Christoph Hellwig 4c728ef583 add a vfs_fsync helper
Fsync currently has a fdatawrite/fdatawait pair around the method call,
and a mutex_lock/unlock of the inode mutex.  All callers of fsync have
to duplicate this, but we have a few and most of them don't quite get
it right.  This patch adds a new vfs_fsync that takes care of this.
It's a little more complicated as usual as ->fsync might get a NULL file
pointer and just a dentry from nfsd, but otherwise gets afile and we
want to take the mapping and file operations from it when it is there.

Notes on the fsync callers:

 - ecryptfs wasn't calling filemap_fdatawrite / filemap_fdatawait on the
   	lower file
 - coda wasn't calling filemap_fdatawrite / filemap_fdatawait on the host
	file, and returning 0 when ->fsync was missing
 - shm wasn't calling either filemap_fdatawrite / filemap_fdatawait nor
   taking i_mutex.  Now given that shared memory doesn't have disk
   backing not doing anything in fsync seems fine and I left it out of
   the vfs_fsync conversion for now, but in that case we might just
   not pass it through to the lower file at all but just call the no-op
   simple_sync_file directly.

[and now actually export vfs_fsync]

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2009-01-05 11:54:28 -05:00
..
2008-10-27 17:47:26 -07:00
2009-01-05 11:54:28 -05:00
2009-01-05 11:54:28 -05:00
2008-11-19 22:01:35 -08:00
2008-11-19 22:01:34 -08:00
2008-12-22 18:27:17 +00:00
2008-09-17 16:54:31 +01:00

To understand all the Linux-USB framework, you'll use these resources:

    * This source code.  This is necessarily an evolving work, and
      includes kerneldoc that should help you get a current overview.
      ("make pdfdocs", and then look at "usb.pdf" for host side and
      "gadget.pdf" for peripheral side.)  Also, Documentation/usb has
      more information.

    * The USB 2.0 specification (from www.usb.org), with supplements
      such as those for USB OTG and the various device classes.
      The USB specification has a good overview chapter, and USB
      peripherals conform to the widely known "Chapter 9".

    * Chip specifications for USB controllers.  Examples include
      host controllers (on PCs, servers, and more); peripheral
      controllers (in devices with Linux firmware, like printers or
      cell phones); and hard-wired peripherals like Ethernet adapters.

    * Specifications for other protocols implemented by USB peripheral
      functions.  Some are vendor-specific; others are vendor-neutral
      but just standardized outside of the www.usb.org team.

Here is a list of what each subdirectory here is, and what is contained in
them.

core/		- This is for the core USB host code, including the
		  usbfs files and the hub class driver ("khubd").

host/		- This is for USB host controller drivers.  This
		  includes UHCI, OHCI, EHCI, and others that might
		  be used with more specialized "embedded" systems.

gadget/		- This is for USB peripheral controller drivers and
		  the various gadget drivers which talk to them.


Individual USB driver directories.  A new driver should be added to the
first subdirectory in the list below that it fits into.

image/		- This is for still image drivers, like scanners or
		  digital cameras.
../input/	- This is for any driver that uses the input subsystem,
		  like keyboard, mice, touchscreens, tablets, etc.
../media/	- This is for multimedia drivers, like video cameras,
		  radios, and any other drivers that talk to the v4l
		  subsystem.
../net/		- This is for network drivers.
serial/		- This is for USB to serial drivers.
storage/	- This is for USB mass-storage drivers.
class/		- This is for all USB device drivers that do not fit
		  into any of the above categories, and work for a range
		  of USB Class specified devices. 
misc/		- This is for all USB device drivers that do not fit
		  into any of the above categories.