mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-21 17:41:25 +00:00
26879fb101
Now, we use ra_meta_pages to reads continuous physical blocks as much as possible to improve performance of following reads. However, ra_meta_pages uses a synchronous readahead approach by submitting bio with READ, as READ is with high priority, it can not be used in the case of preloading blocks, and it's not sure when these RAed pages will be used. This patch supports asynchronous readahead in ra_meta_pages by tagging bio with READA flag in order to allow preloading. Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
1190 lines
29 KiB
C
1190 lines
29 KiB
C
/*
|
|
* fs/f2fs/checkpoint.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *ino_entry_slab;
|
|
struct kmem_cache *inode_entry_slab;
|
|
|
|
/*
|
|
* We guarantee no failure on the returned page.
|
|
*/
|
|
struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
struct page *page = NULL;
|
|
repeat:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
f2fs_wait_on_page_writeback(page, META);
|
|
SetPageUptodate(page);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* We guarantee no failure on the returned page.
|
|
*/
|
|
static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
|
|
bool is_meta)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
struct page *page;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = META,
|
|
.rw = READ_SYNC | REQ_META | REQ_PRIO,
|
|
.blk_addr = index,
|
|
.encrypted_page = NULL,
|
|
};
|
|
|
|
if (unlikely(!is_meta))
|
|
fio.rw &= ~REQ_META;
|
|
repeat:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
if (PageUptodate(page))
|
|
goto out;
|
|
|
|
fio.page = page;
|
|
|
|
if (f2fs_submit_page_bio(&fio)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
|
|
/*
|
|
* if there is any IO error when accessing device, make our filesystem
|
|
* readonly and make sure do not write checkpoint with non-uptodate
|
|
* meta page.
|
|
*/
|
|
if (unlikely(!PageUptodate(page)))
|
|
f2fs_stop_checkpoint(sbi);
|
|
out:
|
|
return page;
|
|
}
|
|
|
|
struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
return __get_meta_page(sbi, index, true);
|
|
}
|
|
|
|
/* for POR only */
|
|
struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
return __get_meta_page(sbi, index, false);
|
|
}
|
|
|
|
bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
|
|
{
|
|
switch (type) {
|
|
case META_NAT:
|
|
break;
|
|
case META_SIT:
|
|
if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
|
|
return false;
|
|
break;
|
|
case META_SSA:
|
|
if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
|
|
blkaddr < SM_I(sbi)->ssa_blkaddr))
|
|
return false;
|
|
break;
|
|
case META_CP:
|
|
if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
|
|
blkaddr < __start_cp_addr(sbi)))
|
|
return false;
|
|
break;
|
|
case META_POR:
|
|
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
|
|
blkaddr < MAIN_BLKADDR(sbi)))
|
|
return false;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Readahead CP/NAT/SIT/SSA pages
|
|
*/
|
|
int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
|
|
int type, bool sync)
|
|
{
|
|
block_t prev_blk_addr = 0;
|
|
struct page *page;
|
|
block_t blkno = start;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = META,
|
|
.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
|
|
.encrypted_page = NULL,
|
|
};
|
|
|
|
if (unlikely(type == META_POR))
|
|
fio.rw &= ~REQ_META;
|
|
|
|
for (; nrpages-- > 0; blkno++) {
|
|
|
|
if (!is_valid_blkaddr(sbi, blkno, type))
|
|
goto out;
|
|
|
|
switch (type) {
|
|
case META_NAT:
|
|
if (unlikely(blkno >=
|
|
NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
|
|
blkno = 0;
|
|
/* get nat block addr */
|
|
fio.blk_addr = current_nat_addr(sbi,
|
|
blkno * NAT_ENTRY_PER_BLOCK);
|
|
break;
|
|
case META_SIT:
|
|
/* get sit block addr */
|
|
fio.blk_addr = current_sit_addr(sbi,
|
|
blkno * SIT_ENTRY_PER_BLOCK);
|
|
if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
|
|
goto out;
|
|
prev_blk_addr = fio.blk_addr;
|
|
break;
|
|
case META_SSA:
|
|
case META_CP:
|
|
case META_POR:
|
|
fio.blk_addr = blkno;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
|
|
if (!page)
|
|
continue;
|
|
if (PageUptodate(page)) {
|
|
f2fs_put_page(page, 1);
|
|
continue;
|
|
}
|
|
|
|
fio.page = page;
|
|
f2fs_submit_page_mbio(&fio);
|
|
f2fs_put_page(page, 0);
|
|
}
|
|
out:
|
|
f2fs_submit_merged_bio(sbi, META, READ);
|
|
return blkno - start;
|
|
}
|
|
|
|
void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct page *page;
|
|
bool readahead = false;
|
|
|
|
page = find_get_page(META_MAPPING(sbi), index);
|
|
if (!page || (page && !PageUptodate(page)))
|
|
readahead = true;
|
|
f2fs_put_page(page, 0);
|
|
|
|
if (readahead)
|
|
ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
|
|
}
|
|
|
|
static int f2fs_write_meta_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
|
|
trace_f2fs_writepage(page, META);
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
|
|
goto redirty_out;
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto redirty_out;
|
|
|
|
f2fs_wait_on_page_writeback(page, META);
|
|
write_meta_page(sbi, page);
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
unlock_page(page);
|
|
|
|
if (wbc->for_reclaim)
|
|
f2fs_submit_merged_bio(sbi, META, WRITE);
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
static int f2fs_write_meta_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
|
|
long diff, written;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, META);
|
|
|
|
/* collect a number of dirty meta pages and write together */
|
|
if (wbc->for_kupdate ||
|
|
get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
|
|
goto skip_write;
|
|
|
|
/* if mounting is failed, skip writing node pages */
|
|
mutex_lock(&sbi->cp_mutex);
|
|
diff = nr_pages_to_write(sbi, META, wbc);
|
|
written = sync_meta_pages(sbi, META, wbc->nr_to_write);
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
|
|
return 0;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
|
|
return 0;
|
|
}
|
|
|
|
long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
|
|
long nr_to_write)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX;
|
|
struct pagevec pvec;
|
|
long nwritten = 0;
|
|
struct writeback_control wbc = {
|
|
.for_reclaim = 0,
|
|
};
|
|
|
|
pagevec_init(&pvec, 0);
|
|
|
|
while (index <= end) {
|
|
int i, nr_pages;
|
|
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
|
|
PAGECACHE_TAG_DIRTY,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
|
|
if (unlikely(nr_pages == 0))
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
if (prev == LONG_MAX)
|
|
prev = page->index - 1;
|
|
if (nr_to_write != LONG_MAX && page->index != prev + 1) {
|
|
pagevec_release(&pvec);
|
|
goto stop;
|
|
}
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
if (mapping->a_ops->writepage(page, &wbc)) {
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
nwritten++;
|
|
prev = page->index;
|
|
if (unlikely(nwritten >= nr_to_write))
|
|
break;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
stop:
|
|
if (nwritten)
|
|
f2fs_submit_merged_bio(sbi, type, WRITE);
|
|
|
|
return nwritten;
|
|
}
|
|
|
|
static int f2fs_set_meta_page_dirty(struct page *page)
|
|
{
|
|
trace_f2fs_set_page_dirty(page, META);
|
|
|
|
SetPageUptodate(page);
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
|
|
SetPagePrivate(page);
|
|
f2fs_trace_pid(page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const struct address_space_operations f2fs_meta_aops = {
|
|
.writepage = f2fs_write_meta_page,
|
|
.writepages = f2fs_write_meta_pages,
|
|
.set_page_dirty = f2fs_set_meta_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
};
|
|
|
|
static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
struct inode_management *im = &sbi->im[type];
|
|
struct ino_entry *e, *tmp;
|
|
|
|
tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
|
|
retry:
|
|
radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
if (!e) {
|
|
e = tmp;
|
|
if (radix_tree_insert(&im->ino_root, ino, e)) {
|
|
spin_unlock(&im->ino_lock);
|
|
radix_tree_preload_end();
|
|
goto retry;
|
|
}
|
|
memset(e, 0, sizeof(struct ino_entry));
|
|
e->ino = ino;
|
|
|
|
list_add_tail(&e->list, &im->ino_list);
|
|
if (type != ORPHAN_INO)
|
|
im->ino_num++;
|
|
}
|
|
spin_unlock(&im->ino_lock);
|
|
radix_tree_preload_end();
|
|
|
|
if (e != tmp)
|
|
kmem_cache_free(ino_entry_slab, tmp);
|
|
}
|
|
|
|
static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
struct inode_management *im = &sbi->im[type];
|
|
struct ino_entry *e;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
if (e) {
|
|
list_del(&e->list);
|
|
radix_tree_delete(&im->ino_root, ino);
|
|
im->ino_num--;
|
|
spin_unlock(&im->ino_lock);
|
|
kmem_cache_free(ino_entry_slab, e);
|
|
return;
|
|
}
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
|
|
void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
/* add new dirty ino entry into list */
|
|
__add_ino_entry(sbi, ino, type);
|
|
}
|
|
|
|
void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
/* remove dirty ino entry from list */
|
|
__remove_ino_entry(sbi, ino, type);
|
|
}
|
|
|
|
/* mode should be APPEND_INO or UPDATE_INO */
|
|
bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
|
|
{
|
|
struct inode_management *im = &sbi->im[mode];
|
|
struct ino_entry *e;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
spin_unlock(&im->ino_lock);
|
|
return e ? true : false;
|
|
}
|
|
|
|
void release_dirty_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct ino_entry *e, *tmp;
|
|
int i;
|
|
|
|
for (i = APPEND_INO; i <= UPDATE_INO; i++) {
|
|
struct inode_management *im = &sbi->im[i];
|
|
|
|
spin_lock(&im->ino_lock);
|
|
list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
|
|
list_del(&e->list);
|
|
radix_tree_delete(&im->ino_root, e->ino);
|
|
kmem_cache_free(ino_entry_slab, e);
|
|
im->ino_num--;
|
|
}
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
}
|
|
|
|
int acquire_orphan_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
int err = 0;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
if (unlikely(im->ino_num >= sbi->max_orphans))
|
|
err = -ENOSPC;
|
|
else
|
|
im->ino_num++;
|
|
spin_unlock(&im->ino_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
void release_orphan_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
|
|
spin_lock(&im->ino_lock);
|
|
f2fs_bug_on(sbi, im->ino_num == 0);
|
|
im->ino_num--;
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
|
|
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
/* add new orphan ino entry into list */
|
|
__add_ino_entry(sbi, ino, ORPHAN_INO);
|
|
}
|
|
|
|
void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
/* remove orphan entry from orphan list */
|
|
__remove_ino_entry(sbi, ino, ORPHAN_INO);
|
|
}
|
|
|
|
static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct inode *inode;
|
|
|
|
inode = f2fs_iget(sbi->sb, ino);
|
|
if (IS_ERR(inode)) {
|
|
/*
|
|
* there should be a bug that we can't find the entry
|
|
* to orphan inode.
|
|
*/
|
|
f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
|
|
return PTR_ERR(inode);
|
|
}
|
|
|
|
clear_nlink(inode);
|
|
|
|
/* truncate all the data during iput */
|
|
iput(inode);
|
|
return 0;
|
|
}
|
|
|
|
int recover_orphan_inodes(struct f2fs_sb_info *sbi)
|
|
{
|
|
block_t start_blk, orphan_blocks, i, j;
|
|
int err;
|
|
|
|
if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
|
|
return 0;
|
|
|
|
start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
|
|
orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
|
|
|
|
ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
|
|
|
|
for (i = 0; i < orphan_blocks; i++) {
|
|
struct page *page = get_meta_page(sbi, start_blk + i);
|
|
struct f2fs_orphan_block *orphan_blk;
|
|
|
|
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
|
|
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
|
|
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
|
|
err = recover_orphan_inode(sbi, ino);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return err;
|
|
}
|
|
}
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
/* clear Orphan Flag */
|
|
clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
|
|
return 0;
|
|
}
|
|
|
|
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
|
|
{
|
|
struct list_head *head;
|
|
struct f2fs_orphan_block *orphan_blk = NULL;
|
|
unsigned int nentries = 0;
|
|
unsigned short index = 1;
|
|
unsigned short orphan_blocks;
|
|
struct page *page = NULL;
|
|
struct ino_entry *orphan = NULL;
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
|
|
orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
|
|
|
|
/*
|
|
* we don't need to do spin_lock(&im->ino_lock) here, since all the
|
|
* orphan inode operations are covered under f2fs_lock_op().
|
|
* And, spin_lock should be avoided due to page operations below.
|
|
*/
|
|
head = &im->ino_list;
|
|
|
|
/* loop for each orphan inode entry and write them in Jornal block */
|
|
list_for_each_entry(orphan, head, list) {
|
|
if (!page) {
|
|
page = grab_meta_page(sbi, start_blk++);
|
|
orphan_blk =
|
|
(struct f2fs_orphan_block *)page_address(page);
|
|
memset(orphan_blk, 0, sizeof(*orphan_blk));
|
|
}
|
|
|
|
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
|
|
|
|
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
|
|
/*
|
|
* an orphan block is full of 1020 entries,
|
|
* then we need to flush current orphan blocks
|
|
* and bring another one in memory
|
|
*/
|
|
orphan_blk->blk_addr = cpu_to_le16(index);
|
|
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
|
orphan_blk->entry_count = cpu_to_le32(nentries);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
index++;
|
|
nentries = 0;
|
|
page = NULL;
|
|
}
|
|
}
|
|
|
|
if (page) {
|
|
orphan_blk->blk_addr = cpu_to_le16(index);
|
|
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
|
orphan_blk->entry_count = cpu_to_le32(nentries);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
}
|
|
|
|
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
|
|
block_t cp_addr, unsigned long long *version)
|
|
{
|
|
struct page *cp_page_1, *cp_page_2 = NULL;
|
|
unsigned long blk_size = sbi->blocksize;
|
|
struct f2fs_checkpoint *cp_block;
|
|
unsigned long long cur_version = 0, pre_version = 0;
|
|
size_t crc_offset;
|
|
__u32 crc = 0;
|
|
|
|
/* Read the 1st cp block in this CP pack */
|
|
cp_page_1 = get_meta_page(sbi, cp_addr);
|
|
|
|
/* get the version number */
|
|
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
|
|
crc_offset = le32_to_cpu(cp_block->checksum_offset);
|
|
if (crc_offset >= blk_size)
|
|
goto invalid_cp1;
|
|
|
|
crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
|
|
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
|
|
goto invalid_cp1;
|
|
|
|
pre_version = cur_cp_version(cp_block);
|
|
|
|
/* Read the 2nd cp block in this CP pack */
|
|
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
|
|
cp_page_2 = get_meta_page(sbi, cp_addr);
|
|
|
|
cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
|
|
crc_offset = le32_to_cpu(cp_block->checksum_offset);
|
|
if (crc_offset >= blk_size)
|
|
goto invalid_cp2;
|
|
|
|
crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
|
|
if (!f2fs_crc_valid(crc, cp_block, crc_offset))
|
|
goto invalid_cp2;
|
|
|
|
cur_version = cur_cp_version(cp_block);
|
|
|
|
if (cur_version == pre_version) {
|
|
*version = cur_version;
|
|
f2fs_put_page(cp_page_2, 1);
|
|
return cp_page_1;
|
|
}
|
|
invalid_cp2:
|
|
f2fs_put_page(cp_page_2, 1);
|
|
invalid_cp1:
|
|
f2fs_put_page(cp_page_1, 1);
|
|
return NULL;
|
|
}
|
|
|
|
int get_valid_checkpoint(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *cp_block;
|
|
struct f2fs_super_block *fsb = sbi->raw_super;
|
|
struct page *cp1, *cp2, *cur_page;
|
|
unsigned long blk_size = sbi->blocksize;
|
|
unsigned long long cp1_version = 0, cp2_version = 0;
|
|
unsigned long long cp_start_blk_no;
|
|
unsigned int cp_blks = 1 + __cp_payload(sbi);
|
|
block_t cp_blk_no;
|
|
int i;
|
|
|
|
sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
|
|
if (!sbi->ckpt)
|
|
return -ENOMEM;
|
|
/*
|
|
* Finding out valid cp block involves read both
|
|
* sets( cp pack1 and cp pack 2)
|
|
*/
|
|
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
|
|
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
|
|
|
|
/* The second checkpoint pack should start at the next segment */
|
|
cp_start_blk_no += ((unsigned long long)1) <<
|
|
le32_to_cpu(fsb->log_blocks_per_seg);
|
|
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
|
|
|
|
if (cp1 && cp2) {
|
|
if (ver_after(cp2_version, cp1_version))
|
|
cur_page = cp2;
|
|
else
|
|
cur_page = cp1;
|
|
} else if (cp1) {
|
|
cur_page = cp1;
|
|
} else if (cp2) {
|
|
cur_page = cp2;
|
|
} else {
|
|
goto fail_no_cp;
|
|
}
|
|
|
|
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
|
|
memcpy(sbi->ckpt, cp_block, blk_size);
|
|
|
|
if (cp_blks <= 1)
|
|
goto done;
|
|
|
|
cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
|
|
if (cur_page == cp2)
|
|
cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
|
|
|
|
for (i = 1; i < cp_blks; i++) {
|
|
void *sit_bitmap_ptr;
|
|
unsigned char *ckpt = (unsigned char *)sbi->ckpt;
|
|
|
|
cur_page = get_meta_page(sbi, cp_blk_no + i);
|
|
sit_bitmap_ptr = page_address(cur_page);
|
|
memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
|
|
f2fs_put_page(cur_page, 1);
|
|
}
|
|
done:
|
|
f2fs_put_page(cp1, 1);
|
|
f2fs_put_page(cp2, 1);
|
|
return 0;
|
|
|
|
fail_no_cp:
|
|
kfree(sbi->ckpt);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
|
|
return -EEXIST;
|
|
|
|
set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
|
|
F2FS_I(inode)->dirty_dir = new;
|
|
list_add_tail(&new->list, &sbi->dir_inode_list);
|
|
stat_inc_dirty_dir(sbi);
|
|
return 0;
|
|
}
|
|
|
|
void update_dirty_page(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct inode_entry *new;
|
|
int ret = 0;
|
|
|
|
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
|
|
!S_ISLNK(inode->i_mode))
|
|
return;
|
|
|
|
if (!S_ISDIR(inode->i_mode)) {
|
|
inode_inc_dirty_pages(inode);
|
|
goto out;
|
|
}
|
|
|
|
new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
|
|
new->inode = inode;
|
|
INIT_LIST_HEAD(&new->list);
|
|
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
ret = __add_dirty_inode(inode, new);
|
|
inode_inc_dirty_pages(inode);
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
|
|
if (ret)
|
|
kmem_cache_free(inode_entry_slab, new);
|
|
out:
|
|
SetPagePrivate(page);
|
|
f2fs_trace_pid(page);
|
|
}
|
|
|
|
void add_dirty_dir_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct inode_entry *new =
|
|
f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
|
|
int ret = 0;
|
|
|
|
new->inode = inode;
|
|
INIT_LIST_HEAD(&new->list);
|
|
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
ret = __add_dirty_inode(inode, new);
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
|
|
if (ret)
|
|
kmem_cache_free(inode_entry_slab, new);
|
|
}
|
|
|
|
void remove_dirty_dir_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct inode_entry *entry;
|
|
|
|
if (!S_ISDIR(inode->i_mode))
|
|
return;
|
|
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
if (get_dirty_pages(inode) ||
|
|
!is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
return;
|
|
}
|
|
|
|
entry = F2FS_I(inode)->dirty_dir;
|
|
list_del(&entry->list);
|
|
F2FS_I(inode)->dirty_dir = NULL;
|
|
clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
|
|
stat_dec_dirty_dir(sbi);
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
kmem_cache_free(inode_entry_slab, entry);
|
|
|
|
/* Only from the recovery routine */
|
|
if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
|
|
clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
|
|
iput(inode);
|
|
}
|
|
}
|
|
|
|
void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct list_head *head;
|
|
struct inode_entry *entry;
|
|
struct inode *inode;
|
|
retry:
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return;
|
|
|
|
spin_lock(&sbi->dir_inode_lock);
|
|
|
|
head = &sbi->dir_inode_list;
|
|
if (list_empty(head)) {
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
return;
|
|
}
|
|
entry = list_entry(head->next, struct inode_entry, list);
|
|
inode = igrab(entry->inode);
|
|
spin_unlock(&sbi->dir_inode_lock);
|
|
if (inode) {
|
|
filemap_fdatawrite(inode->i_mapping);
|
|
iput(inode);
|
|
} else {
|
|
/*
|
|
* We should submit bio, since it exists several
|
|
* wribacking dentry pages in the freeing inode.
|
|
*/
|
|
f2fs_submit_merged_bio(sbi, DATA, WRITE);
|
|
cond_resched();
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* Freeze all the FS-operations for checkpoint.
|
|
*/
|
|
static int block_operations(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = LONG_MAX,
|
|
.for_reclaim = 0,
|
|
};
|
|
struct blk_plug plug;
|
|
int err = 0;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
retry_flush_dents:
|
|
f2fs_lock_all(sbi);
|
|
/* write all the dirty dentry pages */
|
|
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
|
|
f2fs_unlock_all(sbi);
|
|
sync_dirty_dir_inodes(sbi);
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
goto retry_flush_dents;
|
|
}
|
|
|
|
/*
|
|
* POR: we should ensure that there are no dirty node pages
|
|
* until finishing nat/sit flush.
|
|
*/
|
|
retry_flush_nodes:
|
|
down_write(&sbi->node_write);
|
|
|
|
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
|
|
up_write(&sbi->node_write);
|
|
sync_node_pages(sbi, 0, &wbc);
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
f2fs_unlock_all(sbi);
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
goto retry_flush_nodes;
|
|
}
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
return err;
|
|
}
|
|
|
|
static void unblock_operations(struct f2fs_sb_info *sbi)
|
|
{
|
|
up_write(&sbi->node_write);
|
|
f2fs_unlock_all(sbi);
|
|
}
|
|
|
|
static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
for (;;) {
|
|
prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
|
|
|
|
if (!get_pages(sbi, F2FS_WRITEBACK))
|
|
break;
|
|
|
|
io_schedule();
|
|
}
|
|
finish_wait(&sbi->cp_wait, &wait);
|
|
}
|
|
|
|
static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
|
|
nid_t last_nid = nm_i->next_scan_nid;
|
|
block_t start_blk;
|
|
unsigned int data_sum_blocks, orphan_blocks;
|
|
__u32 crc32 = 0;
|
|
int i;
|
|
int cp_payload_blks = __cp_payload(sbi);
|
|
block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
|
|
bool invalidate = false;
|
|
|
|
/*
|
|
* This avoids to conduct wrong roll-forward operations and uses
|
|
* metapages, so should be called prior to sync_meta_pages below.
|
|
*/
|
|
if (discard_next_dnode(sbi, discard_blk))
|
|
invalidate = true;
|
|
|
|
/* Flush all the NAT/SIT pages */
|
|
while (get_pages(sbi, F2FS_DIRTY_META)) {
|
|
sync_meta_pages(sbi, META, LONG_MAX);
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return;
|
|
}
|
|
|
|
next_free_nid(sbi, &last_nid);
|
|
|
|
/*
|
|
* modify checkpoint
|
|
* version number is already updated
|
|
*/
|
|
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
|
|
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
|
|
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
|
|
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
|
|
ckpt->cur_node_segno[i] =
|
|
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
|
|
ckpt->cur_node_blkoff[i] =
|
|
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
|
|
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
|
|
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
|
|
}
|
|
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
|
|
ckpt->cur_data_segno[i] =
|
|
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
|
|
ckpt->cur_data_blkoff[i] =
|
|
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
|
|
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
|
|
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
|
|
}
|
|
|
|
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
|
|
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
|
|
ckpt->next_free_nid = cpu_to_le32(last_nid);
|
|
|
|
/* 2 cp + n data seg summary + orphan inode blocks */
|
|
data_sum_blocks = npages_for_summary_flush(sbi, false);
|
|
if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
|
|
set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
|
else
|
|
clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
|
|
|
orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
|
|
ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
|
|
orphan_blocks);
|
|
|
|
if (__remain_node_summaries(cpc->reason))
|
|
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
|
|
cp_payload_blks + data_sum_blocks +
|
|
orphan_blocks + NR_CURSEG_NODE_TYPE);
|
|
else
|
|
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
|
|
cp_payload_blks + data_sum_blocks +
|
|
orphan_blocks);
|
|
|
|
if (cpc->reason == CP_UMOUNT)
|
|
set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
|
else
|
|
clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
|
|
|
if (cpc->reason == CP_FASTBOOT)
|
|
set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
|
|
else
|
|
clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
|
|
|
|
if (orphan_num)
|
|
set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
|
else
|
|
clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
|
|
set_ckpt_flags(ckpt, CP_FSCK_FLAG);
|
|
|
|
/* update SIT/NAT bitmap */
|
|
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
|
|
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
|
|
|
|
crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
|
|
*((__le32 *)((unsigned char *)ckpt +
|
|
le32_to_cpu(ckpt->checksum_offset)))
|
|
= cpu_to_le32(crc32);
|
|
|
|
start_blk = __start_cp_addr(sbi);
|
|
|
|
/* need to wait for end_io results */
|
|
wait_on_all_pages_writeback(sbi);
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return;
|
|
|
|
/* write out checkpoint buffer at block 0 */
|
|
update_meta_page(sbi, ckpt, start_blk++);
|
|
|
|
for (i = 1; i < 1 + cp_payload_blks; i++)
|
|
update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
|
|
start_blk++);
|
|
|
|
if (orphan_num) {
|
|
write_orphan_inodes(sbi, start_blk);
|
|
start_blk += orphan_blocks;
|
|
}
|
|
|
|
write_data_summaries(sbi, start_blk);
|
|
start_blk += data_sum_blocks;
|
|
if (__remain_node_summaries(cpc->reason)) {
|
|
write_node_summaries(sbi, start_blk);
|
|
start_blk += NR_CURSEG_NODE_TYPE;
|
|
}
|
|
|
|
/* writeout checkpoint block */
|
|
update_meta_page(sbi, ckpt, start_blk);
|
|
|
|
/* wait for previous submitted node/meta pages writeback */
|
|
wait_on_all_pages_writeback(sbi);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return;
|
|
|
|
filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
|
|
filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
|
|
|
|
/* update user_block_counts */
|
|
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
|
sbi->alloc_valid_block_count = 0;
|
|
|
|
/* Here, we only have one bio having CP pack */
|
|
sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
|
|
|
|
/* wait for previous submitted meta pages writeback */
|
|
wait_on_all_pages_writeback(sbi);
|
|
|
|
/*
|
|
* invalidate meta page which is used temporarily for zeroing out
|
|
* block at the end of warm node chain.
|
|
*/
|
|
if (invalidate)
|
|
invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
|
|
discard_blk);
|
|
|
|
release_dirty_inode(sbi);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return;
|
|
|
|
clear_prefree_segments(sbi, cpc);
|
|
clear_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
}
|
|
|
|
/*
|
|
* We guarantee that this checkpoint procedure will not fail.
|
|
*/
|
|
void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
unsigned long long ckpt_ver;
|
|
|
|
mutex_lock(&sbi->cp_mutex);
|
|
|
|
if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
|
|
(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
|
|
(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
|
|
goto out;
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto out;
|
|
if (f2fs_readonly(sbi->sb))
|
|
goto out;
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
|
|
|
|
if (block_operations(sbi))
|
|
goto out;
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
|
|
|
|
f2fs_submit_merged_bio(sbi, DATA, WRITE);
|
|
f2fs_submit_merged_bio(sbi, NODE, WRITE);
|
|
f2fs_submit_merged_bio(sbi, META, WRITE);
|
|
|
|
/*
|
|
* update checkpoint pack index
|
|
* Increase the version number so that
|
|
* SIT entries and seg summaries are written at correct place
|
|
*/
|
|
ckpt_ver = cur_cp_version(ckpt);
|
|
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
|
|
|
|
/* write cached NAT/SIT entries to NAT/SIT area */
|
|
flush_nat_entries(sbi);
|
|
flush_sit_entries(sbi, cpc);
|
|
|
|
/* unlock all the fs_lock[] in do_checkpoint() */
|
|
do_checkpoint(sbi, cpc);
|
|
|
|
unblock_operations(sbi);
|
|
stat_inc_cp_count(sbi->stat_info);
|
|
|
|
if (cpc->reason == CP_RECOVERY)
|
|
f2fs_msg(sbi->sb, KERN_NOTICE,
|
|
"checkpoint: version = %llx", ckpt_ver);
|
|
|
|
/* do checkpoint periodically */
|
|
sbi->cp_expires = round_jiffies_up(jiffies + HZ * sbi->cp_interval);
|
|
out:
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
|
|
}
|
|
|
|
void init_ino_entry_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_INO_ENTRY; i++) {
|
|
struct inode_management *im = &sbi->im[i];
|
|
|
|
INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
|
|
spin_lock_init(&im->ino_lock);
|
|
INIT_LIST_HEAD(&im->ino_list);
|
|
im->ino_num = 0;
|
|
}
|
|
|
|
sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
|
|
NR_CURSEG_TYPE - __cp_payload(sbi)) *
|
|
F2FS_ORPHANS_PER_BLOCK;
|
|
}
|
|
|
|
int __init create_checkpoint_caches(void)
|
|
{
|
|
ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
|
|
sizeof(struct ino_entry));
|
|
if (!ino_entry_slab)
|
|
return -ENOMEM;
|
|
inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
|
|
sizeof(struct inode_entry));
|
|
if (!inode_entry_slab) {
|
|
kmem_cache_destroy(ino_entry_slab);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void destroy_checkpoint_caches(void)
|
|
{
|
|
kmem_cache_destroy(ino_entry_slab);
|
|
kmem_cache_destroy(inode_entry_slab);
|
|
}
|