mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 06:42:31 +00:00
517ffce4e1
The Montgomery Multiply, Montgomery Square, and Multiple-Precision Multiply instructions work by loading a combination of the floating point and multiple register windows worth of integer registers with the inputs. These values are 64-bit. But for 32-bit userland processes we only save the low 32-bits of each integer register during a register spill. This is because the register window save area is in the user stack and has a fixed layout. Therefore, the only way to use these instruction in 32-bit mode is to perform the following sequence: 1) Load the top-32bits of a choosen integer register with a sentinel, say "-1". This will be in the outer-most register window. The idea is that we're trying to see if the outer-most register window gets spilled, and thus the 64-bit values were truncated. 2) Load all the inputs for the montmul/montsqr/mpmul instruction, down to the inner-most register window. 3) Execute the opcode. 4) Traverse back up to the outer-most register window. 5) Check the sentinel, if it's still "-1" store the results. Otherwise retry the entire sequence. This retry is extremely troublesome. If you're just unlucky and an interrupt or other trap happens, it'll push that outer-most window to the stack and clear the sentinel when we restore it. We could retry forever and never make forward progress if interrupts arrive at a fast enough rate (consider perf events as one example). So we have do limited retries and fallback to software which is extremely non-deterministic. Luckily it's very straightforward to provide a mechanism to let 32-bit applications use a 64-bit stack. Stacks in 64-bit mode are biased by 2047 bytes, which means that the lowest bit is set in the actual %sp register value. So if we see bit zero set in a 32-bit application's stack we treat it like a 64-bit stack. Runtime detection of such a facility is tricky, and cumbersome at best. For example, just trying to use a biased stack and seeing if it works is hard to recover from (the signal handler will need to use an alt stack, plus something along the lines of longjmp). Therefore, we add a system call to report a bitmask of arch specific features like this in a cheap and less hairy way. With help from Andy Polyakov. Signed-off-by: David S. Miller <davem@davemloft.net>
1802 lines
45 KiB
C
1802 lines
45 KiB
C
/* Performance event support for sparc64.
|
|
*
|
|
* Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
|
|
*
|
|
* This code is based almost entirely upon the x86 perf event
|
|
* code, which is:
|
|
*
|
|
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
|
|
* Copyright (C) 2009 Jaswinder Singh Rajput
|
|
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
|
*/
|
|
|
|
#include <linux/perf_event.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/cpudata.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/pcr.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
#include "kernel.h"
|
|
#include "kstack.h"
|
|
|
|
/* Two classes of sparc64 chips currently exist. All of which have
|
|
* 32-bit counters which can generate overflow interrupts on the
|
|
* transition from 0xffffffff to 0.
|
|
*
|
|
* All chips upto and including SPARC-T3 have two performance
|
|
* counters. The two 32-bit counters are accessed in one go using a
|
|
* single 64-bit register.
|
|
*
|
|
* On these older chips both counters are controlled using a single
|
|
* control register. The only way to stop all sampling is to clear
|
|
* all of the context (user, supervisor, hypervisor) sampling enable
|
|
* bits. But these bits apply to both counters, thus the two counters
|
|
* can't be enabled/disabled individually.
|
|
*
|
|
* Furthermore, the control register on these older chips have two
|
|
* event fields, one for each of the two counters. It's thus nearly
|
|
* impossible to have one counter going while keeping the other one
|
|
* stopped. Therefore it is possible to get overflow interrupts for
|
|
* counters not currently "in use" and that condition must be checked
|
|
* in the overflow interrupt handler.
|
|
*
|
|
* So we use a hack, in that we program inactive counters with the
|
|
* "sw_count0" and "sw_count1" events. These count how many times
|
|
* the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
|
|
* unusual way to encode a NOP and therefore will not trigger in
|
|
* normal code.
|
|
*
|
|
* Starting with SPARC-T4 we have one control register per counter.
|
|
* And the counters are stored in individual registers. The registers
|
|
* for the counters are 64-bit but only a 32-bit counter is
|
|
* implemented. The event selections on SPARC-T4 lack any
|
|
* restrictions, therefore we can elide all of the complicated
|
|
* conflict resolution code we have for SPARC-T3 and earlier chips.
|
|
*/
|
|
|
|
#define MAX_HWEVENTS 4
|
|
#define MAX_PCRS 4
|
|
#define MAX_PERIOD ((1UL << 32) - 1)
|
|
|
|
#define PIC_UPPER_INDEX 0
|
|
#define PIC_LOWER_INDEX 1
|
|
#define PIC_NO_INDEX -1
|
|
|
|
struct cpu_hw_events {
|
|
/* Number of events currently scheduled onto this cpu.
|
|
* This tells how many entries in the arrays below
|
|
* are valid.
|
|
*/
|
|
int n_events;
|
|
|
|
/* Number of new events added since the last hw_perf_disable().
|
|
* This works because the perf event layer always adds new
|
|
* events inside of a perf_{disable,enable}() sequence.
|
|
*/
|
|
int n_added;
|
|
|
|
/* Array of events current scheduled on this cpu. */
|
|
struct perf_event *event[MAX_HWEVENTS];
|
|
|
|
/* Array of encoded longs, specifying the %pcr register
|
|
* encoding and the mask of PIC counters this even can
|
|
* be scheduled on. See perf_event_encode() et al.
|
|
*/
|
|
unsigned long events[MAX_HWEVENTS];
|
|
|
|
/* The current counter index assigned to an event. When the
|
|
* event hasn't been programmed into the cpu yet, this will
|
|
* hold PIC_NO_INDEX. The event->hw.idx value tells us where
|
|
* we ought to schedule the event.
|
|
*/
|
|
int current_idx[MAX_HWEVENTS];
|
|
|
|
/* Software copy of %pcr register(s) on this cpu. */
|
|
u64 pcr[MAX_HWEVENTS];
|
|
|
|
/* Enabled/disable state. */
|
|
int enabled;
|
|
|
|
unsigned int group_flag;
|
|
};
|
|
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
|
|
|
|
/* An event map describes the characteristics of a performance
|
|
* counter event. In particular it gives the encoding as well as
|
|
* a mask telling which counters the event can be measured on.
|
|
*
|
|
* The mask is unused on SPARC-T4 and later.
|
|
*/
|
|
struct perf_event_map {
|
|
u16 encoding;
|
|
u8 pic_mask;
|
|
#define PIC_NONE 0x00
|
|
#define PIC_UPPER 0x01
|
|
#define PIC_LOWER 0x02
|
|
};
|
|
|
|
/* Encode a perf_event_map entry into a long. */
|
|
static unsigned long perf_event_encode(const struct perf_event_map *pmap)
|
|
{
|
|
return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
|
|
}
|
|
|
|
static u8 perf_event_get_msk(unsigned long val)
|
|
{
|
|
return val & 0xff;
|
|
}
|
|
|
|
static u64 perf_event_get_enc(unsigned long val)
|
|
{
|
|
return val >> 16;
|
|
}
|
|
|
|
#define C(x) PERF_COUNT_HW_CACHE_##x
|
|
|
|
#define CACHE_OP_UNSUPPORTED 0xfffe
|
|
#define CACHE_OP_NONSENSE 0xffff
|
|
|
|
typedef struct perf_event_map cache_map_t
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX];
|
|
|
|
struct sparc_pmu {
|
|
const struct perf_event_map *(*event_map)(int);
|
|
const cache_map_t *cache_map;
|
|
int max_events;
|
|
u32 (*read_pmc)(int);
|
|
void (*write_pmc)(int, u64);
|
|
int upper_shift;
|
|
int lower_shift;
|
|
int event_mask;
|
|
int user_bit;
|
|
int priv_bit;
|
|
int hv_bit;
|
|
int irq_bit;
|
|
int upper_nop;
|
|
int lower_nop;
|
|
unsigned int flags;
|
|
#define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
|
|
#define SPARC_PMU_HAS_CONFLICTS 0x00000002
|
|
int max_hw_events;
|
|
int num_pcrs;
|
|
int num_pic_regs;
|
|
};
|
|
|
|
static u32 sparc_default_read_pmc(int idx)
|
|
{
|
|
u64 val;
|
|
|
|
val = pcr_ops->read_pic(0);
|
|
if (idx == PIC_UPPER_INDEX)
|
|
val >>= 32;
|
|
|
|
return val & 0xffffffff;
|
|
}
|
|
|
|
static void sparc_default_write_pmc(int idx, u64 val)
|
|
{
|
|
u64 shift, mask, pic;
|
|
|
|
shift = 0;
|
|
if (idx == PIC_UPPER_INDEX)
|
|
shift = 32;
|
|
|
|
mask = ((u64) 0xffffffff) << shift;
|
|
val <<= shift;
|
|
|
|
pic = pcr_ops->read_pic(0);
|
|
pic &= ~mask;
|
|
pic |= val;
|
|
pcr_ops->write_pic(0, pic);
|
|
}
|
|
|
|
static const struct perf_event_map ultra3_perfmon_event_map[] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
|
|
};
|
|
|
|
static const struct perf_event_map *ultra3_event_map(int event_id)
|
|
{
|
|
return &ultra3_perfmon_event_map[event_id];
|
|
}
|
|
|
|
static const cache_map_t ultra3_cache_map = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
|
|
[C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
|
|
[C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(NODE)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct sparc_pmu ultra3_pmu = {
|
|
.event_map = ultra3_event_map,
|
|
.cache_map = &ultra3_cache_map,
|
|
.max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
|
|
.read_pmc = sparc_default_read_pmc,
|
|
.write_pmc = sparc_default_write_pmc,
|
|
.upper_shift = 11,
|
|
.lower_shift = 4,
|
|
.event_mask = 0x3f,
|
|
.user_bit = PCR_UTRACE,
|
|
.priv_bit = PCR_STRACE,
|
|
.upper_nop = 0x1c,
|
|
.lower_nop = 0x14,
|
|
.flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
|
|
SPARC_PMU_HAS_CONFLICTS),
|
|
.max_hw_events = 2,
|
|
.num_pcrs = 1,
|
|
.num_pic_regs = 1,
|
|
};
|
|
|
|
/* Niagara1 is very limited. The upper PIC is hard-locked to count
|
|
* only instructions, so it is free running which creates all kinds of
|
|
* problems. Some hardware designs make one wonder if the creator
|
|
* even looked at how this stuff gets used by software.
|
|
*/
|
|
static const struct perf_event_map niagara1_perfmon_event_map[] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
|
|
};
|
|
|
|
static const struct perf_event_map *niagara1_event_map(int event_id)
|
|
{
|
|
return &niagara1_perfmon_event_map[event_id];
|
|
}
|
|
|
|
static const cache_map_t niagara1_cache_map = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
|
|
[C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(NODE)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct sparc_pmu niagara1_pmu = {
|
|
.event_map = niagara1_event_map,
|
|
.cache_map = &niagara1_cache_map,
|
|
.max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
|
|
.read_pmc = sparc_default_read_pmc,
|
|
.write_pmc = sparc_default_write_pmc,
|
|
.upper_shift = 0,
|
|
.lower_shift = 4,
|
|
.event_mask = 0x7,
|
|
.user_bit = PCR_UTRACE,
|
|
.priv_bit = PCR_STRACE,
|
|
.upper_nop = 0x0,
|
|
.lower_nop = 0x0,
|
|
.flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
|
|
SPARC_PMU_HAS_CONFLICTS),
|
|
.max_hw_events = 2,
|
|
.num_pcrs = 1,
|
|
.num_pic_regs = 1,
|
|
};
|
|
|
|
static const struct perf_event_map niagara2_perfmon_event_map[] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
|
|
};
|
|
|
|
static const struct perf_event_map *niagara2_event_map(int event_id)
|
|
{
|
|
return &niagara2_perfmon_event_map[event_id];
|
|
}
|
|
|
|
static const cache_map_t niagara2_cache_map = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
|
|
[C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(NODE)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct sparc_pmu niagara2_pmu = {
|
|
.event_map = niagara2_event_map,
|
|
.cache_map = &niagara2_cache_map,
|
|
.max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
|
|
.read_pmc = sparc_default_read_pmc,
|
|
.write_pmc = sparc_default_write_pmc,
|
|
.upper_shift = 19,
|
|
.lower_shift = 6,
|
|
.event_mask = 0xfff,
|
|
.user_bit = PCR_UTRACE,
|
|
.priv_bit = PCR_STRACE,
|
|
.hv_bit = PCR_N2_HTRACE,
|
|
.irq_bit = 0x30,
|
|
.upper_nop = 0x220,
|
|
.lower_nop = 0x220,
|
|
.flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
|
|
SPARC_PMU_HAS_CONFLICTS),
|
|
.max_hw_events = 2,
|
|
.num_pcrs = 1,
|
|
.num_pic_regs = 1,
|
|
};
|
|
|
|
static const struct perf_event_map niagara4_perfmon_event_map[] = {
|
|
[PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
|
|
[PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
|
|
};
|
|
|
|
static const struct perf_event_map *niagara4_event_map(int event_id)
|
|
{
|
|
return &niagara4_perfmon_event_map[event_id];
|
|
}
|
|
|
|
static const cache_map_t niagara4_cache_map = {
|
|
[C(L1D)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
|
|
[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
|
|
[C(RESULT_MISS)] = { (16 << 6) | 0x07 },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(L1I)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
|
|
[C(RESULT_MISS)] = { (11 << 6) | 0x03 },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(LL)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[C(OP_WRITE)] = {
|
|
[C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[C(OP_PREFETCH)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(DTLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { (17 << 6) | 0x3f },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(ITLB)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { (6 << 6) | 0x3f },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(BPU)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
[C(NODE)] = {
|
|
[C(OP_READ)] = {
|
|
[C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
|
|
[C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
|
|
[ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
|
|
},
|
|
},
|
|
};
|
|
|
|
static u32 sparc_vt_read_pmc(int idx)
|
|
{
|
|
u64 val = pcr_ops->read_pic(idx);
|
|
|
|
return val & 0xffffffff;
|
|
}
|
|
|
|
static void sparc_vt_write_pmc(int idx, u64 val)
|
|
{
|
|
u64 pcr;
|
|
|
|
/* There seems to be an internal latch on the overflow event
|
|
* on SPARC-T4 that prevents it from triggering unless you
|
|
* update the PIC exactly as we do here. The requirement
|
|
* seems to be that you have to turn off event counting in the
|
|
* PCR around the PIC update.
|
|
*
|
|
* For example, after the following sequence:
|
|
*
|
|
* 1) set PIC to -1
|
|
* 2) enable event counting and overflow reporting in PCR
|
|
* 3) overflow triggers, softint 15 handler invoked
|
|
* 4) clear OV bit in PCR
|
|
* 5) write PIC to -1
|
|
*
|
|
* a subsequent overflow event will not trigger. This
|
|
* sequence works on SPARC-T3 and previous chips.
|
|
*/
|
|
pcr = pcr_ops->read_pcr(idx);
|
|
pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
|
|
|
|
pcr_ops->write_pic(idx, val & 0xffffffff);
|
|
|
|
pcr_ops->write_pcr(idx, pcr);
|
|
}
|
|
|
|
static const struct sparc_pmu niagara4_pmu = {
|
|
.event_map = niagara4_event_map,
|
|
.cache_map = &niagara4_cache_map,
|
|
.max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
|
|
.read_pmc = sparc_vt_read_pmc,
|
|
.write_pmc = sparc_vt_write_pmc,
|
|
.upper_shift = 5,
|
|
.lower_shift = 5,
|
|
.event_mask = 0x7ff,
|
|
.user_bit = PCR_N4_UTRACE,
|
|
.priv_bit = PCR_N4_STRACE,
|
|
|
|
/* We explicitly don't support hypervisor tracing. The T4
|
|
* generates the overflow event for precise events via a trap
|
|
* which will not be generated (ie. it's completely lost) if
|
|
* we happen to be in the hypervisor when the event triggers.
|
|
* Essentially, the overflow event reporting is completely
|
|
* unusable when you have hypervisor mode tracing enabled.
|
|
*/
|
|
.hv_bit = 0,
|
|
|
|
.irq_bit = PCR_N4_TOE,
|
|
.upper_nop = 0,
|
|
.lower_nop = 0,
|
|
.flags = 0,
|
|
.max_hw_events = 4,
|
|
.num_pcrs = 4,
|
|
.num_pic_regs = 4,
|
|
};
|
|
|
|
static const struct sparc_pmu *sparc_pmu __read_mostly;
|
|
|
|
static u64 event_encoding(u64 event_id, int idx)
|
|
{
|
|
if (idx == PIC_UPPER_INDEX)
|
|
event_id <<= sparc_pmu->upper_shift;
|
|
else
|
|
event_id <<= sparc_pmu->lower_shift;
|
|
return event_id;
|
|
}
|
|
|
|
static u64 mask_for_index(int idx)
|
|
{
|
|
return event_encoding(sparc_pmu->event_mask, idx);
|
|
}
|
|
|
|
static u64 nop_for_index(int idx)
|
|
{
|
|
return event_encoding(idx == PIC_UPPER_INDEX ?
|
|
sparc_pmu->upper_nop :
|
|
sparc_pmu->lower_nop, idx);
|
|
}
|
|
|
|
static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
|
|
{
|
|
u64 enc, val, mask = mask_for_index(idx);
|
|
int pcr_index = 0;
|
|
|
|
if (sparc_pmu->num_pcrs > 1)
|
|
pcr_index = idx;
|
|
|
|
enc = perf_event_get_enc(cpuc->events[idx]);
|
|
|
|
val = cpuc->pcr[pcr_index];
|
|
val &= ~mask;
|
|
val |= event_encoding(enc, idx);
|
|
cpuc->pcr[pcr_index] = val;
|
|
|
|
pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
|
|
}
|
|
|
|
static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
|
|
{
|
|
u64 mask = mask_for_index(idx);
|
|
u64 nop = nop_for_index(idx);
|
|
int pcr_index = 0;
|
|
u64 val;
|
|
|
|
if (sparc_pmu->num_pcrs > 1)
|
|
pcr_index = idx;
|
|
|
|
val = cpuc->pcr[pcr_index];
|
|
val &= ~mask;
|
|
val |= nop;
|
|
cpuc->pcr[pcr_index] = val;
|
|
|
|
pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
|
|
}
|
|
|
|
static u64 sparc_perf_event_update(struct perf_event *event,
|
|
struct hw_perf_event *hwc, int idx)
|
|
{
|
|
int shift = 64 - 32;
|
|
u64 prev_raw_count, new_raw_count;
|
|
s64 delta;
|
|
|
|
again:
|
|
prev_raw_count = local64_read(&hwc->prev_count);
|
|
new_raw_count = sparc_pmu->read_pmc(idx);
|
|
|
|
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
|
|
new_raw_count) != prev_raw_count)
|
|
goto again;
|
|
|
|
delta = (new_raw_count << shift) - (prev_raw_count << shift);
|
|
delta >>= shift;
|
|
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
|
|
return new_raw_count;
|
|
}
|
|
|
|
static int sparc_perf_event_set_period(struct perf_event *event,
|
|
struct hw_perf_event *hwc, int idx)
|
|
{
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int ret = 0;
|
|
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
|
|
if (unlikely(left <= 0)) {
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
ret = 1;
|
|
}
|
|
if (left > MAX_PERIOD)
|
|
left = MAX_PERIOD;
|
|
|
|
local64_set(&hwc->prev_count, (u64)-left);
|
|
|
|
sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void read_in_all_counters(struct cpu_hw_events *cpuc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
struct perf_event *cp = cpuc->event[i];
|
|
|
|
if (cpuc->current_idx[i] != PIC_NO_INDEX &&
|
|
cpuc->current_idx[i] != cp->hw.idx) {
|
|
sparc_perf_event_update(cp, &cp->hw,
|
|
cpuc->current_idx[i]);
|
|
cpuc->current_idx[i] = PIC_NO_INDEX;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* On this PMU all PICs are programmed using a single PCR. Calculate
|
|
* the combined control register value.
|
|
*
|
|
* For such chips we require that all of the events have the same
|
|
* configuration, so just fetch the settings from the first entry.
|
|
*/
|
|
static void calculate_single_pcr(struct cpu_hw_events *cpuc)
|
|
{
|
|
int i;
|
|
|
|
if (!cpuc->n_added)
|
|
goto out;
|
|
|
|
/* Assign to counters all unassigned events. */
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
struct perf_event *cp = cpuc->event[i];
|
|
struct hw_perf_event *hwc = &cp->hw;
|
|
int idx = hwc->idx;
|
|
u64 enc;
|
|
|
|
if (cpuc->current_idx[i] != PIC_NO_INDEX)
|
|
continue;
|
|
|
|
sparc_perf_event_set_period(cp, hwc, idx);
|
|
cpuc->current_idx[i] = idx;
|
|
|
|
enc = perf_event_get_enc(cpuc->events[i]);
|
|
cpuc->pcr[0] &= ~mask_for_index(idx);
|
|
if (hwc->state & PERF_HES_STOPPED)
|
|
cpuc->pcr[0] |= nop_for_index(idx);
|
|
else
|
|
cpuc->pcr[0] |= event_encoding(enc, idx);
|
|
}
|
|
out:
|
|
cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
|
|
}
|
|
|
|
/* On this PMU each PIC has it's own PCR control register. */
|
|
static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
|
|
{
|
|
int i;
|
|
|
|
if (!cpuc->n_added)
|
|
goto out;
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
struct perf_event *cp = cpuc->event[i];
|
|
struct hw_perf_event *hwc = &cp->hw;
|
|
int idx = hwc->idx;
|
|
u64 enc;
|
|
|
|
if (cpuc->current_idx[i] != PIC_NO_INDEX)
|
|
continue;
|
|
|
|
sparc_perf_event_set_period(cp, hwc, idx);
|
|
cpuc->current_idx[i] = idx;
|
|
|
|
enc = perf_event_get_enc(cpuc->events[i]);
|
|
cpuc->pcr[idx] &= ~mask_for_index(idx);
|
|
if (hwc->state & PERF_HES_STOPPED)
|
|
cpuc->pcr[idx] |= nop_for_index(idx);
|
|
else
|
|
cpuc->pcr[idx] |= event_encoding(enc, idx);
|
|
}
|
|
out:
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
struct perf_event *cp = cpuc->event[i];
|
|
int idx = cp->hw.idx;
|
|
|
|
cpuc->pcr[idx] |= cp->hw.config_base;
|
|
}
|
|
}
|
|
|
|
/* If performance event entries have been added, move existing events
|
|
* around (if necessary) and then assign new entries to counters.
|
|
*/
|
|
static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
|
|
{
|
|
if (cpuc->n_added)
|
|
read_in_all_counters(cpuc);
|
|
|
|
if (sparc_pmu->num_pcrs == 1) {
|
|
calculate_single_pcr(cpuc);
|
|
} else {
|
|
calculate_multiple_pcrs(cpuc);
|
|
}
|
|
}
|
|
|
|
static void sparc_pmu_enable(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int i;
|
|
|
|
if (cpuc->enabled)
|
|
return;
|
|
|
|
cpuc->enabled = 1;
|
|
barrier();
|
|
|
|
if (cpuc->n_events)
|
|
update_pcrs_for_enable(cpuc);
|
|
|
|
for (i = 0; i < sparc_pmu->num_pcrs; i++)
|
|
pcr_ops->write_pcr(i, cpuc->pcr[i]);
|
|
}
|
|
|
|
static void sparc_pmu_disable(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int i;
|
|
|
|
if (!cpuc->enabled)
|
|
return;
|
|
|
|
cpuc->enabled = 0;
|
|
cpuc->n_added = 0;
|
|
|
|
for (i = 0; i < sparc_pmu->num_pcrs; i++) {
|
|
u64 val = cpuc->pcr[i];
|
|
|
|
val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
|
|
sparc_pmu->hv_bit | sparc_pmu->irq_bit);
|
|
cpuc->pcr[i] = val;
|
|
pcr_ops->write_pcr(i, cpuc->pcr[i]);
|
|
}
|
|
}
|
|
|
|
static int active_event_index(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
if (cpuc->event[i] == event)
|
|
break;
|
|
}
|
|
BUG_ON(i == cpuc->n_events);
|
|
return cpuc->current_idx[i];
|
|
}
|
|
|
|
static void sparc_pmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx = active_event_index(cpuc, event);
|
|
|
|
if (flags & PERF_EF_RELOAD) {
|
|
WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
|
|
sparc_perf_event_set_period(event, &event->hw, idx);
|
|
}
|
|
|
|
event->hw.state = 0;
|
|
|
|
sparc_pmu_enable_event(cpuc, &event->hw, idx);
|
|
}
|
|
|
|
static void sparc_pmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx = active_event_index(cpuc, event);
|
|
|
|
if (!(event->hw.state & PERF_HES_STOPPED)) {
|
|
sparc_pmu_disable_event(cpuc, &event->hw, idx);
|
|
event->hw.state |= PERF_HES_STOPPED;
|
|
}
|
|
|
|
if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
|
|
sparc_perf_event_update(event, &event->hw, idx);
|
|
event->hw.state |= PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static void sparc_pmu_del(struct perf_event *event, int _flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
local_irq_save(flags);
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
if (event == cpuc->event[i]) {
|
|
/* Absorb the final count and turn off the
|
|
* event.
|
|
*/
|
|
sparc_pmu_stop(event, PERF_EF_UPDATE);
|
|
|
|
/* Shift remaining entries down into
|
|
* the existing slot.
|
|
*/
|
|
while (++i < cpuc->n_events) {
|
|
cpuc->event[i - 1] = cpuc->event[i];
|
|
cpuc->events[i - 1] = cpuc->events[i];
|
|
cpuc->current_idx[i - 1] =
|
|
cpuc->current_idx[i];
|
|
}
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
cpuc->n_events--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
perf_pmu_enable(event->pmu);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void sparc_pmu_read(struct perf_event *event)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx = active_event_index(cpuc, event);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
sparc_perf_event_update(event, hwc, idx);
|
|
}
|
|
|
|
static atomic_t active_events = ATOMIC_INIT(0);
|
|
static DEFINE_MUTEX(pmc_grab_mutex);
|
|
|
|
static void perf_stop_nmi_watchdog(void *unused)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int i;
|
|
|
|
stop_nmi_watchdog(NULL);
|
|
for (i = 0; i < sparc_pmu->num_pcrs; i++)
|
|
cpuc->pcr[i] = pcr_ops->read_pcr(i);
|
|
}
|
|
|
|
void perf_event_grab_pmc(void)
|
|
{
|
|
if (atomic_inc_not_zero(&active_events))
|
|
return;
|
|
|
|
mutex_lock(&pmc_grab_mutex);
|
|
if (atomic_read(&active_events) == 0) {
|
|
if (atomic_read(&nmi_active) > 0) {
|
|
on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
|
|
BUG_ON(atomic_read(&nmi_active) != 0);
|
|
}
|
|
atomic_inc(&active_events);
|
|
}
|
|
mutex_unlock(&pmc_grab_mutex);
|
|
}
|
|
|
|
void perf_event_release_pmc(void)
|
|
{
|
|
if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
|
|
if (atomic_read(&nmi_active) == 0)
|
|
on_each_cpu(start_nmi_watchdog, NULL, 1);
|
|
mutex_unlock(&pmc_grab_mutex);
|
|
}
|
|
}
|
|
|
|
static const struct perf_event_map *sparc_map_cache_event(u64 config)
|
|
{
|
|
unsigned int cache_type, cache_op, cache_result;
|
|
const struct perf_event_map *pmap;
|
|
|
|
if (!sparc_pmu->cache_map)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
cache_op = (config >> 8) & 0xff;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
|
|
|
|
if (pmap->encoding == CACHE_OP_UNSUPPORTED)
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
if (pmap->encoding == CACHE_OP_NONSENSE)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
return pmap;
|
|
}
|
|
|
|
static void hw_perf_event_destroy(struct perf_event *event)
|
|
{
|
|
perf_event_release_pmc();
|
|
}
|
|
|
|
/* Make sure all events can be scheduled into the hardware at
|
|
* the same time. This is simplified by the fact that we only
|
|
* need to support 2 simultaneous HW events.
|
|
*
|
|
* As a side effect, the evts[]->hw.idx values will be assigned
|
|
* on success. These are pending indexes. When the events are
|
|
* actually programmed into the chip, these values will propagate
|
|
* to the per-cpu cpuc->current_idx[] slots, see the code in
|
|
* maybe_change_configuration() for details.
|
|
*/
|
|
static int sparc_check_constraints(struct perf_event **evts,
|
|
unsigned long *events, int n_ev)
|
|
{
|
|
u8 msk0 = 0, msk1 = 0;
|
|
int idx0 = 0;
|
|
|
|
/* This case is possible when we are invoked from
|
|
* hw_perf_group_sched_in().
|
|
*/
|
|
if (!n_ev)
|
|
return 0;
|
|
|
|
if (n_ev > sparc_pmu->max_hw_events)
|
|
return -1;
|
|
|
|
if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
|
|
int i;
|
|
|
|
for (i = 0; i < n_ev; i++)
|
|
evts[i]->hw.idx = i;
|
|
return 0;
|
|
}
|
|
|
|
msk0 = perf_event_get_msk(events[0]);
|
|
if (n_ev == 1) {
|
|
if (msk0 & PIC_LOWER)
|
|
idx0 = 1;
|
|
goto success;
|
|
}
|
|
BUG_ON(n_ev != 2);
|
|
msk1 = perf_event_get_msk(events[1]);
|
|
|
|
/* If both events can go on any counter, OK. */
|
|
if (msk0 == (PIC_UPPER | PIC_LOWER) &&
|
|
msk1 == (PIC_UPPER | PIC_LOWER))
|
|
goto success;
|
|
|
|
/* If one event is limited to a specific counter,
|
|
* and the other can go on both, OK.
|
|
*/
|
|
if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
|
|
msk1 == (PIC_UPPER | PIC_LOWER)) {
|
|
if (msk0 & PIC_LOWER)
|
|
idx0 = 1;
|
|
goto success;
|
|
}
|
|
|
|
if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
|
|
msk0 == (PIC_UPPER | PIC_LOWER)) {
|
|
if (msk1 & PIC_UPPER)
|
|
idx0 = 1;
|
|
goto success;
|
|
}
|
|
|
|
/* If the events are fixed to different counters, OK. */
|
|
if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
|
|
(msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
|
|
if (msk0 & PIC_LOWER)
|
|
idx0 = 1;
|
|
goto success;
|
|
}
|
|
|
|
/* Otherwise, there is a conflict. */
|
|
return -1;
|
|
|
|
success:
|
|
evts[0]->hw.idx = idx0;
|
|
if (n_ev == 2)
|
|
evts[1]->hw.idx = idx0 ^ 1;
|
|
return 0;
|
|
}
|
|
|
|
static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
|
|
{
|
|
int eu = 0, ek = 0, eh = 0;
|
|
struct perf_event *event;
|
|
int i, n, first;
|
|
|
|
if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
|
|
return 0;
|
|
|
|
n = n_prev + n_new;
|
|
if (n <= 1)
|
|
return 0;
|
|
|
|
first = 1;
|
|
for (i = 0; i < n; i++) {
|
|
event = evts[i];
|
|
if (first) {
|
|
eu = event->attr.exclude_user;
|
|
ek = event->attr.exclude_kernel;
|
|
eh = event->attr.exclude_hv;
|
|
first = 0;
|
|
} else if (event->attr.exclude_user != eu ||
|
|
event->attr.exclude_kernel != ek ||
|
|
event->attr.exclude_hv != eh) {
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int collect_events(struct perf_event *group, int max_count,
|
|
struct perf_event *evts[], unsigned long *events,
|
|
int *current_idx)
|
|
{
|
|
struct perf_event *event;
|
|
int n = 0;
|
|
|
|
if (!is_software_event(group)) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
evts[n] = group;
|
|
events[n] = group->hw.event_base;
|
|
current_idx[n++] = PIC_NO_INDEX;
|
|
}
|
|
list_for_each_entry(event, &group->sibling_list, group_entry) {
|
|
if (!is_software_event(event) &&
|
|
event->state != PERF_EVENT_STATE_OFF) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
evts[n] = event;
|
|
events[n] = event->hw.event_base;
|
|
current_idx[n++] = PIC_NO_INDEX;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static int sparc_pmu_add(struct perf_event *event, int ef_flags)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int n0, ret = -EAGAIN;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
perf_pmu_disable(event->pmu);
|
|
|
|
n0 = cpuc->n_events;
|
|
if (n0 >= sparc_pmu->max_hw_events)
|
|
goto out;
|
|
|
|
cpuc->event[n0] = event;
|
|
cpuc->events[n0] = event->hw.event_base;
|
|
cpuc->current_idx[n0] = PIC_NO_INDEX;
|
|
|
|
event->hw.state = PERF_HES_UPTODATE;
|
|
if (!(ef_flags & PERF_EF_START))
|
|
event->hw.state |= PERF_HES_STOPPED;
|
|
|
|
/*
|
|
* If group events scheduling transaction was started,
|
|
* skip the schedulability test here, it will be performed
|
|
* at commit time(->commit_txn) as a whole
|
|
*/
|
|
if (cpuc->group_flag & PERF_EVENT_TXN)
|
|
goto nocheck;
|
|
|
|
if (check_excludes(cpuc->event, n0, 1))
|
|
goto out;
|
|
if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
|
|
goto out;
|
|
|
|
nocheck:
|
|
cpuc->n_events++;
|
|
cpuc->n_added++;
|
|
|
|
ret = 0;
|
|
out:
|
|
perf_pmu_enable(event->pmu);
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
static int sparc_pmu_event_init(struct perf_event *event)
|
|
{
|
|
struct perf_event_attr *attr = &event->attr;
|
|
struct perf_event *evts[MAX_HWEVENTS];
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned long events[MAX_HWEVENTS];
|
|
int current_idx_dmy[MAX_HWEVENTS];
|
|
const struct perf_event_map *pmap;
|
|
int n;
|
|
|
|
if (atomic_read(&nmi_active) < 0)
|
|
return -ENODEV;
|
|
|
|
/* does not support taken branch sampling */
|
|
if (has_branch_stack(event))
|
|
return -EOPNOTSUPP;
|
|
|
|
switch (attr->type) {
|
|
case PERF_TYPE_HARDWARE:
|
|
if (attr->config >= sparc_pmu->max_events)
|
|
return -EINVAL;
|
|
pmap = sparc_pmu->event_map(attr->config);
|
|
break;
|
|
|
|
case PERF_TYPE_HW_CACHE:
|
|
pmap = sparc_map_cache_event(attr->config);
|
|
if (IS_ERR(pmap))
|
|
return PTR_ERR(pmap);
|
|
break;
|
|
|
|
case PERF_TYPE_RAW:
|
|
pmap = NULL;
|
|
break;
|
|
|
|
default:
|
|
return -ENOENT;
|
|
|
|
}
|
|
|
|
if (pmap) {
|
|
hwc->event_base = perf_event_encode(pmap);
|
|
} else {
|
|
/*
|
|
* User gives us "(encoding << 16) | pic_mask" for
|
|
* PERF_TYPE_RAW events.
|
|
*/
|
|
hwc->event_base = attr->config;
|
|
}
|
|
|
|
/* We save the enable bits in the config_base. */
|
|
hwc->config_base = sparc_pmu->irq_bit;
|
|
if (!attr->exclude_user)
|
|
hwc->config_base |= sparc_pmu->user_bit;
|
|
if (!attr->exclude_kernel)
|
|
hwc->config_base |= sparc_pmu->priv_bit;
|
|
if (!attr->exclude_hv)
|
|
hwc->config_base |= sparc_pmu->hv_bit;
|
|
|
|
n = 0;
|
|
if (event->group_leader != event) {
|
|
n = collect_events(event->group_leader,
|
|
sparc_pmu->max_hw_events - 1,
|
|
evts, events, current_idx_dmy);
|
|
if (n < 0)
|
|
return -EINVAL;
|
|
}
|
|
events[n] = hwc->event_base;
|
|
evts[n] = event;
|
|
|
|
if (check_excludes(evts, n, 1))
|
|
return -EINVAL;
|
|
|
|
if (sparc_check_constraints(evts, events, n + 1))
|
|
return -EINVAL;
|
|
|
|
hwc->idx = PIC_NO_INDEX;
|
|
|
|
/* Try to do all error checking before this point, as unwinding
|
|
* state after grabbing the PMC is difficult.
|
|
*/
|
|
perf_event_grab_pmc();
|
|
event->destroy = hw_perf_event_destroy;
|
|
|
|
if (!hwc->sample_period) {
|
|
hwc->sample_period = MAX_PERIOD;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Start group events scheduling transaction
|
|
* Set the flag to make pmu::enable() not perform the
|
|
* schedulability test, it will be performed at commit time
|
|
*/
|
|
static void sparc_pmu_start_txn(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
|
|
|
|
perf_pmu_disable(pmu);
|
|
cpuhw->group_flag |= PERF_EVENT_TXN;
|
|
}
|
|
|
|
/*
|
|
* Stop group events scheduling transaction
|
|
* Clear the flag and pmu::enable() will perform the
|
|
* schedulability test.
|
|
*/
|
|
static void sparc_pmu_cancel_txn(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
|
|
|
|
cpuhw->group_flag &= ~PERF_EVENT_TXN;
|
|
perf_pmu_enable(pmu);
|
|
}
|
|
|
|
/*
|
|
* Commit group events scheduling transaction
|
|
* Perform the group schedulability test as a whole
|
|
* Return 0 if success
|
|
*/
|
|
static int sparc_pmu_commit_txn(struct pmu *pmu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int n;
|
|
|
|
if (!sparc_pmu)
|
|
return -EINVAL;
|
|
|
|
cpuc = &__get_cpu_var(cpu_hw_events);
|
|
n = cpuc->n_events;
|
|
if (check_excludes(cpuc->event, 0, n))
|
|
return -EINVAL;
|
|
if (sparc_check_constraints(cpuc->event, cpuc->events, n))
|
|
return -EAGAIN;
|
|
|
|
cpuc->group_flag &= ~PERF_EVENT_TXN;
|
|
perf_pmu_enable(pmu);
|
|
return 0;
|
|
}
|
|
|
|
static struct pmu pmu = {
|
|
.pmu_enable = sparc_pmu_enable,
|
|
.pmu_disable = sparc_pmu_disable,
|
|
.event_init = sparc_pmu_event_init,
|
|
.add = sparc_pmu_add,
|
|
.del = sparc_pmu_del,
|
|
.start = sparc_pmu_start,
|
|
.stop = sparc_pmu_stop,
|
|
.read = sparc_pmu_read,
|
|
.start_txn = sparc_pmu_start_txn,
|
|
.cancel_txn = sparc_pmu_cancel_txn,
|
|
.commit_txn = sparc_pmu_commit_txn,
|
|
};
|
|
|
|
void perf_event_print_debug(void)
|
|
{
|
|
unsigned long flags;
|
|
int cpu, i;
|
|
|
|
if (!sparc_pmu)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
cpu = smp_processor_id();
|
|
|
|
pr_info("\n");
|
|
for (i = 0; i < sparc_pmu->num_pcrs; i++)
|
|
pr_info("CPU#%d: PCR%d[%016llx]\n",
|
|
cpu, i, pcr_ops->read_pcr(i));
|
|
for (i = 0; i < sparc_pmu->num_pic_regs; i++)
|
|
pr_info("CPU#%d: PIC%d[%016llx]\n",
|
|
cpu, i, pcr_ops->read_pic(i));
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
|
|
unsigned long cmd, void *__args)
|
|
{
|
|
struct die_args *args = __args;
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc;
|
|
struct pt_regs *regs;
|
|
int i;
|
|
|
|
if (!atomic_read(&active_events))
|
|
return NOTIFY_DONE;
|
|
|
|
switch (cmd) {
|
|
case DIE_NMI:
|
|
break;
|
|
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
regs = args->regs;
|
|
|
|
cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
/* If the PMU has the TOE IRQ enable bits, we need to do a
|
|
* dummy write to the %pcr to clear the overflow bits and thus
|
|
* the interrupt.
|
|
*
|
|
* Do this before we peek at the counters to determine
|
|
* overflow so we don't lose any events.
|
|
*/
|
|
if (sparc_pmu->irq_bit &&
|
|
sparc_pmu->num_pcrs == 1)
|
|
pcr_ops->write_pcr(0, cpuc->pcr[0]);
|
|
|
|
for (i = 0; i < cpuc->n_events; i++) {
|
|
struct perf_event *event = cpuc->event[i];
|
|
int idx = cpuc->current_idx[i];
|
|
struct hw_perf_event *hwc;
|
|
u64 val;
|
|
|
|
if (sparc_pmu->irq_bit &&
|
|
sparc_pmu->num_pcrs > 1)
|
|
pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
|
|
|
|
hwc = &event->hw;
|
|
val = sparc_perf_event_update(event, hwc, idx);
|
|
if (val & (1ULL << 31))
|
|
continue;
|
|
|
|
perf_sample_data_init(&data, 0, hwc->last_period);
|
|
if (!sparc_perf_event_set_period(event, hwc, idx))
|
|
continue;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
sparc_pmu_stop(event, 0);
|
|
}
|
|
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
static __read_mostly struct notifier_block perf_event_nmi_notifier = {
|
|
.notifier_call = perf_event_nmi_handler,
|
|
};
|
|
|
|
static bool __init supported_pmu(void)
|
|
{
|
|
if (!strcmp(sparc_pmu_type, "ultra3") ||
|
|
!strcmp(sparc_pmu_type, "ultra3+") ||
|
|
!strcmp(sparc_pmu_type, "ultra3i") ||
|
|
!strcmp(sparc_pmu_type, "ultra4+")) {
|
|
sparc_pmu = &ultra3_pmu;
|
|
return true;
|
|
}
|
|
if (!strcmp(sparc_pmu_type, "niagara")) {
|
|
sparc_pmu = &niagara1_pmu;
|
|
return true;
|
|
}
|
|
if (!strcmp(sparc_pmu_type, "niagara2") ||
|
|
!strcmp(sparc_pmu_type, "niagara3")) {
|
|
sparc_pmu = &niagara2_pmu;
|
|
return true;
|
|
}
|
|
if (!strcmp(sparc_pmu_type, "niagara4")) {
|
|
sparc_pmu = &niagara4_pmu;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int __init init_hw_perf_events(void)
|
|
{
|
|
pr_info("Performance events: ");
|
|
|
|
if (!supported_pmu()) {
|
|
pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
|
|
return 0;
|
|
}
|
|
|
|
pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
|
|
|
|
perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
|
|
register_die_notifier(&perf_event_nmi_notifier);
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(init_hw_perf_events);
|
|
|
|
void perf_callchain_kernel(struct perf_callchain_entry *entry,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long ksp, fp;
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
int graph = 0;
|
|
#endif
|
|
|
|
stack_trace_flush();
|
|
|
|
perf_callchain_store(entry, regs->tpc);
|
|
|
|
ksp = regs->u_regs[UREG_I6];
|
|
fp = ksp + STACK_BIAS;
|
|
do {
|
|
struct sparc_stackf *sf;
|
|
struct pt_regs *regs;
|
|
unsigned long pc;
|
|
|
|
if (!kstack_valid(current_thread_info(), fp))
|
|
break;
|
|
|
|
sf = (struct sparc_stackf *) fp;
|
|
regs = (struct pt_regs *) (sf + 1);
|
|
|
|
if (kstack_is_trap_frame(current_thread_info(), regs)) {
|
|
if (user_mode(regs))
|
|
break;
|
|
pc = regs->tpc;
|
|
fp = regs->u_regs[UREG_I6] + STACK_BIAS;
|
|
} else {
|
|
pc = sf->callers_pc;
|
|
fp = (unsigned long)sf->fp + STACK_BIAS;
|
|
}
|
|
perf_callchain_store(entry, pc);
|
|
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
|
if ((pc + 8UL) == (unsigned long) &return_to_handler) {
|
|
int index = current->curr_ret_stack;
|
|
if (current->ret_stack && index >= graph) {
|
|
pc = current->ret_stack[index - graph].ret;
|
|
perf_callchain_store(entry, pc);
|
|
graph++;
|
|
}
|
|
}
|
|
#endif
|
|
} while (entry->nr < PERF_MAX_STACK_DEPTH);
|
|
}
|
|
|
|
static void perf_callchain_user_64(struct perf_callchain_entry *entry,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long ufp;
|
|
|
|
ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
|
|
do {
|
|
struct sparc_stackf *usf, sf;
|
|
unsigned long pc;
|
|
|
|
usf = (struct sparc_stackf *) ufp;
|
|
if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
|
|
break;
|
|
|
|
pc = sf.callers_pc;
|
|
ufp = (unsigned long)sf.fp + STACK_BIAS;
|
|
perf_callchain_store(entry, pc);
|
|
} while (entry->nr < PERF_MAX_STACK_DEPTH);
|
|
}
|
|
|
|
static void perf_callchain_user_32(struct perf_callchain_entry *entry,
|
|
struct pt_regs *regs)
|
|
{
|
|
unsigned long ufp;
|
|
|
|
ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
|
|
do {
|
|
unsigned long pc;
|
|
|
|
if (thread32_stack_is_64bit(ufp)) {
|
|
struct sparc_stackf *usf, sf;
|
|
|
|
ufp += STACK_BIAS;
|
|
usf = (struct sparc_stackf *) ufp;
|
|
if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
|
|
break;
|
|
pc = sf.callers_pc & 0xffffffff;
|
|
ufp = ((unsigned long) sf.fp) & 0xffffffff;
|
|
} else {
|
|
struct sparc_stackf32 *usf, sf;
|
|
usf = (struct sparc_stackf32 *) ufp;
|
|
if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
|
|
break;
|
|
pc = sf.callers_pc;
|
|
ufp = (unsigned long)sf.fp;
|
|
}
|
|
perf_callchain_store(entry, pc);
|
|
} while (entry->nr < PERF_MAX_STACK_DEPTH);
|
|
}
|
|
|
|
void
|
|
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
|
|
{
|
|
perf_callchain_store(entry, regs->tpc);
|
|
|
|
if (!current->mm)
|
|
return;
|
|
|
|
flushw_user();
|
|
if (test_thread_flag(TIF_32BIT))
|
|
perf_callchain_user_32(entry, regs);
|
|
else
|
|
perf_callchain_user_64(entry, regs);
|
|
}
|