (!legitimize_mnt(m, seq));
|
|
rcu_read_unlock();
|
|
return m;
|
|
}
|
|
|
|
/*
|
|
* __is_local_mountpoint - Test to see if dentry is a mountpoint in the
|
|
* current mount namespace.
|
|
*
|
|
* The common case is dentries are not mountpoints at all and that
|
|
* test is handled inline. For the slow case when we are actually
|
|
* dealing with a mountpoint of some kind, walk through all of the
|
|
* mounts in the current mount namespace and test to see if the dentry
|
|
* is a mountpoint.
|
|
*
|
|
* The mount_hashtable is not usable in the context because we
|
|
* need to identify all mounts that may be in the current mount
|
|
* namespace not just a mount that happens to have some specified
|
|
* parent mount.
|
|
*/
|
|
bool __is_local_mountpoint(struct dentry *dentry)
|
|
{
|
|
struct mnt_namespace *ns = current->nsproxy->mnt_ns;
|
|
struct mount *mnt;
|
|
bool is_covered = false;
|
|
|
|
if (!d_mountpoint(dentry))
|
|
goto out;
|
|
|
|
down_read(&namespace_sem);
|
|
list_for_each_entry(mnt, &ns->list, mnt_list) {
|
|
is_covered = (mnt->mnt_mountpoint == dentry);
|
|
if (is_covered)
|
|
break;
|
|
}
|
|
up_read(&namespace_sem);
|
|
out:
|
|
return is_covered;
|
|
}
|
|
|
|
static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
|
|
{
|
|
struct hlist_head *chain = mp_hash(dentry);
|
|
struct mountpoint *mp;
|
|
|
|
hlist_for_each_entry(mp, chain, m_hash) {
|
|
if (mp->m_dentry == dentry) {
|
|
/* might be worth a WARN_ON() */
|
|
if (d_unlinked(dentry))
|
|
return ERR_PTR(-ENOENT);
|
|
mp->m_count++;
|
|
return mp;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct mountpoint *get_mountpoint(struct dentry *dentry)
|
|
{
|
|
struct mountpoint *mp, *new = NULL;
|
|
int ret;
|
|
|
|
if (d_mountpoint(dentry)) {
|
|
mountpoint:
|
|
read_seqlock_excl(&mount_lock);
|
|
mp = lookup_mountpoint(dentry);
|
|
read_sequnlock_excl(&mount_lock);
|
|
if (mp)
|
|
goto done;
|
|
}
|
|
|
|
if (!new)
|
|
new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
|
|
if (!new)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
|
/* Exactly one processes may set d_mounted */
|
|
ret = d_set_mounted(dentry);
|
|
|
|
/* Someone else set d_mounted? */
|
|
if (ret == -EBUSY)
|
|
goto mountpoint;
|
|
|
|
/* The dentry is not available as a mountpoint? */
|
|
mp = ERR_PTR(ret);
|
|
if (ret)
|
|
goto done;
|
|
|
|
/* Add the new mountpoint to the hash table */
|
|
read_seqlock_excl(&mount_lock);
|
|
new->m_dentry = dentry;
|
|
new->m_count = 1;
|
|
hlist_add_head(&new->m_hash, mp_hash(dentry));
|
|
INIT_HLIST_HEAD(&new->m_list);
|
|
read_sequnlock_excl(&mount_lock);
|
|
|
|
mp = new;
|
|
new = NULL;
|
|
done:
|
|
kfree(new);
|
|
return mp;
|
|
}
|
|
|
|
static void put_mountpoint(struct mountpoint *mp)
|
|
{
|
|
if (!--mp->m_count) {
|
|
struct dentry *dentry = mp->m_dentry;
|
|
BUG_ON(!hlist_empty(&mp->m_list));
|
|
spin_lock(&dentry->d_lock);
|
|
dentry->d_flags &= ~DCACHE_MOUNTED;
|
|
spin_unlock(&dentry->d_lock);
|
|
hlist_del(&mp->m_hash);
|
|
kfree(mp);
|
|
}
|
|
}
|
|
|
|
static inline int check_mnt(struct mount *mnt)
|
|
{
|
|
return mnt->mnt_ns == current->nsproxy->mnt_ns;
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
static void touch_mnt_namespace(struct mnt_namespace *ns)
|
|
{
|
|
if (ns) {
|
|
ns->event = ++event;
|
|
wake_up_interruptible(&ns->poll);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
static void __touch_mnt_namespace(struct mnt_namespace *ns)
|
|
{
|
|
if (ns && ns->event != event) {
|
|
ns->event = event;
|
|
wake_up_interruptible(&ns->poll);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
static void unhash_mnt(struct mount *mnt)
|
|
{
|
|
mnt->mnt_parent = mnt;
|
|
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
|
|
list_del_init(&mnt->mnt_child);
|
|
hlist_del_init_rcu(&mnt->mnt_hash);
|
|
hlist_del_init(&mnt->mnt_mp_list);
|
|
put_mountpoint(mnt->mnt_mp);
|
|
mnt->mnt_mp = NULL;
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
static void detach_mnt(struct mount *mnt, struct path *old_path)
|
|
{
|
|
old_path->dentry = mnt->mnt_mountpoint;
|
|
old_path->mnt = &mnt->mnt_parent->mnt;
|
|
unhash_mnt(mnt);
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
static void umount_mnt(struct mount *mnt)
|
|
{
|
|
/* old mountpoint will be dropped when we can do that */
|
|
mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
|
|
unhash_mnt(mnt);
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
void mnt_set_mountpoint(struct mount *mnt,
|
|
struct mountpoint *mp,
|
|
struct mount *child_mnt)
|
|
{
|
|
mp->m_count++;
|
|
mnt_add_count(mnt, 1); /* essentially, that's mntget */
|
|
child_mnt->mnt_mountpoint = dget(mp->m_dentry);
|
|
child_mnt->mnt_parent = mnt;
|
|
child_mnt->mnt_mp = mp;
|
|
hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
|
|
}
|
|
|
|
static void __attach_mnt(struct mount *mnt, struct mount *parent)
|
|
{
|
|
hlist_add_head_rcu(&mnt->mnt_hash,
|
|
m_hash(&parent->mnt, mnt->mnt_mountpoint));
|
|
list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
static void attach_mnt(struct mount *mnt,
|
|
struct mount *parent,
|
|
struct mountpoint *mp)
|
|
{
|
|
mnt_set_mountpoint(parent, mp, mnt);
|
|
__attach_mnt(mnt, parent);
|
|
}
|
|
|
|
void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
|
|
{
|
|
struct mountpoint *old_mp = mnt->mnt_mp;
|
|
struct dentry *old_mountpoint = mnt->mnt_mountpoint;
|
|
struct mount *old_parent = mnt->mnt_parent;
|
|
|
|
list_del_init(&mnt->mnt_child);
|
|
hlist_del_init(&mnt->mnt_mp_list);
|
|
hlist_del_init_rcu(&mnt->mnt_hash);
|
|
|
|
attach_mnt(mnt, parent, mp);
|
|
|
|
put_mountpoint(old_mp);
|
|
|
|
/*
|
|
* Safely avoid even the suggestion this code might sleep or
|
|
* lock the mount hash by taking advantage of the knowledge that
|
|
* mnt_change_mountpoint will not release the final reference
|
|
* to a mountpoint.
|
|
*
|
|
* During mounting, the mount passed in as the parent mount will
|
|
* continue to use the old mountpoint and during unmounting, the
|
|
* old mountpoint will continue to exist until namespace_unlock,
|
|
* which happens well after mnt_change_mountpoint.
|
|
*/
|
|
spin_lock(&old_mountpoint->d_lock);
|
|
old_mountpoint->d_lockref.count--;
|
|
spin_unlock(&old_mountpoint->d_lock);
|
|
|
|
mnt_add_count(old_parent, -1);
|
|
}
|
|
|
|
/*
|
|
* vfsmount lock must be held for write
|
|
*/
|
|
static void commit_tree(struct mount *mnt)
|
|
{
|
|
struct mount *parent = mnt->mnt_parent;
|
|
struct mount *m;
|
|
LIST_HEAD(head);
|
|
struct mnt_namespace *n = parent->mnt_ns;
|
|
|
|
BUG_ON(parent == mnt);
|
|
|
|
list_add_tail(&head, &mnt->mnt_list);
|
|
list_for_each_entry(m, &head, mnt_list)
|
|
m->mnt_ns = n;
|
|
|
|
list_splice(&head, n->list.prev);
|
|
|
|
n->mounts += n->pending_mounts;
|
|
n->pending_mounts = 0;
|
|
|
|
__attach_mnt(mnt, parent);
|
|
touch_mnt_namespace(n);
|
|
}
|
|
|
|
static struct mount *next_mnt(struct mount *p, struct mount *root)
|
|
{
|
|
struct list_head *next = p->mnt_mounts.next;
|
|
if (next == &p->mnt_mounts) {
|
|
while (1) {
|
|
if (p == root)
|
|
return NULL;
|
|
next = p->mnt_child.next;
|
|
if (next != &p->mnt_parent->mnt_mounts)
|
|
break;
|
|
p = p->mnt_parent;
|
|
}
|
|
}
|
|
return list_entry(next, struct mount, mnt_child);
|
|
}
|
|
|
|
static struct mount *skip_mnt_tree(struct mount *p)
|
|
{
|
|
struct list_head *prev = p->mnt_mounts.prev;
|
|
while (prev != &p->mnt_mounts) {
|
|
p = list_entry(prev, struct mount, mnt_child);
|
|
prev = p->mnt_mounts.prev;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
struct vfsmount *
|
|
vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
|
|
{
|
|
struct mount *mnt;
|
|
struct dentry *root;
|
|
|
|
if (!type)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
mnt = alloc_vfsmnt(name);
|
|
if (!mnt)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (flags & MS_KERNMOUNT)
|
|
mnt->mnt.mnt_flags = MNT_INTERNAL;
|
|
|
|
root = mount_fs(type, flags, name, data);
|
|
if (IS_ERR(root)) {
|
|
mnt_free_id(mnt);
|
|
free_vfsmnt(mnt);
|
|
return ERR_CAST(root);
|
|
}
|
|
|
|
mnt->mnt.mnt_root = root;
|
|
mnt->mnt.mnt_sb = root->d_sb;
|
|
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
|
|
mnt->mnt_parent = mnt;
|
|
lock_mount_hash();
|
|
list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
|
|
unlock_mount_hash();
|
|
return &mnt->mnt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfs_kern_mount);
|
|
|
|
struct vfsmount *
|
|
vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
|
|
const char *name, void *data)
|
|
{
|
|
/* Until it is worked out how to pass the user namespace
|
|
* through from the parent mount to the submount don't support
|
|
* unprivileged mounts with submounts.
|
|
*/
|
|
if (mountpoint->d_sb->s_user_ns != &init_user_ns)
|
|
return ERR_PTR(-EPERM);
|
|
|
|
return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vfs_submount);
|
|
|
|
static struct mount *clone_mnt(struct mount *old, struct dentry *root,
|
|
int flag)
|
|
{
|
|
struct super_block *sb = old->mnt.mnt_sb;
|
|
struct mount *mnt;
|
|
int err;
|
|
|
|
mnt = alloc_vfsmnt(old->mnt_devname);
|
|
if (!mnt)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
|
|
mnt->mnt_group_id = 0; /* not a peer of original */
|
|
else
|
|
mnt->mnt_group_id = old->mnt_group_id;
|
|
|
|
if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
|
|
err = mnt_alloc_group_id(mnt);
|
|
if (err)
|
|
goto out_free;
|
|
}
|
|
|
|
mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
|
|
/* Don't allow unprivileged users to change mount flags */
|
|
if (flag & CL_UNPRIVILEGED) {
|
|
mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
|
|
|
|
if (mnt->mnt.mnt_flags & MNT_READONLY)
|
|
mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
|
|
|
|
if (mnt->mnt.mnt_flags & MNT_NODEV)
|
|
mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
|
|
|
|
if (mnt->mnt.mnt_flags & MNT_NOSUID)
|
|
mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
|
|
|
|
if (mnt->mnt.mnt_flags & MNT_NOEXEC)
|
|
mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
|
|
}
|
|
|
|
/* Don't allow unprivileged users to reveal what is under a mount */
|
|
if ((flag & CL_UNPRIVILEGED) &&
|
|
(!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
|
|
mnt->mnt.mnt_flags |= MNT_LOCKED;
|
|
|
|
atomic_inc(&sb->s_active);
|
|
mnt->mnt.mnt_sb = sb;
|
|
mnt->mnt.mnt_root = dget(root);
|
|
mnt->mnt_mountpoint = mnt->mnt.mnt_root;
|
|
mnt->mnt_parent = mnt;
|
|
lock_mount_hash();
|
|
list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
|
|
unlock_mount_hash();
|
|
|
|
if ((flag & CL_SLAVE) ||
|
|
((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
|
|
list_add(&mnt->mnt_slave, &old->mnt_slave_list);
|
|
mnt->mnt_master = old;
|
|
CLEAR_MNT_SHARED(mnt);
|
|
} else if (!(flag & CL_PRIVATE)) {
|
|
if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
|
|
list_add(&mnt->mnt_share, &old->mnt_share);
|
|
if (IS_MNT_SLAVE(old))
|
|
list_add(&mnt->mnt_slave, &old->mnt_slave);
|
|
mnt->mnt_master = old->mnt_master;
|
|
} else {
|
|
CLEAR_MNT_SHARED(mnt);
|
|
}
|
|
if (flag & CL_MAKE_SHARED)
|
|
set_mnt_shared(mnt);
|
|
|
|
/* stick the duplicate mount on the same expiry list
|
|
* as the original if that was on one */
|
|
if (flag & CL_EXPIRE) {
|
|
if (!list_empty(&old->mnt_expire))
|
|
list_add(&mnt->mnt_expire, &old->mnt_expire);
|
|
}
|
|
|
|
return mnt;
|
|
|
|
out_free:
|
|
mnt_free_id(mnt);
|
|
free_vfsmnt(mnt);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void cleanup_mnt(struct mount *mnt)
|
|
{
|
|
/*
|
|
* This probably indicates that somebody messed
|
|
* up a mnt_want/drop_write() pair. If this
|
|
* happens, the filesystem was probably unable
|
|
* to make r/w->r/o transitions.
|
|
*/
|
|
/*
|
|
* The locking used to deal with mnt_count decrement provides barriers,
|
|
* so mnt_get_writers() below is safe.
|
|
*/
|
|
WARN_ON(mnt_get_writers(mnt));
|
|
if (unlikely(mnt->mnt_pins.first))
|
|
mnt_pin_kill(mnt);
|
|
fsnotify_vfsmount_delete(&mnt->mnt);
|
|
dput(mnt->mnt.mnt_root);
|
|
deactivate_super(mnt->mnt.mnt_sb);
|
|
mnt_free_id(mnt);
|
|
call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
|
|
}
|
|
|
|
static void __cleanup_mnt(struct rcu_head *head)
|
|
{
|
|
cleanup_mnt(container_of(head, struct mount, mnt_rcu));
|
|
}
|
|
|
|
static LLIST_HEAD(delayed_mntput_list);
|
|
static void delayed_mntput(struct work_struct *unused)
|
|
{
|
|
struct llist_node *node = llist_del_all(&delayed_mntput_list);
|
|
struct llist_node *next;
|
|
|
|
for (; node; node = next) {
|
|
next = llist_next(node);
|
|
cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
|
|
}
|
|
}
|
|
static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
|
|
|
|
static void mntput_no_expire(struct mount *mnt)
|
|
{
|
|
rcu_read_lock();
|
|
mnt_add_count(mnt, -1);
|
|
if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
|
|
rcu_read_unlock();
|
|
return;
|
|
}
|
|
lock_mount_hash();
|
|
if (mnt_get_count(mnt)) {
|
|
rcu_read_unlock();
|
|
unlock_mount_hash();
|
|
return;
|
|
}
|
|
if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
|
|
rcu_read_unlock();
|
|
unlock_mount_hash();
|
|
return;
|
|
}
|
|
mnt->mnt.mnt_flags |= MNT_DOOMED;
|
|
rcu_read_unlock();
|
|
|
|
list_del(&mnt->mnt_instance);
|
|
|
|
if (unlikely(!list_empty(&mnt->mnt_mounts))) {
|
|
struct mount *p, *tmp;
|
|
list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
|
|
umount_mnt(p);
|
|
}
|
|
}
|
|
unlock_mount_hash();
|
|
|
|
if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
|
|
struct task_struct *task = current;
|
|
if (likely(!(task->flags & PF_KTHREAD))) {
|
|
init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
|
|
if (!task_work_add(task, &mnt->mnt_rcu, true))
|
|
return;
|
|
}
|
|
if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
|
|
schedule_delayed_work(&delayed_mntput_work, 1);
|
|
return;
|
|
}
|
|
cleanup_mnt(mnt);
|
|
}
|
|
|
|
void mntput(struct vfsmount *mnt)
|
|
{
|
|
if (mnt) {
|
|
struct mount *m = real_mount(mnt);
|
|
/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
|
|
if (unlikely(m->mnt_expiry_mark))
|
|
m->mnt_expiry_mark = 0;
|
|
mntput_no_expire(m);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(mntput);
|
|
|
|
struct vfsmount *mntget(struct vfsmount *mnt)
|
|
{
|
|
if (mnt)
|
|
mnt_add_count(real_mount(mnt), 1);
|
|
return mnt;
|
|
}
|
|
EXPORT_SYMBOL(mntget);
|
|
|
|
/* path_is_mountpoint() - Check if path is a mount in the current
|
|
* namespace.
|
|
*
|
|
* d_mountpoint() can only be used reliably to establish if a dentry is
|
|
* not mounted in any namespace and that common case is handled inline.
|
|
* d_mountpoint() isn't aware of the possibility there may be multiple
|
|
* mounts using a given dentry in a different namespace. This function
|
|
* checks if the passed in path is a mountpoint rather than the dentry
|
|
* alone.
|
|
*/
|
|
bool path_is_mountpoint(const struct path *path)
|
|
{
|
|
unsigned seq;
|
|
bool res;
|
|
|
|
if (!d_mountpoint(path->dentry))
|
|
return false;
|
|
|
|
rcu_read_lock();
|
|
do {
|
|
seq = read_seqbegin(&mount_lock);
|
|
res = __path_is_mountpoint(path);
|
|
} while (read_seqretry(&mount_lock, seq));
|
|
rcu_read_unlock();
|
|
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(path_is_mountpoint);
|
|
|
|
struct vfsmount *mnt_clone_internal(const struct path *path)
|
|
{
|
|
struct mount *p;
|
|
p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
|
|
if (IS_ERR(p))
|
|
return ERR_CAST(p);
|
|
p->mnt.mnt_flags |= MNT_INTERNAL;
|
|
return &p->mnt;
|
|
}
|
|
|
|
static inline void mangle(struct seq_file *m, const char *s)
|
|
{
|
|
seq_escape(m, s, " \t\n\\");
|
|
}
|
|
|
|
/*
|
|
* Simple .show_options callback for filesystems which don't want to
|
|
* implement more complex mount option showing.
|
|
*
|
|
* See also save_mount_options().
|
|
*/
|
|
int generic_show_options(struct seq_file *m, struct dentry *root)
|
|
{
|
|
const char *options;
|
|
|
|
rcu_read_lock();
|
|
options = rcu_dereference(root->d_sb->s_options);
|
|
|
|
if (options != NULL && options[0]) {
|
|
seq_putc(m, ',');
|
|
mangle(m, options);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(generic_show_options);
|
|
|
|
/*
|
|
* If filesystem uses generic_show_options(), this function should be
|
|
* called from the fill_super() callback.
|
|
*
|
|
* The .remount_fs callback usually needs to be handled in a special
|
|
* way, to make sure, that previous options are not overwritten if the
|
|
* remount fails.
|
|
*
|
|
* Also note, that if the filesystem's .remount_fs function doesn't
|
|
* reset all options to their default value, but changes only newly
|
|
* given options, then the displayed options will not reflect reality
|
|
* any more.
|
|
*/
|
|
void save_mount_options(struct super_block *sb, char *options)
|
|
{
|
|
BUG_ON(sb->s_options);
|
|
rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
|
|
}
|
|
EXPORT_SYMBOL(save_mount_options);
|
|
|
|
void replace_mount_options(struct super_block *sb, char *options)
|
|
{
|
|
char *old = sb->s_options;
|
|
rcu_assign_pointer(sb->s_options, options);
|
|
if (old) {
|
|
synchronize_rcu();
|
|
kfree(old);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(replace_mount_options);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
/* iterator; we want it to have access to namespace_sem, thus here... */
|
|
static void *m_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
struct proc_mounts *p = m->private;
|
|
|
|
down_read(&namespace_sem);
|
|
if (p->cached_event == p->ns->event) {
|
|
void *v = p->cached_mount;
|
|
if (*pos == p->cached_index)
|
|
return v;
|
|
if (*pos == p->cached_index + 1) {
|
|
v = seq_list_next(v, &p->ns->list, &p->cached_index);
|
|
return p->cached_mount = v;
|
|
}
|
|
}
|
|
|
|
p->cached_event = p->ns->event;
|
|
p->cached_mount = seq_list_start(&p->ns->list, *pos);
|
|
p->cached_index = *pos;
|
|
return p->cached_mount;
|
|
}
|
|
|
|
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
struct proc_mounts *p = m->private;
|
|
|
|
p->cached_mount = seq_list_next(v, &p->ns->list, pos);
|
|
p->cached_index = *pos;
|
|
return p->cached_mount;
|
|
}
|
|
|
|
static void m_stop(struct seq_file *m, void *v)
|
|
{
|
|
up_read(&namespace_sem);
|
|
}
|
|
|
|
static int m_show(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_mounts *p = m->private;
|
|
struct mount *r = list_entry(v, struct mount, mnt_list);
|
|
return p->show(m, &r->mnt);
|
|
}
|
|
|
|
const struct seq_operations mounts_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = m_show,
|
|
};
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
/**
|
|
* may_umount_tree - check if a mount tree is busy
|
|
* @mnt: root of mount tree
|
|
*
|
|
* This is called to check if a tree of mounts has any
|
|
* open files, pwds, chroots or sub mounts that are
|
|
* busy.
|
|
*/
|
|
int may_umount_tree(struct vfsmount *m)
|
|
{
|
|
struct mount *mnt = real_mount(m);
|
|
int actual_refs = 0;
|
|
int minimum_refs = 0;
|
|
struct mount *p;
|
|
BUG_ON(!m);
|
|
|
|
/* write lock needed for mnt_get_count */
|
|
lock_mount_hash();
|
|
for (p = mnt; p; p = next_mnt(p, mnt)) {
|
|
actual_refs += mnt_get_count(p);
|
|
minimum_refs += 2;
|
|
}
|
|
unlock_mount_hash();
|
|
|
|
if (actual_refs > minimum_refs)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
EXPORT_SYMBOL(may_umount_tree);
|
|
|
|
/**
|
|
* may_umount - check if a mount point is busy
|
|
* @mnt: root of mount
|
|
*
|
|
* This is called to check if a mount point has any
|
|
* open files, pwds, chroots or sub mounts. If the
|
|
* mount has sub mounts this will return busy
|
|
* regardless of whether the sub mounts are busy.
|
|
*
|
|
* Doesn't take quota and stuff into account. IOW, in some cases it will
|
|
* give false negatives. The main reason why it's here is that we need
|
|
* a non-destructive way to look for easily umountable filesystems.
|
|
*/
|
|
int may_umount(struct vfsmount *mnt)
|
|
{
|
|
int ret = 1;
|
|
down_read(&namespace_sem);
|
|
lock_mount_hash();
|
|
if (propagate_mount_busy(real_mount(mnt), 2))
|
|
ret = 0;
|
|
unlock_mount_hash();
|
|
up_read(&namespace_sem);
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL(may_umount);
|
|
|
|
static HLIST_HEAD(unmounted); /* protected by namespace_sem */
|
|
|
|
static void namespace_unlock(void)
|
|
{
|
|
struct hlist_head head;
|
|
|
|
hlist_move_list(&unmounted, &head);
|
|
|
|
up_write(&namespace_sem);
|
|
|
|
if (likely(hlist_empty(&head)))
|
|
return;
|
|
|
|
synchronize_rcu();
|
|
|
|
group_pin_kill(&head);
|
|
}
|
|
|
|
static inline void namespace_lock(void)
|
|
{
|
|
down_write(&namespace_sem);
|
|
}
|
|
|
|
enum umount_tree_flags {
|
|
UMOUNT_SYNC = 1,
|
|
UMOUNT_PROPAGATE = 2,
|
|
UMOUNT_CONNECTED = 4,
|
|
};
|
|
|
|
static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
|
|
{
|
|
/* Leaving mounts connected is only valid for lazy umounts */
|
|
if (how & UMOUNT_SYNC)
|
|
return true;
|
|
|
|
/* A mount without a parent has nothing to be connected to */
|
|
if (!mnt_has_parent(mnt))
|
|
return true;
|
|
|
|
/* Because the reference counting rules change when mounts are
|
|
* unmounted and connected, umounted mounts may not be
|
|
* connected to mounted mounts.
|
|
*/
|
|
if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
|
|
return true;
|
|
|
|
/* Has it been requested that the mount remain connected? */
|
|
if (how & UMOUNT_CONNECTED)
|
|
return false;
|
|
|
|
/* Is the mount locked such that it needs to remain connected? */
|
|
if (IS_MNT_LOCKED(mnt))
|
|
return false;
|
|
|
|
/* By default disconnect the mount */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* mount_lock must be held
|
|
* namespace_sem must be held for write
|
|
*/
|
|
static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
|
|
{
|
|
LIST_HEAD(tmp_list);
|
|
struct mount *p;
|
|
|
|
if (how & UMOUNT_PROPAGATE)
|
|
propagate_mount_unlock(mnt);
|
|
|
|
/* Gather the mounts to umount */
|
|
for (p = mnt; p; p = next_mnt(p, mnt)) {
|
|
p->mnt.mnt_flags |= MNT_UMOUNT;
|
|
list_move(&p->mnt_list, &tmp_list);
|
|
}
|
|
|
|
/* Hide the mounts from mnt_mounts */
|
|
list_for_each_entry(p, &tmp_list, mnt_list) {
|
|
list_del_init(&p->mnt_child);
|
|
}
|
|
|
|
/* Add propogated mounts to the tmp_list */
|
|
if (how & UMOUNT_PROPAGATE)
|
|
propagate_umount(&tmp_list);
|
|
|
|
while (!list_empty(&tmp_list)) {
|
|
struct mnt_namespace *ns;
|
|
bool disconnect;
|
|
p = list_first_entry(&tmp_list, struct mount, mnt_list);
|
|
list_del_init(&p->mnt_expire);
|
|
list_del_init(&p->mnt_list);
|
|
ns = p->mnt_ns;
|
|
if (ns) {
|
|
ns->mounts--;
|
|
__touch_mnt_namespace(ns);
|
|
}
|
|
p->mnt_ns = NULL;
|
|
if (how & UMOUNT_SYNC)
|
|
p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
|
|
|
|
disconnect = disconnect_mount(p, how);
|
|
|
|
pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
|
|
disconnect ? &unmounted : NULL);
|
|
if (mnt_has_parent(p)) {
|
|
mnt_add_count(p->mnt_parent, -1);
|
|
if (!disconnect) {
|
|
/* Don't forget about p */
|
|
list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
|
|
} else {
|
|
umount_mnt(p);
|
|
}
|
|
}
|
|
change_mnt_propagation(p, MS_PRIVATE);
|
|
}
|
|
}
|
|
|
|
static void shrink_submounts(struct mount *mnt);
|
|
|
|
static int do_umount(struct mount *mnt, int flags)
|
|
{
|
|
struct super_block *sb = mnt->mnt.mnt_sb;
|
|
int retval;
|
|
|
|
retval = security_sb_umount(&mnt->mnt, flags);
|
|
if (retval)
|
|
return retval;
|
|
|
|
/*
|
|
* Allow userspace to request a mountpoint be expired rather than
|
|
* unmounting unconditionally. Unmount only happens if:
|
|
* (1) the mark is already set (the mark is cleared by mntput())
|
|
* (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
|
|
*/
|
|
if (flags & MNT_EXPIRE) {
|
|
if (&mnt->mnt == current->fs->root.mnt ||
|
|
flags & (MNT_FORCE | MNT_DETACH))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* probably don't strictly need the lock here if we examined
|
|
* all race cases, but it's a slowpath.
|
|
*/
|
|
lock_mount_hash();
|
|
if (mnt_get_count(mnt) != 2) {
|
|
unlock_mount_hash();
|
|
return -EBUSY;
|
|
}
|
|
unlock_mount_hash();
|
|
|
|
if (!xchg(&mnt->mnt_expiry_mark, 1))
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* If we may have to abort operations to get out of this
|
|
* mount, and they will themselves hold resources we must
|
|
* allow the fs to do things. In the Unix tradition of
|
|
* 'Gee thats tricky lets do it in userspace' the umount_begin
|
|
* might fail to complete on the first run through as other tasks
|
|
* must return, and the like. Thats for the mount program to worry
|
|
* about for the moment.
|
|
*/
|
|
|
|
if (flags & MNT_FORCE && sb->s_op->umount_begin) {
|
|
sb->s_op->umount_begin(sb);
|
|
}
|
|
|
|
/*
|
|
* No sense to grab the lock for this test, but test itself looks
|
|
* somewhat bogus. Suggestions for better replacement?
|
|
* Ho-hum... In principle, we might treat that as umount + switch
|
|
* to rootfs. GC would eventually take care of the old vfsmount.
|
|
* Actually it makes sense, especially if rootfs would contain a
|
|
* /reboot - static binary that would close all descriptors and
|
|
* call reboot(9). Then init(8) could umount root and exec /reboot.
|
|
*/
|
|
if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
|
|
/*
|
|
* Special case for "unmounting" root ...
|
|
* we just try to remount it readonly.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
down_write(&sb->s_umount);
|
|
if (!(sb->s_flags & MS_RDONLY))
|
|
retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
|
|
up_write(&sb->s_umount);
|
|
return retval;
|
|
}
|
|
|
|
namespace_lock();
|
|
lock_mount_hash();
|
|
event++;
|
|
|
|
if (flags & MNT_DETACH) {
|
|
if (!list_empty(&mnt->mnt_list))
|
|
umount_tree(mnt, UMOUNT_PROPAGATE);
|
|
retval = 0;
|
|
} else {
|
|
shrink_submounts(mnt);
|
|
retval = -EBUSY;
|
|
if (!propagate_mount_busy(mnt, 2)) {
|
|
if (!list_empty(&mnt->mnt_list))
|
|
umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
|
|
retval = 0;
|
|
}
|
|
}
|
|
unlock_mount_hash();
|
|
namespace_unlock();
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* __detach_mounts - lazily unmount all mounts on the specified dentry
|
|
*
|
|
* During unlink, rmdir, and d_drop it is possible to loose the path
|
|
* to an existing mountpoint, and wind up leaking the mount.
|
|
* detach_mounts allows lazily unmounting those mounts instead of
|
|
* leaking them.
|
|
*
|
|
* The caller may hold dentry->d_inode->i_mutex.
|
|
*/
|
|
void __detach_mounts(struct dentry *dentry)
|
|
{
|
|
struct mountpoint *mp;
|
|
struct mount *mnt;
|
|
|
|
namespace_lock();
|
|
lock_mount_hash();
|
|
mp = lookup_mountpoint(dentry);
|
|
if (IS_ERR_OR_NULL(mp))
|
|
goto out_unlock;
|
|
|
|
event++;
|
|
while (!hlist_empty(&mp->m_list)) {
|
|
mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
|
|
if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
|
|
hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
|
|
umount_mnt(mnt);
|
|
}
|
|
else umount_tree(mnt, UMOUNT_CONNECTED);
|
|
}
|
|
put_mountpoint(mp);
|
|
out_unlock:
|
|
unlock_mount_hash();
|
|
namespace_unlock();
|
|
}
|
|
|
|
/*
|
|
* Is the caller allowed to modify his namespace?
|
|
*/
|
|
static inline bool may_mount(void)
|
|
{
|
|
return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
|
|
}
|
|
|
|
static inline bool may_mandlock(void)
|
|
{
|
|
#ifndef CONFIG_MANDATORY_FILE_LOCKING
|
|
return false;
|
|
#endif
|
|
return capable(CAP_SYS_ADMIN);
|
|
}
|
|
|
|
/*
|
|
* Now umount can handle mount points as well as block devices.
|
|
* This is important for filesystems which use unnamed block devices.
|
|
*
|
|
* We now support a flag for forced unmount like the other 'big iron'
|
|
* unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
|
|
*/
|
|
|
|
SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
|
|
{
|
|
struct path path;
|
|
struct mount *mnt;
|
|
int retval;
|
|
int lookup_flags = 0;
|
|
|
|
if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
|
|
return -EINVAL;
|
|
|
|
if (!may_mount())
|
|
return -EPERM;
|
|
|
|
if (!(flags & UMOUNT_NOFOLLOW))
|
|
lookup_flags |= LOOKUP_FOLLOW;
|
|
|
|
retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
|
|
if (retval)
|
|
goto out;
|
|
mnt = real_mount(path.mnt);
|
|
retval = -EINVAL;
|
|
if (path.dentry != path.mnt->mnt_root)
|
|
goto dput_and_out;
|
|
if (!check_mnt(mnt))
|
|
goto dput_and_out;
|
|
if (mnt->mnt.mnt_flags & MNT_LOCKED)
|
|
goto dput_and_out;
|
|
retval = -EPERM;
|
|
if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
|
|
goto dput_and_out;
|
|
|
|
retval = do_umount(mnt, flags);
|
|
dput_and_out:
|
|
/* we mustn't call path_put() as that would clear mnt_expiry_mark */
|
|
dput(path.dentry);
|
|
mntput_no_expire(mnt);
|
|
out:
|
|
return retval;
|
|
}
|
|
|
|
#ifdef __ARCH_WANT_SYS_OLDUMOUNT
|
|
|
|
/*
|
|
* The 2.0 compatible umount. No flags.
|
|
*/
|
|
SYSCALL_DEFINE1(oldumount, char __user *, name)
|
|
{
|
|
return sys_umount(name, 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
static bool is_mnt_ns_file(struct dentry *dentry)
|
|
{
|
|
/* Is this a proxy for a mount namespace? */
|
|
return dentry->d_op == &ns_dentry_operations &&
|
|
dentry->d_fsdata == &mntns_operations;
|
|
}
|
|
|
|
struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
|
|
{
|
|
return container_of(ns, struct mnt_namespace, ns);
|
|
}
|
|
|
|
static bool mnt_ns_loop(struct dentry *dentry)
|
|
{
|
|
/* Could bind mounting the mount namespace inode cause a
|
|
* mount namespace loop?
|
|
*/
|
|
struct mnt_namespace *mnt_ns;
|
|
if (!is_mnt_ns_file(dentry))
|
|
return false;
|
|
|
|
mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
|
|
return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
|
|
}
|
|
|
|
struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
|
|
int flag)
|
|
{
|
|
struct mount *res, *p, *q, *r, *parent;
|
|
|
|
if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
res = q = clone_mnt(mnt, dentry, flag);
|
|
if (IS_ERR(q))
|
|
return q;
|
|
|
|
q->mnt_mountpoint = mnt->mnt_mountpoint;
|
|
|
|
p = mnt;
|
|
list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
|
|
struct mount *s;
|
|
if (!is_subdir(r->mnt_mountpoint, dentry))
|
|
continue;
|
|
|
|
for (s = r; s; s = next_mnt(s, r)) {
|
|
if (!(flag & CL_COPY_UNBINDABLE) &&
|
|
IS_MNT_UNBINDABLE(s)) {
|
|
s = skip_mnt_tree(s);
|
|
continue;
|
|
}
|
|
if (!(flag & CL_COPY_MNT_NS_FILE) &&
|
|
is_mnt_ns_file(s->mnt.mnt_root)) {
|
|
s = skip_mnt_tree(s);
|
|
continue;
|
|
}
|
|
while (p != s->mnt_parent) {
|
|
p = p->mnt_parent;
|
|
q = q->mnt_parent;
|
|
}
|
|
p = s;
|
|
parent = q;
|
|
q = clone_mnt(p, p->mnt.mnt_root, flag);
|
|
if (IS_ERR(q))
|
|
goto out;
|
|
lock_mount_hash();
|
|
list_add_tail(&q->mnt_list, &res->mnt_list);
|
|
attach_mnt(q, parent, p->mnt_mp);
|
|
unlock_mount_hash();
|
|
}
|
|
}
|
|
return res;
|
|
out:
|
|
if (res) {
|
|
lock_mount_hash();
|
|
umount_tree(res, UMOUNT_SYNC);
|
|
unlock_mount_hash();
|
|
}
|
|
return q;
|
|
}
|
|
|
|
/* Caller should check returned pointer for errors */
|
|
|
|
struct vfsmount *collect_mounts(const struct path *path)
|
|
{
|
|
struct mount *tree;
|
|
namespace_lock();
|
|
if (!check_mnt(real_mount(path->mnt)))
|
|
tree = ERR_PTR(-EINVAL);
|
|
else
|
|
tree = copy_tree(real_mount(path->mnt), path->dentry,
|
|
CL_COPY_ALL | CL_PRIVATE);
|
|
namespace_unlock();
|
|
if (IS_ERR(tree))
|
|
return ERR_CAST(tree);
|
|
return &tree->mnt;
|
|
}
|
|
|
|
void drop_collected_mounts(struct vfsmount *mnt)
|
|
{
|
|
namespace_lock();
|
|
lock_mount_hash();
|
|
umount_tree(real_mount(mnt), UMOUNT_SYNC);
|
|
unlock_mount_hash();
|
|
namespace_unlock();
|
|
}
|
|
|
|
/**
|
|
* clone_private_mount - create a private clone of a path
|
|
*
|
|
* This creates a new vfsmount, which will be the clone of @path. The new will
|
|
* not be attached anywhere in the namespace and will be private (i.e. changes
|
|
* to the originating mount won't be propagated into this).
|
|
*
|
|
* Release with mntput().
|
|
*/
|
|
struct vfsmount *clone_private_mount(const struct path *path)
|
|
{
|
|
struct mount *old_mnt = real_mount(path->mnt);
|
|
struct mount *new_mnt;
|
|
|
|
if (IS_MNT_UNBINDABLE(old_mnt))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
|
|
if (IS_ERR(new_mnt))
|
|
return ERR_CAST(new_mnt);
|
|
|
|
return &new_mnt->mnt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(clone_private_mount);
|
|
|
|
int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
|
|
struct vfsmount *root)
|
|
{
|
|
struct mount *mnt;
|
|
int res = f(root, arg);
|
|
if (res)
|
|
return res;
|
|
list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
|
|
res = f(&mnt->mnt, arg);
|
|
if (res)
|
|
return res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void cleanup_group_ids(struct mount *mnt, struct mount *end)
|
|
{
|
|
struct mount *p;
|
|
|
|
for (p = mnt; p != end; p = next_mnt(p, mnt)) {
|
|
if (p->mnt_group_id && !IS_MNT_SHARED(p))
|
|
mnt_release_group_id(p);
|
|
}
|
|
}
|
|
|
|
static int invent_group_ids(struct mount *mnt, bool recurse)
|
|
{
|
|
struct mount *p;
|
|
|
|
for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
|
|
if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
|
|
int err = mnt_alloc_group_id(p);
|
|
if (err) {
|
|
cleanup_group_ids(mnt, p);
|
|
return err;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
|
|
{
|
|
unsigned int max = READ_ONCE(sysctl_mount_max);
|
|
unsigned int mounts = 0, old, pending, sum;
|
|
struct mount *p;
|
|
|
|
for (p = mnt; p; p = next_mnt(p, mnt))
|
|
mounts++;
|
|
|
|
old = ns->mounts;
|
|
pending = ns->pending_mounts;
|
|
sum = old + pending;
|
|
if ((old > sum) ||
|
|
(pending > sum) ||
|
|
(max < sum) ||
|
|
(mounts > (max - sum)))
|
|
return -ENOSPC;
|
|
|
|
ns->pending_mounts = pending + mounts;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* @source_mnt : mount tree to be attached
|
|
* @nd : place the mount tree @source_mnt is attached
|
|
* @parent_nd : if non-null, detach the source_mnt from its parent and
|
|
* store the parent mount and mountpoint dentry.
|
|
* (done when source_mnt is moved)
|
|
*
|
|
* NOTE: in the table below explains the semantics when a source mount
|
|
* of a given type is attached to a destination mount of a given type.
|
|
* ---------------------------------------------------------------------------
|
|
* | BIND MOUNT OPERATION |
|
|
* |**************************************************************************
|
|
* | source-->| shared | private | slave | unbindable |
|
|
* | dest | | | | |
|
|
* | | | | | | |
|
|
* | v | | | | |
|
|
* |**************************************************************************
|
|
* | shared | shared (++) | shared (+) | shared(+++)| invalid |
|
|
* | | | | | |
|
|
* |non-shared| shared (+) | private | slave (*) | invalid |
|
|
* ***************************************************************************
|
|
* A bind operation clones the source mount and mounts the clone on the
|
|
* destination mount.
|
|
*
|
|
* (++) the cloned mount is propagated to all the mounts in the propagation
|
|
* tree of the destination mount and the cloned mount is added to
|
|
* the peer group of the source mount.
|
|
* (+) the cloned mount is created under the destination mount and is marked
|
|
* as shared. The cloned mount is added to the peer group of the source
|
|
* mount.
|
|
* (+++) the mount is propagated to all the mounts in the propagation tree
|
|
* of the destination mount and the cloned mount is made slave
|
|
* of the same master as that of the source mount. The cloned mount
|
|
* is marked as 'shared and slave'.
|
|
* (*) the cloned mount is made a slave of the same master as that of the
|
|
* source mount.
|
|
*
|
|
* ---------------------------------------------------------------------------
|
|
* | MOVE MOUNT OPERATION |
|
|
* |**************************************************************************
|
|
* | source-->| shared | private | slave | unbindable |
|
|
* | dest | | | | |
|
|
* | | | | | | |
|
|
* | v | | | | |
|
|
* |**************************************************************************
|
|
* | shared | shared (+) | shared (+) | shared(+++) | invalid |
|
|
* | | | | | |
|
|
* |non-shared| shared (+*) | private | slave (*) | unbindable |
|
|
* ***************************************************************************
|
|
*
|
|
* (+) the mount is moved to the destination. And is then propagated to
|
|
* all the mounts in the propagation tree of the destination mount.
|
|
* (+*) the mount is moved to the destination.
|
|
* (+++) the mount is moved to the destination and is then propagated to
|
|
* all the mounts belonging to the destination mount's propagation tree.
|
|
* the mount is marked as 'shared and slave'.
|
|
* (*) the mount continues to be a slave at the new location.
|
|
*
|
|
* if the source mount is a tree, the operations explained above is
|
|
* applied to each mount in the tree.
|
|
* Must be called without spinlocks held, since this function can sleep
|
|
* in allocations.
|
|
*/
|
|
static int attach_recursive_mnt(struct mount *source_mnt,
|
|
struct mount *dest_mnt,
|
|
struct mountpoint *dest_mp,
|
|
struct path *parent_path)
|
|
{
|
|
HLIST_HEAD(tree_list);
|
|
struct mnt_namespace *ns = dest_mnt->mnt_ns;
|
|
struct mountpoint *smp;
|
|
struct mount *child, *p;
|
|
struct hlist_node *n;
|
|
int err;
|
|
|
|
/* Preallocate a mountpoint in case the new mounts need
|
|
* to be tucked under other mounts.
|
|
*/
|
|
smp = get_mountpoint(source_mnt->mnt.mnt_root);
|
|
if (IS_ERR(smp))
|
|
return PTR_ERR(smp);
|
|
|
|
/* Is there space to add these mounts to the mount namespace? */
|
|
if (!parent_path) {
|
|
err = count_mounts(ns, source_mnt);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
if (IS_MNT_SHARED(dest_mnt)) {
|
|
err = invent_group_ids(source_mnt, true);
|
|
if (err)
|
|
goto out;
|
|
err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
|
|
lock_mount_hash();
|
|
if (err)
|
|
goto out_cleanup_ids;
|
|
for (p = source_mnt; p; p = next_mnt(p, source_mnt))
|
|
set_mnt_shared(p);
|
|
} else {
|
|
lock_mount_hash();
|
|
}
|
|
if (parent_path) {
|
|
detach_mnt(source_mnt, parent_path);
|
|
attach_mnt(source_mnt, dest_mnt, dest_mp);
|
|
touch_mnt_namespace(source_mnt->mnt_ns);
|
|
} else {
|
|
mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
|
|
commit_tree(source_mnt);
|
|
}
|
|
|
|
hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
|
|
struct mount *q;
|
|
hlist_del_init(&child->mnt_hash);
|
|
q = __lookup_mnt(&child->mnt_parent->mnt,
|
|
child->mnt_mountpoint);
|
|
if (q)
|
|
mnt_change_mountpoint(child, smp, q);
|
|
commit_tree(child);
|
|
}
|
|
put_mountpoint(smp);
|
|
unlock_mount_hash();
|
|
|
|
return 0;
|
|
|
|
out_cleanup_ids:
|
|
while (!hlist_empty(&tree_list)) {
|
|
child = hlist_entry(tree_list.first, struct mount, mnt_hash);
|
|
child->mnt_parent->mnt_ns->pending_mounts = 0;
|
|
umount_tree(child, UMOUNT_SYNC);
|
|
}
|
|
unlock_mount_hash();
|
|
cleanup_group_ids(source_mnt, NULL);
|
|
out:
|
|
ns->pending_mounts = 0;
|
|
|
|
read_seqlock_excl(&mount_lock);
|
|
put_mountpoint(smp);
|
|
read_sequnlock_excl(&mount_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct mountpoint *lock_mount(struct path *path)
|
|
{
|
|
struct vfsmount *mnt;
|
|
struct dentry *dentry = path->dentry;
|
|
retry:
|
|
inode_lock(dentry->d_inode);
|
|
if (unlikely(cant_mount(dentry))) {
|
|
inode_unlock(dentry->d_inode);
|
|
return ERR_PTR(-ENOENT);
|
|
}
|
|
namespace_lock();
|
|
mnt = lookup_mnt(path);
|
|
if (likely(!mnt)) {
|
|
struct mountpoint *mp = get_mountpoint(dentry);
|
|
if (IS_ERR(mp)) {
|
|
namespace_unlock();
|
|
inode_unlock(dentry->d_inode);
|
|
return mp;
|
|
}
|
|
return mp;
|
|
}
|
|
namespace_unlock();
|
|
inode_unlock(path->dentry->d_inode);
|
|
path_put(path);
|
|
path->mnt = mnt;
|
|
dentry = path->dentry = dget(mnt->mnt_root);
|
|
goto retry;
|
|
}
|
|
|
|
static void unlock_mount(struct mountpoint *where)
|
|
{
|
|
struct dentry *dentry = where->m_dentry;
|
|
|
|
read_seqlock_excl(&mount_lock);
|
|
put_mountpoint(where);
|
|
read_sequnlock_excl(&mount_lock);
|
|
|
|
namespace_unlock();
|
|
inode_unlock(dentry->d_inode);
|
|
}
|
|
|
|
static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
|
|
{
|
|
if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
|
|
return -EINVAL;
|
|
|
|
if (d_is_dir(mp->m_dentry) !=
|
|
d_is_dir(mnt->mnt.mnt_root))
|
|
return -ENOTDIR;
|
|
|
|
return attach_recursive_mnt(mnt, p, mp, NULL);
|
|
}
|
|
|
|
/*
|
|
* Sanity check the flags to change_mnt_propagation.
|
|
*/
|
|
|
|
static int flags_to_propagation_type(int flags)
|
|
{
|
|
int type = flags & ~(MS_REC | MS_SILENT);
|
|
|
|
/* Fail if any non-propagation flags are set */
|
|
if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
|
|
return 0;
|
|
/* Only one propagation flag should be set */
|
|
if (!is_power_of_2(type))
|
|
return 0;
|
|
return type;
|
|
}
|
|
|
|
/*
|
|
* recursively change the type of the mountpoint.
|
|
*/
|
|
static int do_change_type(struct path *path, int flag)
|
|
{
|
|
struct mount *m;
|
|
struct mount *mnt = real_mount(path->mnt);
|
|
int recurse = flag & MS_REC;
|
|
int type;
|
|
int err = 0;
|
|
|
|
if (path->dentry != path->mnt->mnt_root)
|
|
return -EINVAL;
|
|
|
|
type = flags_to_propagation_type(flag);
|
|
if (!type)
|
|
return -EINVAL;
|
|
|
|
namespace_lock();
|
|
if (type == MS_SHARED) {
|
|
err = invent_group_ids(mnt, recurse);
|
|
if (err)
|
|
goto out_unlock;
|
|
}
|
|
|
|
lock_mount_hash();
|
|
for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
|
|
change_mnt_propagation(m, type);
|
|
unlock_mount_hash();
|
|
|
|
out_unlock:
|
|
namespace_unlock();
|
|
return err;
|
|
}
|
|
|
|
static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
|
|
{
|
|
struct mount *child;
|
|
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
|
|
if (!is_subdir(child->mnt_mountpoint, dentry))
|
|
continue;
|
|
|
|
if (child->mnt.mnt_flags & MNT_LOCKED)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* do loopback mount.
|
|
*/
|
|
static int do_loopback(struct path *path, const char *old_name,
|
|
int recurse)
|
|
{
|
|
struct path old_path;
|
|
struct mount *mnt = NULL, *old, *parent;
|
|
struct mountpoint *mp;
|
|
int err;
|
|
if (!old_name || !*old_name)
|
|
return -EINVAL;
|
|
err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
|
|
if (err)
|
|
return err;
|
|
|
|
err = -EINVAL;
|
|
if (mnt_ns_loop(old_path.dentry))
|
|
goto out;
|
|
|
|
mp = lock_mount(path);
|
|
err = PTR_ERR(mp);
|
|
if (IS_ERR(mp))
|
|
goto out;
|
|
|
|
old = real_mount(old_path.mnt);
|
|
parent = real_mount(path->mnt);
|
|
|
|
err = -EINVAL;
|
|
if (IS_MNT_UNBINDABLE(old))
|
|
goto out2;
|
|
|
|
if (!check_mnt(parent))
|
|
goto out2;
|
|
|
|
if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
|
|
goto out2;
|
|
|
|
if (!recurse && has_locked_children(old, old_path.dentry))
|
|
goto out2;
|
|
|
|
if (recurse)
|
|
mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
|
|
else
|
|
mnt = clone_mnt(old, old_path.dentry, 0);
|
|
|
|
if (IS_ERR(mnt)) {
|
|
err = PTR_ERR(mnt);
|
|
goto out2;
|
|
}
|
|
|
|
mnt->mnt.mnt_flags &= ~MNT_LOCKED;
|
|
|
|
err = graft_tree(mnt, parent, mp);
|
|
if (err) {
|
|
lock_mount_hash();
|
|
umount_tree(mnt, UMOUNT_SYNC);
|
|
unlock_mount_hash();
|
|
}
|
|
out2:
|
|
unlock_mount(mp);
|
|
out:
|
|
path_put(&old_path);
|
|
return err;
|
|
}
|
|
|
|
static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
|
|
{
|
|
int error = 0;
|
|
int readonly_request = 0;
|
|
|
|
if (ms_flags & MS_RDONLY)
|
|
readonly_request = 1;
|
|
if (readonly_request == __mnt_is_readonly(mnt))
|
|
return 0;
|
|
|
|
if (readonly_request)
|
|
error = mnt_make_readonly(real_mount(mnt));
|
|
else
|
|
__mnt_unmake_readonly(real_mount(mnt));
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* change filesystem flags. dir should be a physical root of filesystem.
|
|
* If you've mounted a non-root directory somewhere and want to do remount
|
|
* on it - tough luck.
|
|
*/
|
|
static int do_remount(struct path *path, int flags, int mnt_flags,
|
|
void *data)
|
|
{
|
|
int err;
|
|
struct super_block *sb = path->mnt->mnt_sb;
|
|
struct mount *mnt = real_mount(path->mnt);
|
|
|
|
if (!check_mnt(mnt))
|
|
return -EINVAL;
|
|
|
|
if (path->dentry != path->mnt->mnt_root)
|
|
return -EINVAL;
|
|
|
|
/* Don't allow changing of locked mnt flags.
|
|
*
|
|
* No locks need to be held here while testing the various
|
|
* MNT_LOCK flags because those flags can never be cleared
|
|
* once they are set.
|
|
*/
|
|
if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
|
|
!(mnt_flags & MNT_READONLY)) {
|
|
return -EPERM;
|
|
}
|
|
if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
|
|
!(mnt_flags & MNT_NODEV)) {
|
|
return -EPERM;
|
|
}
|
|
if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
|
|
!(mnt_flags & MNT_NOSUID)) {
|
|
return -EPERM;
|
|
}
|
|
if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
|
|
!(mnt_flags & MNT_NOEXEC)) {
|
|
return -EPERM;
|
|
}
|
|
if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
|
|
((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
|
|
return -EPERM;
|
|
}
|
|
|
|
err = security_sb_remount(sb, data);
|
|
if (err)
|
|
return err;
|
|
|
|
down_write(&sb->s_umount);
|
|
if (flags & MS_BIND)
|
|
err = change_mount_flags(path->mnt, flags);
|
|
else if (!capable(CAP_SYS_ADMIN))
|
|
err = -EPERM;
|
|
else
|
|
err = do_remount_sb(sb, flags, data, 0);
|
|
if (!err) {
|
|
lock_mount_hash();
|
|
mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
|
|
mnt->mnt.mnt_flags = mnt_flags;
|
|
touch_mnt_namespace(mnt->mnt_ns);
|
|
unlock_mount_hash();
|
|
}
|
|
up_write(&sb->s_umount);
|
|
return err;
|
|
}
|
|
|
|
static inline int tree_contains_unbindable(struct mount *mnt)
|
|
{
|
|
struct mount *p;
|
|
for (p = mnt; p; p = next_mnt(p, mnt)) {
|
|
if (IS_MNT_UNBINDABLE(p))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int do_move_mount(struct path *path, const char *old_name)
|
|
{
|
|
struct path old_path, parent_path;
|
|
struct mount *p;
|
|
struct mount *old;
|
|
struct mountpoint *mp;
|
|
int err;
|
|
if (!old_name || !*old_name)
|
|
return -EINVAL;
|
|
err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
|
|
if (err)
|
|
return err;
|
|
|
|
mp = lock_mount(path);
|
|
err = PTR_ERR(mp);
|
|
if (IS_ERR(mp))
|
|
goto out;
|
|
|
|
old = real_mount(old_path.mnt);
|
|
p = real_mount(path->mnt);
|
|
|
|
err = -EINVAL;
|
|
if (!check_mnt(p) || !check_mnt(old))
|
|
goto out1;
|
|
|
|
if (old->mnt.mnt_flags & MNT_LOCKED)
|
|
goto out1;
|
|
|
|
err = -EINVAL;
|
|
if (old_path.dentry != old_path.mnt->mnt_root)
|
|
goto out1;
|
|
|
|
if (!mnt_has_parent(old))
|
|
goto out1;
|
|
|
|
if (d_is_dir(path->dentry) !=
|
|
d_is_dir(old_path.dentry))
|
|
goto out1;
|
|
/*
|
|
* Don't move a mount residing in a shared parent.
|
|
*/
|
|
if (IS_MNT_SHARED(old->mnt_parent))
|
|
goto out1;
|
|
/*
|
|
* Don't move a mount tree containing unbindable mounts to a destination
|
|
* mount which is shared.
|
|
*/
|
|
if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
|
|
goto out1;
|
|
err = -ELOOP;
|
|
for (; mnt_has_parent(p); p = p->mnt_parent)
|
|
if (p == old)
|
|
goto out1;
|
|
|
|
err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
|
|
if (err)
|
|
goto out1;
|
|
|
|
/* if the mount is moved, it should no longer be expire
|
|
* automatically */
|
|
list_del_init(&old->mnt_expire);
|
|
out1:
|
|
unlock_mount(mp);
|
|
out:
|
|
if (!err)
|
|
path_put(&parent_path);
|
|
path_put(&old_path);
|
|
return err;
|
|
}
|
|
|
|
static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
|
|
{
|
|
int err;
|
|
const char *subtype = strchr(fstype, '.');
|
|
if (subtype) {
|
|
subtype++;
|
|
err = -EINVAL;
|
|
if (!subtype[0])
|
|
goto err;
|
|
} else
|
|
subtype = "";
|
|
|
|
mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
|
|
err = -ENOMEM;
|
|
if (!mnt->mnt_sb->s_subtype)
|
|
goto err;
|
|
return mnt;
|
|
|
|
err:
|
|
mntput(mnt);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
/*
|
|
* add a mount into a namespace's mount tree
|
|
*/
|
|
static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
|
|
{
|
|
struct mountpoint *mp;
|
|
struct mount *parent;
|
|
int err;
|
|
|
|
mnt_flags &= ~MNT_INTERNAL_FLAGS;
|
|
|
|
mp = lock_mount(path);
|
|
if (IS_ERR(mp))
|
|
return PTR_ERR(mp);
|
|
|
|
parent = real_mount(path->mnt);
|
|
err = -EINVAL;
|
|
if (unlikely(!check_mnt(parent))) {
|
|
/* that's acceptable only for automounts done in private ns */
|
|
if (!(mnt_flags & MNT_SHRINKABLE))
|
|
goto unlock;
|
|
/* ... and for those we'd better have mountpoint still alive */
|
|
if (!parent->mnt_ns)
|
|
goto unlock;
|
|
}
|
|
|
|
/* Refuse the same filesystem on the same mount point */
|
|
err = -EBUSY;
|
|
if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
|
|
path->mnt->mnt_root == path->dentry)
|
|
goto unlock;
|
|
|
|
err = -EINVAL;
|
|
if (d_is_symlink(newmnt->mnt.mnt_root))
|
|
goto unlock;
|
|
|
|
newmnt->mnt.mnt_flags = mnt_flags;
|
|
err = graft_tree(newmnt, parent, mp);
|
|
|
|
unlock:
|
|
unlock_mount(mp);
|
|
return err;
|
|
}
|
|
|
|
static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
|
|
|
|
/*
|
|
* create a new mount for userspace and request it to be added into the
|
|
* namespace's tree
|
|
*/
|
|
static int do_new_mount(struct path *path, const char *fstype, int flags,
|
|
int mnt_flags, const char *name, void *data)
|
|
{
|
|
struct file_system_type *type;
|
|
struct vfsmount *mnt;
|
|
int err;
|
|
|
|
if (!fstype)
|
|
return -EINVAL;
|
|
|
|
type = get_fs_type(fstype);
|
|
if (!type)
|
|
return -ENODEV;
|
|
|
|
mnt = vfs_kern_mount(type, flags, name, data);
|
|
if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
|
|
!mnt->mnt_sb->s_subtype)
|
|
mnt = fs_set_subtype(mnt, fstype);
|
|
|
|
put_filesystem(type);
|
|
if (IS_ERR(mnt))
|
|
return PTR_ERR(mnt);
|
|
|
|
if (mount_too_revealing(mnt, &mnt_flags)) {
|
|
mntput(mnt);
|
|
return -EPERM;
|
|
}
|
|
|
|
err = do_add_mount(real_mount(mnt), path, mnt_flags);
|
|
if (err)
|
|
mntput(mnt);
|
|
return err;
|
|
}
|
|
|
|
int finish_automount(struct vfsmount *m, struct path *path)
|
|
{
|
|
struct mount *mnt = real_mount(m);
|
|
int err;
|
|
/* The new mount record should have at least 2 refs to prevent it being
|
|
* expired before we get a chance to add it
|
|
*/
|
|
BUG_ON(mnt_get_count(mnt) < 2);
|
|
|
|
if (m->mnt_sb == path->mnt->mnt_sb &&
|
|
m->mnt_root == path->dentry) {
|
|
err = -ELOOP;
|
|
goto fail;
|
|
}
|
|
|
|
err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
|
|
if (!err)
|
|
return 0;
|
|
fail:
|
|
/* remove m from any expiration list it may be on */
|
|
if (!list_empty(&mnt->mnt_expire)) {
|
|
namespace_lock();
|
|
list_del_init(&mnt->mnt_expire);
|
|
namespace_unlock();
|
|
}
|
|
mntput(m);
|
|
mntput(m);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* mnt_set_expiry - Put a mount on an expiration list
|
|
* @mnt: The mount to list.
|
|
* @expiry_list: The list to add the mount to.
|
|
*/
|
|
void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
|
|
{
|
|
namespace_lock();
|
|
|
|
list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
|
|
|
|
namespace_unlock();
|
|
}
|
|
EXPORT_SYMBOL(mnt_set_expiry);
|
|
|
|
/*
|
|
* process a list of expirable mountpoints with the intent of discarding any
|
|
* mountpoints that aren't in use and haven't been touched since last we came
|
|
* here
|
|
*/
|
|
void mark_mounts_for_expiry(struct list_head *mounts)
|
|
{
|
|
struct mount *mnt, *next;
|
|
LIST_HEAD(graveyard);
|
|
|
|
if (list_empty(mounts))
|
|
return;
|
|
|
|
namespace_lock();
|
|
lock_mount_hash();
|
|
|
|
/* extract from the expiration list every vfsmount that matches the
|
|
* following criteria:
|
|
* - only referenced by its parent vfsmount
|
|
* - still marked for expiry (marked on the last call here; marks are
|
|
* cleared by mntput())
|
|
*/
|
|
list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
|
|
if (!xchg(&mnt->mnt_expiry_mark, 1) ||
|
|
propagate_mount_busy(mnt, 1))
|
|
continue;
|
|
list_move(&mnt->mnt_expire, &graveyard);
|
|
}
|
|
while (!list_empty(&graveyard)) {
|
|
mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
|
|
touch_mnt_namespace(mnt->mnt_ns);
|
|
umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
|
|
}
|
|
unlock_mount_hash();
|
|
namespace_unlock();
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
|
|
|
|
/*
|
|
* Ripoff of 'select_parent()'
|
|
*
|
|
* search the list of submounts for a given mountpoint, and move any
|
|
* shrinkable submounts to the 'graveyard' list.
|
|
*/
|
|
static int select_submounts(struct mount *parent, struct list_head *graveyard)
|
|
{
|
|
struct mount *this_parent = parent;
|
|
struct list_head *next;
|
|
int found = 0;
|
|
|
|
repeat:
|
|
next = this_parent->mnt_mounts.next;
|
|
resume:
|
|
while (next != &this_parent->mnt_mounts) {
|
|
struct list_head *tmp = next;
|
|
struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
|
|
|
|
next = tmp->next;
|
|
if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
|
|
continue;
|
|
/*
|
|
* Descend a level if the d_mounts list is non-empty.
|
|
*/
|
|
if (!list_empty(&mnt->mnt_mounts)) {
|
|
this_parent = mnt;
|
|
goto repeat;
|
|
}
|
|
|
|
if (!propagate_mount_busy(mnt, 1)) {
|
|
list_move_tail(&mnt->mnt_expire, graveyard);
|
|
found++;
|
|
}
|
|
}
|
|
/*
|
|
* All done at this level ... ascend and resume the search
|
|
*/
|
|
if (this_parent != parent) {
|
|
next = this_parent->mnt_child.next;
|
|
this_parent = this_parent->mnt_parent;
|
|
goto resume;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* process a list of expirable mountpoints with the intent of discarding any
|
|
* submounts of a specific parent mountpoint
|
|
*
|
|
* mount_lock must be held for write
|
|
*/
|
|
static void shrink_submounts(struct mount *mnt)
|
|
{
|
|
LIST_HEAD(graveyard);
|
|
struct mount *m;
|
|
|
|
/* extract submounts of 'mountpoint' from the expiration list */
|
|
while (select_submounts(mnt, &graveyard)) {
|
|
while (!list_empty(&graveyard)) {
|
|
m = list_first_entry(&graveyard, struct mount,
|
|
mnt_expire);
|
|
touch_mnt_namespace(m->mnt_ns);
|
|
umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some copy_from_user() implementations do not return the exact number of
|
|
* bytes remaining to copy on a fault. But copy_mount_options() requires that.
|
|
* Note that this function differs from copy_from_user() in that it will oops
|
|
* on bad values of `to', rather than returning a short copy.
|
|
*/
|
|
static long exact_copy_from_user(void *to, const void __user * from,
|
|
unsigned long n)
|
|
{
|
|
char *t = to;
|
|
const char __user *f = from;
|
|
char c;
|
|
|
|
if (!access_ok(VERIFY_READ, from, n))
|
|
return n;
|
|
|
|
while (n) {
|
|
if (__get_user(c, f)) {
|
|
memset(t, 0, n);
|
|
break;
|
|
}
|
|
*t++ = c;
|
|
f++;
|
|
n--;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
void *copy_mount_options(const void __user * data)
|
|
{
|
|
int i;
|
|
unsigned long size;
|
|
char *copy;
|
|
|
|
if (!data)
|
|
return NULL;
|
|
|
|
copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!copy)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* We only care that *some* data at the address the user
|
|
* gave us is valid. Just in case, we'll zero
|
|
* the remainder of the page.
|
|
*/
|
|
/* copy_from_user cannot cross TASK_SIZE ! */
|
|
size = TASK_SIZE - (unsigned long)data;
|
|
if (size > PAGE_SIZE)
|
|
size = PAGE_SIZE;
|
|
|
|
i = size - exact_copy_from_user(copy, data, size);
|
|
if (!i) {
|
|
kfree(copy);
|
|
return ERR_PTR(-EFAULT);
|
|
}
|
|
if (i != PAGE_SIZE)
|
|
memset(copy + i, 0, PAGE_SIZE - i);
|
|
return copy;
|
|
}
|
|
|
|
char *copy_mount_string(const void __user *data)
|
|
{
|
|
return data ? strndup_user(data, PAGE_SIZE) : NULL;
|
|
}
|
|
|
|
/*
|
|
* Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
|
|
* be given to the mount() call (ie: read-only, no-dev, no-suid etc).
|
|
*
|
|
* data is a (void *) that can point to any structure up to
|
|
* PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
|
|
* information (or be NULL).
|
|
*
|
|
* Pre-0.97 versions of mount() didn't have a flags word.
|
|
* When the flags word was introduced its top half was required
|
|
* to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
|
|
* Therefore, if this magic number is present, it carries no information
|
|
* and must be discarded.
|
|
*/
|
|
long do_mount(const char *dev_name, const char __user *dir_name,
|
|
const char *type_page, unsigned long flags, void *data_page)
|
|
{
|
|
struct path path;
|
|
int retval = 0;
|
|
int mnt_flags = 0;
|
|
|
|
/* Discard magic */
|
|
if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
|
|
flags &= ~MS_MGC_MSK;
|
|
|
|
/* Basic sanity checks */
|
|
if (data_page)
|
|
((char *)data_page)[PAGE_SIZE - 1] = 0;
|
|
|
|
/* ... and get the mountpoint */
|
|
retval = user_path(dir_name, &path);
|
|
if (retval)
|
|
return retval;
|
|
|
|
retval = security_sb_mount(dev_name, &path,
|
|
type_page, flags, data_page);
|
|
if (!retval && !may_mount())
|
|
retval = -EPERM;
|
|
if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
|
|
retval = -EPERM;
|
|
if (retval)
|
|
goto dput_out;
|
|
|
|
/* Default to relatime unless overriden */
|
|
if (!(flags & MS_NOATIME))
|
|
mnt_flags |= MNT_RELATIME;
|
|
|
|
/* Separate the per-mountpoint flags */
|
|
if (flags & MS_NOSUID)
|
|
mnt_flags |= MNT_NOSUID;
|
|
if (flags & MS_NODEV)
|
|
mnt_flags |= MNT_NODEV;
|
|
if (flags & MS_NOEXEC)
|
|
mnt_flags |= MNT_NOEXEC;
|
|
if (flags & MS_NOATIME)
|
|
mnt_flags |= MNT_NOATIME;
|
|
if (flags & MS_NODIRATIME)
|
|
mnt_flags |= MNT_NODIRATIME;
|
|
if (flags & MS_STRICTATIME)
|
|
mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
|
|
if (flags & MS_RDONLY)
|
|
mnt_flags |= MNT_READONLY;
|
|
|
|
/* The default atime for remount is preservation */
|
|
if ((flags & MS_REMOUNT) &&
|
|
((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
|
|
MS_STRICTATIME)) == 0)) {
|
|
mnt_flags &= ~MNT_ATIME_MASK;
|
|
mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
|
|
}
|
|
|
|
flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
|
|
MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
|
|
MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
|
|
|
|
if (flags & MS_REMOUNT)
|
|
retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
|
|
data_page);
|
|
else if (flags & MS_BIND)
|
|
retval = do_loopback(&path, dev_name, flags & MS_REC);
|
|
else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
|
|
retval = do_change_type(&path, flags);
|
|
else if (flags & MS_MOVE)
|
|
retval = do_move_mount(&path, dev_name);
|
|
else
|
|
retval = do_new_mount(&path, type_page, flags, mnt_flags,
|
|
dev_name, data_page);
|
|
dput_out:
|
|
path_put(&path);
|
|
return retval;
|
|
}
|
|
|
|
static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
|
|
{
|
|
return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
|
|
}
|
|
|
|
static void dec_mnt_namespaces(struct ucounts *ucounts)
|
|
{
|
|
dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
|
|
}
|
|
|
|
static void free_mnt_ns(struct mnt_namespace *ns)
|
|
{
|
|
ns_free_inum(&ns->ns);
|
|
dec_mnt_namespaces(ns->ucounts);
|
|
put_user_ns(ns->user_ns);
|
|
kfree(ns);
|
|
}
|
|
|
|
/*
|
|
* Assign a sequence number so we can detect when we attempt to bind
|
|
* mount a reference to an older mount namespace into the current
|
|
* mount namespace, preventing reference counting loops. A 64bit
|
|
* number incrementing at 10Ghz will take 12,427 years to wrap which
|
|
* is effectively never, so we can ignore the possibility.
|
|
*/
|
|
static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
|
|
|
|
static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
|
|
{
|
|
struct mnt_namespace *new_ns;
|
|
struct ucounts *ucounts;
|
|
int ret;
|
|
|
|
ucounts = inc_mnt_namespaces(user_ns);
|
|
if (!ucounts)
|
|
return ERR_PTR(-ENOSPC);
|
|
|
|
new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
|
|
if (!new_ns) {
|
|
dec_mnt_namespaces(ucounts);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
ret = ns_alloc_inum(&new_ns->ns);
|
|
if (ret) {
|
|
kfree(new_ns);
|
|
dec_mnt_namespaces(ucounts);
|
|
return ERR_PTR(ret);
|
|
}
|
|
new_ns->ns.ops = &mntns_operations;
|
|
new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
|
|
atomic_set(&new_ns->count, 1);
|
|
new_ns->root = NULL;
|
|
INIT_LIST_HEAD(&new_ns->list);
|
|
init_waitqueue_head(&new_ns->poll);
|
|
new_ns->event = 0;
|
|
new_ns->user_ns = get_user_ns(user_ns);
|
|
new_ns->ucounts = ucounts;
|
|
new_ns->mounts = 0;
|
|
new_ns->pending_mounts = 0;
|
|
return new_ns;
|
|
}
|
|
|
|
__latent_entropy
|
|
struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
|
|
struct user_namespace *user_ns, struct fs_struct *new_fs)
|
|
{
|
|
struct mnt_namespace *new_ns;
|
|
struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
|
|
struct mount *p, *q;
|
|
struct mount *old;
|
|
struct mount *new;
|
|
int copy_flags;
|
|
|
|
BUG_ON(!ns);
|
|
|
|
if (likely(!(flags & CLONE_NEWNS))) {
|
|
get_mnt_ns(ns);
|
|
return ns;
|
|
}
|
|
|
|
old = ns->root;
|
|
|
|
new_ns = alloc_mnt_ns(user_ns);
|
|
if (IS_ERR(new_ns))
|
|
return new_ns;
|
|
|
|
namespace_lock();
|
|
/* First pass: copy the tree topology */
|
|
copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
|
|
if (user_ns != ns->user_ns)
|
|
copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
|
|
new = copy_tree(old, old->mnt.mnt_root, copy_flags);
|
|
if (IS_ERR(new)) {
|
|
namespace_unlock();
|
|
free_mnt_ns(new_ns);
|
|
return ERR_CAST(new);
|
|
}
|
|
new_ns->root = new;
|
|
list_add_tail(&new_ns->list, &new->mnt_list);
|
|
|
|
/*
|
|
* Second pass: switch the tsk->fs->* elements and mark new vfsmounts
|
|
* as belonging to new namespace. We have already acquired a private
|
|
* fs_struct, so tsk->fs->lock is not needed.
|
|
*/
|
|
p = old;
|
|
q = new;
|
|
while (p) {
|
|
q->mnt_ns = new_ns;
|
|
new_ns->mounts++;
|
|
if (new_fs) {
|
|
if (&p->mnt == new_fs->root.mnt) {
|
|
new_fs->root.mnt = mntget(&q->mnt);
|
|
rootmnt = &p->mnt;
|
|
}
|
|
if (&p->mnt == new_fs->pwd.mnt) {
|
|
new_fs->pwd.mnt = mntget(&q->mnt);
|
|
pwdmnt = &p->mnt;
|
|
}
|
|
}
|
|
p = next_mnt(p, old);
|
|
q = next_mnt(q, new);
|
|
if (!q)
|
|
break;
|
|
while (p->mnt.mnt_root != q->mnt.mnt_root)
|
|
p = next_mnt(p, old);
|
|
}
|
|
namespace_unlock();
|
|
|
|
if (rootmnt)
|
|
mntput(rootmnt);
|
|
if (pwdmnt)
|
|
mntput(pwdmnt);
|
|
|
|
return new_ns;
|
|
}
|
|
|
|
/**
|
|
* create_mnt_ns - creates a private namespace and adds a root filesystem
|
|
* @mnt: pointer to the new root filesystem mountpoint
|
|
*/
|
|
static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
|
|
{
|
|
struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
|
|
if (!IS_ERR(new_ns)) {
|
|
struct mount *mnt = real_mount(m);
|
|
mnt->mnt_ns = new_ns;
|
|
new_ns->root = mnt;
|
|
new_ns->mounts++;
|
|
list_add(&mnt->mnt_list, &new_ns->list);
|
|
} else {
|
|
mntput(m);
|
|
}
|
|
return new_ns;
|
|
}
|
|
|
|
struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
|
|
{
|
|
struct mnt_namespace *ns;
|
|
struct super_block *s;
|
|
struct path path;
|
|
int err;
|
|
|
|
ns = create_mnt_ns(mnt);
|
|
if (IS_ERR(ns))
|
|
return ERR_CAST(ns);
|
|
|
|
err = vfs_path_lookup(mnt->mnt_root, mnt,
|
|
name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
|
|
|
|
put_mnt_ns(ns);
|
|
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
/* trade a vfsmount reference for active sb one */
|
|
s = path.mnt->mnt_sb;
|
|
atomic_inc(&s->s_active);
|
|
mntput(path.mnt);
|
|
/* lock the sucker */
|
|
down_write(&s->s_umount);
|
|
/* ... and return the root of (sub)tree on it */
|
|
return path.dentry;
|
|
}
|
|
EXPORT_SYMBOL(mount_subtree);
|
|
|
|
SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
|
|
char __user *, type, unsigned long, flags, void __user *, data)
|
|
{
|
|
int ret;
|
|
char *kernel_type;
|
|
char *kernel_dev;
|
|
void *options;
|
|
|
|
kernel_type = copy_mount_string(type);
|
|
ret = PTR_ERR(kernel_type);
|
|
if (IS_ERR(kernel_type))
|
|
goto out_type;
|
|
|
|
kernel_dev = copy_mount_string(dev_name);
|
|
ret = PTR_ERR(kernel_dev);
|
|
if (IS_ERR(kernel_dev))
|
|
goto out_dev;
|
|
|
|
options = copy_mount_options(data);
|
|
ret = PTR_ERR(options);
|
|
if (IS_ERR(options))
|
|
goto out_data;
|
|
|
|
ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
|
|
|
|
kfree(options);
|
|
out_data:
|
|
kfree(kernel_dev);
|
|
out_dev:
|
|
kfree(kernel_type);
|
|
out_type:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return true if path is reachable from root
|
|
*
|
|
* namespace_sem or mount_lock is held
|
|
*/
|
|
bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
|
|
const struct path *root)
|
|
{
|
|
while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
|
|
dentry = mnt->mnt_mountpoint;
|
|
mnt = mnt->mnt_parent;
|
|
}
|
|
return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
|
|
}
|
|
|
|
bool path_is_under(const struct path *path1, const struct path *path2)
|
|
{
|
|
bool res;
|
|
read_seqlock_excl(&mount_lock);
|
|
res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
|
|
read_sequnlock_excl(&mount_lock);
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL(path_is_under);
|
|
|
|
/*
|
|
* pivot_root Semantics:
|
|
* Moves the root file system of the current process to the directory put_old,
|
|
* makes new_root as the new root file system of the current process, and sets
|
|
* root/cwd of all processes which had them on the current root to new_root.
|
|
*
|
|
* Restrictions:
|
|
* The new_root and put_old must be directories, and must not be on the
|
|
* same file system as the current process root. The put_old must be
|
|
* underneath new_root, i.e. adding a non-zero number of /.. to the string
|
|
* pointed to by put_old must yield the same directory as new_root. No other
|
|
* file system may be mounted on put_old. After all, new_root is a mountpoint.
|
|
*
|
|
* Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
|
|
* See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
|
|
* in this situation.
|
|
*
|
|
* Notes:
|
|
* - we don't move root/cwd if they are not at the root (reason: if something
|
|
* cared enough to change them, it's probably wrong to force them elsewhere)
|
|
* - it's okay to pick a root that isn't the root of a file system, e.g.
|
|
* /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
|
|
* though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
|
|
* first.
|
|
*/
|
|
SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
|
|
const char __user *, put_old)
|
|
{
|
|
struct path new, old, parent_path, root_parent, root;
|
|
struct mount *new_mnt, *root_mnt, *old_mnt;
|
|
struct mountpoint *old_mp, *root_mp;
|
|
int error;
|
|
|
|
if (!may_mount())
|
|
return -EPERM;
|
|
|
|
error = user_path_dir(new_root, &new);
|
|
if (error)
|
|
goto out0;
|
|
|
|
error = user_path_dir(put_old, &old);
|
|
if (error)
|
|
goto out1;
|
|
|
|
error = security_sb_pivotroot(&old, &new);
|
|
if (error)
|
|
goto out2;
|
|
|
|
get_fs_root(current->fs, &root);
|
|
old_mp = lock_mount(&old);
|
|
error = PTR_ERR(old_mp);
|
|
if (IS_ERR(old_mp))
|
|
goto out3;
|
|
|
|
error = -EINVAL;
|
|
new_mnt = real_mount(new.mnt);
|
|
root_mnt = real_mount(root.mnt);
|
|
old_mnt = real_mount(old.mnt);
|
|
if (IS_MNT_SHARED(old_mnt) ||
|
|
IS_MNT_SHARED(new_mnt->mnt_parent) ||
|
|
IS_MNT_SHARED(root_mnt->mnt_parent))
|
|
goto out4;
|
|
if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
|
|
goto out4;
|
|
if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
|
|
goto out4;
|
|
error = -ENOENT;
|
|
if (d_unlinked(new.dentry))
|
|
goto out4;
|
|
error = -EBUSY;
|
|
if (new_mnt == root_mnt || old_mnt == root_mnt)
|
|
goto out4; /* loop, on the same file system */
|
|
error = -EINVAL;
|
|
if (root.mnt->mnt_root != root.dentry)
|
|
goto out4; /* not a mountpoint */
|
|
if (!mnt_has_parent(root_mnt))
|
|
goto out4; /* not attached */
|
|
root_mp = root_mnt->mnt_mp;
|
|
if (new.mnt->mnt_root != new.dentry)
|
|
goto out4; /* not a mountpoint */
|
|
if (!mnt_has_parent(new_mnt))
|
|
goto out4; /* not attached */
|
|
/* make sure we can reach put_old from new_root */
|
|
if (!is_path_reachable(old_mnt, old.dentry, &new))
|
|
goto out4;
|
|
/* make certain new is below the root */
|
|
if (!is_path_reachable(new_mnt, new.dentry, &root))
|
|
goto out4;
|
|
root_mp->m_count++; /* pin it so it won't go away */
|
|
lock_mount_hash();
|
|
detach_mnt(new_mnt, &parent_path);
|
|
detach_mnt(root_mnt, &root_parent);
|
|
if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
|
|
new_mnt->mnt.mnt_flags |= MNT_LOCKED;
|
|
root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
|
|
}
|
|
/* mount old root on put_old */
|
|
attach_mnt(root_mnt, old_mnt, old_mp);
|
|
/* mount new_root on / */
|
|
attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
|
|
touch_mnt_namespace(current->nsproxy->mnt_ns);
|
|
/* A moved mount should not expire automatically */
|
|
list_del_init(&new_mnt->mnt_expire);
|
|
put_mountpoint(root_mp);
|
|
unlock_mount_hash();
|
|
chroot_fs_refs(&root, &new);
|
|
error = 0;
|
|
out4:
|
|
unlock_mount(old_mp);
|
|
if (!error) {
|
|
path_put(&root_parent);
|
|
path_put(&parent_path);
|
|
}
|
|
out3:
|
|
path_put(&root);
|
|
out2:
|
|
path_put(&old);
|
|
out1:
|
|
path_put(&new);
|
|
out0:
|
|
return error;
|
|
}
|
|
|
|
static void __init init_mount_tree(void)
|
|
{
|
|
struct vfsmount *mnt;
|
|
struct mnt_namespace *ns;
|
|
struct path root;
|
|
struct file_system_type *type;
|
|
|
|
type = get_fs_type("rootfs");
|
|
if (!type)
|
|
panic("Can't find rootfs type");
|
|
mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
|
|
put_filesystem(type);
|
|
if (IS_ERR(mnt))
|
|
panic("Can't create rootfs");
|
|
|
|
ns = create_mnt_ns(mnt);
|
|
if (IS_ERR(ns))
|
|
panic("Can't allocate initial namespace");
|
|
|
|
init_task.nsproxy->mnt_ns = ns;
|
|
get_mnt_ns(ns);
|
|
|
|
root.mnt = mnt;
|
|
root.dentry = mnt->mnt_root;
|
|
mnt->mnt_flags |= MNT_LOCKED;
|
|
|
|
set_fs_pwd(current->fs, &root);
|
|
set_fs_root(current->fs, &root);
|
|
}
|
|
|
|
void __init mnt_init(void)
|
|
{
|
|
unsigned u;
|
|
int err;
|
|
|
|
mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
|
|
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
|
|
|
|
mount_hashtable = alloc_large_system_hash("Mount-cache",
|
|
sizeof(struct hlist_head),
|
|
mhash_entries, 19,
|
|
0,
|
|
&m_hash_shift, &m_hash_mask, 0, 0);
|
|
mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
|
|
sizeof(struct hlist_head),
|
|
mphash_entries, 19,
|
|
0,
|
|
&mp_hash_shift, &mp_hash_mask, 0, 0);
|
|
|
|
if (!mount_hashtable || !mountpoint_hashtable)
|
|
panic("Failed to allocate mount hash table\n");
|
|
|
|
for (u = 0; u <= m_hash_mask; u++)
|
|
INIT_HLIST_HEAD(&mount_hashtable[u]);
|
|
for (u = 0; u <= mp_hash_mask; u++)
|
|
INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
|
|
|
|
kernfs_init();
|
|
|
|
err = sysfs_init();
|
|
if (err)
|
|
printk(KERN_WARNING "%s: sysfs_init error: %d\n",
|
|
__func__, err);
|
|
fs_kobj = kobject_create_and_add("fs", NULL);
|
|
if (!fs_kobj)
|
|
printk(KERN_WARNING "%s: kobj create error\n", __func__);
|
|
init_rootfs();
|
|
init_mount_tree();
|
|
}
|
|
|
|
void put_mnt_ns(struct mnt_namespace *ns)
|
|
{
|
|
if (!atomic_dec_and_test(&ns->count))
|
|
return;
|
|
drop_collected_mounts(&ns->root->mnt);
|
|
free_mnt_ns(ns);
|
|
}
|
|
|
|
struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
|
|
{
|
|
struct vfsmount *mnt;
|
|
mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
|
|
if (!IS_ERR(mnt)) {
|
|
/*
|
|
* it is a longterm mount, don't release mnt until
|
|
* we unmount before file sys is unregistered
|
|
*/
|
|
real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
|
|
}
|
|
return mnt;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kern_mount_data);
|
|
|
|
void kern_unmount(struct vfsmount *mnt)
|
|
{
|
|
/* release long term mount so mount point can be released */
|
|
if (!IS_ERR_OR_NULL(mnt)) {
|
|
real_mount(mnt)->mnt_ns = NULL;
|
|
synchronize_rcu(); /* yecchhh... */
|
|
mntput(mnt);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(kern_unmount);
|
|
|
|
bool our_mnt(struct vfsmount *mnt)
|
|
{
|
|
return check_mnt(real_mount(mnt));
|
|
}
|
|
|
|
bool current_chrooted(void)
|
|
{
|
|
/* Does the current process have a non-standard root */
|
|
struct path ns_root;
|
|
struct path fs_root;
|
|
bool chrooted;
|
|
|
|
/* Find the namespace root */
|
|
ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
|
|
ns_root.dentry = ns_root.mnt->mnt_root;
|
|
path_get(&ns_root);
|
|
while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
|
|
;
|
|
|
|
get_fs_root(current->fs, &fs_root);
|
|
|
|
chrooted = !path_equal(&fs_root, &ns_root);
|
|
|
|
path_put(&fs_root);
|
|
path_put(&ns_root);
|
|
|
|
return chrooted;
|
|
}
|
|
|
|
static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
|
|
int *new_mnt_flags)
|
|
{
|
|
int new_flags = *new_mnt_flags;
|
|
struct mount *mnt;
|
|
bool visible = false;
|
|
|
|
down_read(&namespace_sem);
|
|
list_for_each_entry(mnt, &ns->list, mnt_list) {
|
|
struct mount *child;
|
|
int mnt_flags;
|
|
|
|
if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
|
|
continue;
|
|
|
|
/* This mount is not fully visible if it's root directory
|
|
* is not the root directory of the filesystem.
|
|
*/
|
|
if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
|
|
continue;
|
|
|
|
/* A local view of the mount flags */
|
|
mnt_flags = mnt->mnt.mnt_flags;
|
|
|
|
/* Don't miss readonly hidden in the superblock flags */
|
|
if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
|
|
mnt_flags |= MNT_LOCK_READONLY;
|
|
|
|
/* Verify the mount flags are equal to or more permissive
|
|
* than the proposed new mount.
|
|
*/
|
|
if ((mnt_flags & MNT_LOCK_READONLY) &&
|
|
!(new_flags & MNT_READONLY))
|
|
continue;
|
|
if ((mnt_flags & MNT_LOCK_ATIME) &&
|
|
((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
|
|
continue;
|
|
|
|
/* This mount is not fully visible if there are any
|
|
* locked child mounts that cover anything except for
|
|
* empty directories.
|
|
*/
|
|
list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
|
|
struct inode *inode = child->mnt_mountpoint->d_inode;
|
|
/* Only worry about locked mounts */
|
|
if (!(child->mnt.mnt_flags & MNT_LOCKED))
|
|
continue;
|
|
/* Is the directory permanetly empty? */
|
|
if (!is_empty_dir_inode(inode))
|
|
goto next;
|
|
}
|
|
/* Preserve the locked attributes */
|
|
*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
|
|
MNT_LOCK_ATIME);
|
|
visible = true;
|
|
goto found;
|
|
next: ;
|
|
}
|
|
found:
|
|
up_read(&namespace_sem);
|
|
return visible;
|
|
}
|
|
|
|
static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
|
|
{
|
|
const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
|
|
struct mnt_namespace *ns = current->nsproxy->mnt_ns;
|
|
unsigned long s_iflags;
|
|
|
|
if (ns->user_ns == &init_user_ns)
|
|
return false;
|
|
|
|
/* Can this filesystem be too revealing? */
|
|
s_iflags = mnt->mnt_sb->s_iflags;
|
|
if (!(s_iflags & SB_I_USERNS_VISIBLE))
|
|
return false;
|
|
|
|
if ((s_iflags & required_iflags) != required_iflags) {
|
|
WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
|
|
required_iflags);
|
|
return true;
|
|
}
|
|
|
|
return !mnt_already_visible(ns, mnt, new_mnt_flags);
|
|
}
|
|
|
|
bool mnt_may_suid(struct vfsmount *mnt)
|
|
{
|
|
/*
|
|
* Foreign mounts (accessed via fchdir or through /proc
|
|
* symlinks) are always treated as if they are nosuid. This
|
|
* prevents namespaces from trusting potentially unsafe
|
|
* suid/sgid bits, file caps, or security labels that originate
|
|
* in other namespaces.
|
|
*/
|
|
return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
|
|
current_in_userns(mnt->mnt_sb->s_user_ns);
|
|
}
|
|
|
|
static struct ns_common *mntns_get(struct task_struct *task)
|
|
{
|
|
struct ns_common *ns = NULL;
|
|
struct nsproxy *nsproxy;
|
|
|
|
task_lock(task);
|
|
nsproxy = task->nsproxy;
|
|
if (nsproxy) {
|
|
ns = &nsproxy->mnt_ns->ns;
|
|
get_mnt_ns(to_mnt_ns(ns));
|
|
}
|
|
task_unlock(task);
|
|
|
|
return ns;
|
|
}
|
|
|
|
static void mntns_put(struct ns_common *ns)
|
|
{
|
|
put_mnt_ns(to_mnt_ns(ns));
|
|
}
|
|
|
|
static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
|
|
{
|
|
struct fs_struct *fs = current->fs;
|
|
struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
|
|
struct path root;
|
|
|
|
if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
|
|
!ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
|
|
!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (fs->users != 1)
|
|
return -EINVAL;
|
|
|
|
get_mnt_ns(mnt_ns);
|
|
put_mnt_ns(nsproxy->mnt_ns);
|
|
nsproxy->mnt_ns = mnt_ns;
|
|
|
|
/* Find the root */
|
|
root.mnt = &mnt_ns->root->mnt;
|
|
root.dentry = mnt_ns->root->mnt.mnt_root;
|
|
path_get(&root);
|
|
while(d_mountpoint(root.dentry) && follow_down_one(&root))
|
|
;
|
|
|
|
/* Update the pwd and root */
|
|
set_fs_pwd(fs, &root);
|
|
set_fs_root(fs, &root);
|
|
|
|
path_put(&root);
|
|
return 0;
|
|
}
|
|
|
|
static struct user_namespace *mntns_owner(struct ns_common *ns)
|
|
{
|
|
return to_mnt_ns(ns)->user_ns;
|
|
}
|
|
|
|
const struct proc_ns_operations mntns_operations = {
|
|
.name = "mnt",
|
|
.type = CLONE_NEWNS,
|
|
.get = mntns_get,
|
|
.put = mntns_put,
|
|
.install = mntns_install,
|
|
.owner = mntns_owner,
|
|
};
|