mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-29 04:45:05 +00:00
5d4cae5fe2
Fix a real section mismatch issue; the test code is thrown away after initialisation, but if we do not detect the VFP hardware, it is left hooked into the exception handler. Any VFP instructions which are subsequently executed risk calling the discarded exception handler. Introduce a new "null" handler which returns to the "unrecognised fault" return address. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
366 lines
8.5 KiB
C
366 lines
8.5 KiB
C
/*
|
|
* linux/arch/arm/vfp/vfpmodule.c
|
|
*
|
|
* Copyright (C) 2004 ARM Limited.
|
|
* Written by Deep Blue Solutions Limited.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <asm/thread_notify.h>
|
|
#include <asm/vfp.h>
|
|
|
|
#include "vfpinstr.h"
|
|
#include "vfp.h"
|
|
|
|
/*
|
|
* Our undef handlers (in entry.S)
|
|
*/
|
|
void vfp_testing_entry(void);
|
|
void vfp_support_entry(void);
|
|
void vfp_null_entry(void);
|
|
|
|
void (*vfp_vector)(void) = vfp_null_entry;
|
|
union vfp_state *last_VFP_context[NR_CPUS];
|
|
|
|
/*
|
|
* Dual-use variable.
|
|
* Used in startup: set to non-zero if VFP checks fail
|
|
* After startup, holds VFP architecture
|
|
*/
|
|
unsigned int VFP_arch;
|
|
|
|
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
|
|
{
|
|
struct thread_info *thread = v;
|
|
union vfp_state *vfp;
|
|
__u32 cpu = thread->cpu;
|
|
|
|
if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
|
|
u32 fpexc = fmrx(FPEXC);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* On SMP, if VFP is enabled, save the old state in
|
|
* case the thread migrates to a different CPU. The
|
|
* restoring is done lazily.
|
|
*/
|
|
if ((fpexc & FPEXC_ENABLE) && last_VFP_context[cpu]) {
|
|
vfp_save_state(last_VFP_context[cpu], fpexc);
|
|
last_VFP_context[cpu]->hard.cpu = cpu;
|
|
}
|
|
/*
|
|
* Thread migration, just force the reloading of the
|
|
* state on the new CPU in case the VFP registers
|
|
* contain stale data.
|
|
*/
|
|
if (thread->vfpstate.hard.cpu != cpu)
|
|
last_VFP_context[cpu] = NULL;
|
|
#endif
|
|
|
|
/*
|
|
* Always disable VFP so we can lazily save/restore the
|
|
* old state.
|
|
*/
|
|
fmxr(FPEXC, fpexc & ~FPEXC_ENABLE);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
vfp = &thread->vfpstate;
|
|
if (cmd == THREAD_NOTIFY_FLUSH) {
|
|
/*
|
|
* Per-thread VFP initialisation.
|
|
*/
|
|
memset(vfp, 0, sizeof(union vfp_state));
|
|
|
|
vfp->hard.fpexc = FPEXC_ENABLE;
|
|
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
|
|
|
|
/*
|
|
* Disable VFP to ensure we initialise it first.
|
|
*/
|
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
|
|
}
|
|
|
|
/* flush and release case: Per-thread VFP cleanup. */
|
|
if (last_VFP_context[cpu] == vfp)
|
|
last_VFP_context[cpu] = NULL;
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block vfp_notifier_block = {
|
|
.notifier_call = vfp_notifier,
|
|
};
|
|
|
|
/*
|
|
* Raise a SIGFPE for the current process.
|
|
* sicode describes the signal being raised.
|
|
*/
|
|
void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
|
|
{
|
|
siginfo_t info;
|
|
|
|
memset(&info, 0, sizeof(info));
|
|
|
|
info.si_signo = SIGFPE;
|
|
info.si_code = sicode;
|
|
info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
|
|
|
|
/*
|
|
* This is the same as NWFPE, because it's not clear what
|
|
* this is used for
|
|
*/
|
|
current->thread.error_code = 0;
|
|
current->thread.trap_no = 6;
|
|
|
|
send_sig_info(SIGFPE, &info, current);
|
|
}
|
|
|
|
static void vfp_panic(char *reason)
|
|
{
|
|
int i;
|
|
|
|
printk(KERN_ERR "VFP: Error: %s\n", reason);
|
|
printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
|
|
fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
|
|
for (i = 0; i < 32; i += 2)
|
|
printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
|
|
i, vfp_get_float(i), i+1, vfp_get_float(i+1));
|
|
}
|
|
|
|
/*
|
|
* Process bitmask of exception conditions.
|
|
*/
|
|
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
|
|
{
|
|
int si_code = 0;
|
|
|
|
pr_debug("VFP: raising exceptions %08x\n", exceptions);
|
|
|
|
if (exceptions == VFP_EXCEPTION_ERROR) {
|
|
vfp_panic("unhandled bounce");
|
|
vfp_raise_sigfpe(0, regs);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If any of the status flags are set, update the FPSCR.
|
|
* Comparison instructions always return at least one of
|
|
* these flags set.
|
|
*/
|
|
if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
|
|
fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
|
|
|
|
fpscr |= exceptions;
|
|
|
|
fmxr(FPSCR, fpscr);
|
|
|
|
#define RAISE(stat,en,sig) \
|
|
if (exceptions & stat && fpscr & en) \
|
|
si_code = sig;
|
|
|
|
/*
|
|
* These are arranged in priority order, least to highest.
|
|
*/
|
|
RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
|
|
RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
|
|
RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
|
|
RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
|
|
RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
|
|
|
|
if (si_code)
|
|
vfp_raise_sigfpe(si_code, regs);
|
|
}
|
|
|
|
/*
|
|
* Emulate a VFP instruction.
|
|
*/
|
|
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
|
|
{
|
|
u32 exceptions = VFP_EXCEPTION_ERROR;
|
|
|
|
pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
|
|
|
|
if (INST_CPRTDO(inst)) {
|
|
if (!INST_CPRT(inst)) {
|
|
/*
|
|
* CPDO
|
|
*/
|
|
if (vfp_single(inst)) {
|
|
exceptions = vfp_single_cpdo(inst, fpscr);
|
|
} else {
|
|
exceptions = vfp_double_cpdo(inst, fpscr);
|
|
}
|
|
} else {
|
|
/*
|
|
* A CPRT instruction can not appear in FPINST2, nor
|
|
* can it cause an exception. Therefore, we do not
|
|
* have to emulate it.
|
|
*/
|
|
}
|
|
} else {
|
|
/*
|
|
* A CPDT instruction can not appear in FPINST2, nor can
|
|
* it cause an exception. Therefore, we do not have to
|
|
* emulate it.
|
|
*/
|
|
}
|
|
return exceptions & ~VFP_NAN_FLAG;
|
|
}
|
|
|
|
/*
|
|
* Package up a bounce condition.
|
|
*/
|
|
void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
|
{
|
|
u32 fpscr, orig_fpscr, exceptions, inst;
|
|
|
|
pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
|
|
|
|
/*
|
|
* Enable access to the VFP so we can handle the bounce.
|
|
*/
|
|
fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
|
|
|
|
orig_fpscr = fpscr = fmrx(FPSCR);
|
|
|
|
/*
|
|
* If we are running with inexact exceptions enabled, we need to
|
|
* emulate the trigger instruction. Note that as we're emulating
|
|
* the trigger instruction, we need to increment PC.
|
|
*/
|
|
if (fpscr & FPSCR_IXE) {
|
|
regs->ARM_pc += 4;
|
|
goto emulate;
|
|
}
|
|
|
|
barrier();
|
|
|
|
/*
|
|
* Modify fpscr to indicate the number of iterations remaining
|
|
*/
|
|
if (fpexc & FPEXC_EXCEPTION) {
|
|
u32 len;
|
|
|
|
len = fpexc + (1 << FPEXC_LENGTH_BIT);
|
|
|
|
fpscr &= ~FPSCR_LENGTH_MASK;
|
|
fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
|
|
}
|
|
|
|
/*
|
|
* Handle the first FP instruction. We used to take note of the
|
|
* FPEXC bounce reason, but this appears to be unreliable.
|
|
* Emulate the bounced instruction instead.
|
|
*/
|
|
inst = fmrx(FPINST);
|
|
exceptions = vfp_emulate_instruction(inst, fpscr, regs);
|
|
if (exceptions)
|
|
vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
|
|
|
|
/*
|
|
* If there isn't a second FP instruction, exit now.
|
|
*/
|
|
if (!(fpexc & FPEXC_FPV2))
|
|
return;
|
|
|
|
/*
|
|
* The barrier() here prevents fpinst2 being read
|
|
* before the condition above.
|
|
*/
|
|
barrier();
|
|
trigger = fmrx(FPINST2);
|
|
orig_fpscr = fpscr = fmrx(FPSCR);
|
|
|
|
emulate:
|
|
exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
|
|
if (exceptions)
|
|
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
|
|
}
|
|
|
|
static void vfp_enable(void *unused)
|
|
{
|
|
u32 access = get_copro_access();
|
|
|
|
/*
|
|
* Enable full access to VFP (cp10 and cp11)
|
|
*/
|
|
set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
|
|
}
|
|
|
|
#include <linux/smp.h>
|
|
|
|
/*
|
|
* VFP support code initialisation.
|
|
*/
|
|
static int __init vfp_init(void)
|
|
{
|
|
unsigned int vfpsid;
|
|
unsigned int cpu_arch = cpu_architecture();
|
|
u32 access = 0;
|
|
|
|
if (cpu_arch >= CPU_ARCH_ARMv6) {
|
|
access = get_copro_access();
|
|
|
|
/*
|
|
* Enable full access to VFP (cp10 and cp11)
|
|
*/
|
|
set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
|
|
}
|
|
|
|
/*
|
|
* First check that there is a VFP that we can use.
|
|
* The handler is already setup to just log calls, so
|
|
* we just need to read the VFPSID register.
|
|
*/
|
|
vfp_vector = vfp_testing_entry;
|
|
vfpsid = fmrx(FPSID);
|
|
barrier();
|
|
vfp_vector = vfp_null_entry;
|
|
|
|
printk(KERN_INFO "VFP support v0.3: ");
|
|
if (VFP_arch) {
|
|
printk("not present\n");
|
|
|
|
/*
|
|
* Restore the copro access register.
|
|
*/
|
|
if (cpu_arch >= CPU_ARCH_ARMv6)
|
|
set_copro_access(access);
|
|
} else if (vfpsid & FPSID_NODOUBLE) {
|
|
printk("no double precision support\n");
|
|
} else {
|
|
smp_call_function(vfp_enable, NULL, 1, 1);
|
|
|
|
VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
|
|
printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
|
|
(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
|
|
(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
|
|
(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
|
|
(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
|
|
(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
|
|
|
|
vfp_vector = vfp_support_entry;
|
|
|
|
thread_register_notifier(&vfp_notifier_block);
|
|
|
|
/*
|
|
* We detected VFP, and the support code is
|
|
* in place; report VFP support to userspace.
|
|
*/
|
|
elf_hwcap |= HWCAP_VFP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(vfp_init);
|