mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-22 09:22:37 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
251 lines
6.4 KiB
C
251 lines
6.4 KiB
C
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Adapted from 'alpha' version by Gary Thomas
|
|
* Modified by Cort Dougan (cort@cs.nmt.edu)
|
|
* Modified for MBX using prep/chrp/pmac functions by Dan (dmalek@jlc.net)
|
|
* Further modified for generic 8xx by Dan.
|
|
*/
|
|
|
|
/*
|
|
* bootup setup stuff..
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/time.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/fsl_devices.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/mpc8xx.h>
|
|
#include <asm/8xx_immap.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/fs_pd.h>
|
|
#include <mm/mmu_decl.h>
|
|
|
|
#include <sysdev/mpc8xx_pic.h>
|
|
|
|
#include "mpc8xx.h"
|
|
|
|
struct mpc8xx_pcmcia_ops m8xx_pcmcia_ops;
|
|
|
|
extern int cpm_pic_init(void);
|
|
extern int cpm_get_irq(void);
|
|
|
|
/* A place holder for time base interrupts, if they are ever enabled. */
|
|
static irqreturn_t timebase_interrupt(int irq, void *dev)
|
|
{
|
|
printk ("timebase_interrupt()\n");
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct irqaction tbint_irqaction = {
|
|
.handler = timebase_interrupt,
|
|
.name = "tbint",
|
|
};
|
|
|
|
/* per-board overridable init_internal_rtc() function. */
|
|
void __init __attribute__ ((weak))
|
|
init_internal_rtc(void)
|
|
{
|
|
sit8xx_t __iomem *sys_tmr = immr_map(im_sit);
|
|
|
|
/* Disable the RTC one second and alarm interrupts. */
|
|
clrbits16(&sys_tmr->sit_rtcsc, (RTCSC_SIE | RTCSC_ALE));
|
|
|
|
/* Enable the RTC */
|
|
setbits16(&sys_tmr->sit_rtcsc, (RTCSC_RTF | RTCSC_RTE));
|
|
immr_unmap(sys_tmr);
|
|
}
|
|
|
|
static int __init get_freq(char *name, unsigned long *val)
|
|
{
|
|
struct device_node *cpu;
|
|
const unsigned int *fp;
|
|
int found = 0;
|
|
|
|
/* The cpu node should have timebase and clock frequency properties */
|
|
cpu = of_find_node_by_type(NULL, "cpu");
|
|
|
|
if (cpu) {
|
|
fp = of_get_property(cpu, name, NULL);
|
|
if (fp) {
|
|
found = 1;
|
|
*val = *fp;
|
|
}
|
|
|
|
of_node_put(cpu);
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/* The decrementer counts at the system (internal) clock frequency divided by
|
|
* sixteen, or external oscillator divided by four. We force the processor
|
|
* to use system clock divided by sixteen.
|
|
*/
|
|
void __init mpc8xx_calibrate_decr(void)
|
|
{
|
|
struct device_node *cpu;
|
|
cark8xx_t __iomem *clk_r1;
|
|
car8xx_t __iomem *clk_r2;
|
|
sitk8xx_t __iomem *sys_tmr1;
|
|
sit8xx_t __iomem *sys_tmr2;
|
|
int irq, virq;
|
|
|
|
clk_r1 = immr_map(im_clkrstk);
|
|
|
|
/* Unlock the SCCR. */
|
|
out_be32(&clk_r1->cark_sccrk, ~KAPWR_KEY);
|
|
out_be32(&clk_r1->cark_sccrk, KAPWR_KEY);
|
|
immr_unmap(clk_r1);
|
|
|
|
/* Force all 8xx processors to use divide by 16 processor clock. */
|
|
clk_r2 = immr_map(im_clkrst);
|
|
setbits32(&clk_r2->car_sccr, 0x02000000);
|
|
immr_unmap(clk_r2);
|
|
|
|
/* Processor frequency is MHz.
|
|
*/
|
|
ppc_proc_freq = 50000000;
|
|
if (!get_freq("clock-frequency", &ppc_proc_freq))
|
|
printk(KERN_ERR "WARNING: Estimating processor frequency "
|
|
"(not found)\n");
|
|
|
|
ppc_tb_freq = ppc_proc_freq / 16;
|
|
printk("Decrementer Frequency = 0x%lx\n", ppc_tb_freq);
|
|
|
|
/* Perform some more timer/timebase initialization. This used
|
|
* to be done elsewhere, but other changes caused it to get
|
|
* called more than once....that is a bad thing.
|
|
*
|
|
* First, unlock all of the registers we are going to modify.
|
|
* To protect them from corruption during power down, registers
|
|
* that are maintained by keep alive power are "locked". To
|
|
* modify these registers we have to write the key value to
|
|
* the key location associated with the register.
|
|
* Some boards power up with these unlocked, while others
|
|
* are locked. Writing anything (including the unlock code?)
|
|
* to the unlocked registers will lock them again. So, here
|
|
* we guarantee the registers are locked, then we unlock them
|
|
* for our use.
|
|
*/
|
|
sys_tmr1 = immr_map(im_sitk);
|
|
out_be32(&sys_tmr1->sitk_tbscrk, ~KAPWR_KEY);
|
|
out_be32(&sys_tmr1->sitk_rtcsck, ~KAPWR_KEY);
|
|
out_be32(&sys_tmr1->sitk_tbk, ~KAPWR_KEY);
|
|
out_be32(&sys_tmr1->sitk_tbscrk, KAPWR_KEY);
|
|
out_be32(&sys_tmr1->sitk_rtcsck, KAPWR_KEY);
|
|
out_be32(&sys_tmr1->sitk_tbk, KAPWR_KEY);
|
|
immr_unmap(sys_tmr1);
|
|
|
|
init_internal_rtc();
|
|
|
|
/* Enabling the decrementer also enables the timebase interrupts
|
|
* (or from the other point of view, to get decrementer interrupts
|
|
* we have to enable the timebase). The decrementer interrupt
|
|
* is wired into the vector table, nothing to do here for that.
|
|
*/
|
|
cpu = of_find_node_by_type(NULL, "cpu");
|
|
virq= irq_of_parse_and_map(cpu, 0);
|
|
irq = irq_map[virq].hwirq;
|
|
|
|
sys_tmr2 = immr_map(im_sit);
|
|
out_be16(&sys_tmr2->sit_tbscr, ((1 << (7 - (irq/2))) << 8) |
|
|
(TBSCR_TBF | TBSCR_TBE));
|
|
immr_unmap(sys_tmr2);
|
|
|
|
if (setup_irq(virq, &tbint_irqaction))
|
|
panic("Could not allocate timer IRQ!");
|
|
}
|
|
|
|
/* The RTC on the MPC8xx is an internal register.
|
|
* We want to protect this during power down, so we need to unlock,
|
|
* modify, and re-lock.
|
|
*/
|
|
|
|
int mpc8xx_set_rtc_time(struct rtc_time *tm)
|
|
{
|
|
sitk8xx_t __iomem *sys_tmr1;
|
|
sit8xx_t __iomem *sys_tmr2;
|
|
int time;
|
|
|
|
sys_tmr1 = immr_map(im_sitk);
|
|
sys_tmr2 = immr_map(im_sit);
|
|
time = mktime(tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday,
|
|
tm->tm_hour, tm->tm_min, tm->tm_sec);
|
|
|
|
out_be32(&sys_tmr1->sitk_rtck, KAPWR_KEY);
|
|
out_be32(&sys_tmr2->sit_rtc, time);
|
|
out_be32(&sys_tmr1->sitk_rtck, ~KAPWR_KEY);
|
|
|
|
immr_unmap(sys_tmr2);
|
|
immr_unmap(sys_tmr1);
|
|
return 0;
|
|
}
|
|
|
|
void mpc8xx_get_rtc_time(struct rtc_time *tm)
|
|
{
|
|
unsigned long data;
|
|
sit8xx_t __iomem *sys_tmr = immr_map(im_sit);
|
|
|
|
/* Get time from the RTC. */
|
|
data = in_be32(&sys_tmr->sit_rtc);
|
|
to_tm(data, tm);
|
|
tm->tm_year -= 1900;
|
|
tm->tm_mon -= 1;
|
|
immr_unmap(sys_tmr);
|
|
return;
|
|
}
|
|
|
|
void mpc8xx_restart(char *cmd)
|
|
{
|
|
car8xx_t __iomem *clk_r = immr_map(im_clkrst);
|
|
|
|
|
|
local_irq_disable();
|
|
|
|
setbits32(&clk_r->car_plprcr, 0x00000080);
|
|
/* Clear the ME bit in MSR to cause checkstop on machine check
|
|
*/
|
|
mtmsr(mfmsr() & ~0x1000);
|
|
|
|
in_8(&clk_r->res[0]);
|
|
panic("Restart failed\n");
|
|
}
|
|
|
|
static void cpm_cascade(unsigned int irq, struct irq_desc *desc)
|
|
{
|
|
int cascade_irq;
|
|
|
|
if ((cascade_irq = cpm_get_irq()) >= 0) {
|
|
struct irq_desc *cdesc = irq_to_desc(cascade_irq);
|
|
|
|
generic_handle_irq(cascade_irq);
|
|
cdesc->chip->eoi(cascade_irq);
|
|
}
|
|
desc->chip->eoi(irq);
|
|
}
|
|
|
|
/* Initialize the internal interrupt controllers. The number of
|
|
* interrupts supported can vary with the processor type, and the
|
|
* 82xx family can have up to 64.
|
|
* External interrupts can be either edge or level triggered, and
|
|
* need to be initialized by the appropriate driver.
|
|
*/
|
|
void __init mpc8xx_pics_init(void)
|
|
{
|
|
int irq;
|
|
|
|
if (mpc8xx_pic_init()) {
|
|
printk(KERN_ERR "Failed interrupt 8xx controller initialization\n");
|
|
return;
|
|
}
|
|
|
|
irq = cpm_pic_init();
|
|
if (irq != NO_IRQ)
|
|
set_irq_chained_handler(irq, cpm_cascade);
|
|
}
|