mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-19 16:17:40 +00:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1034 lines
24 KiB
C
1034 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include "audit.h"
|
|
#include <linux/fsnotify_backend.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/slab.h>
|
|
|
|
struct audit_tree;
|
|
struct audit_chunk;
|
|
|
|
struct audit_tree {
|
|
refcount_t count;
|
|
int goner;
|
|
struct audit_chunk *root;
|
|
struct list_head chunks;
|
|
struct list_head rules;
|
|
struct list_head list;
|
|
struct list_head same_root;
|
|
struct rcu_head head;
|
|
char pathname[];
|
|
};
|
|
|
|
struct audit_chunk {
|
|
struct list_head hash;
|
|
struct fsnotify_mark mark;
|
|
struct list_head trees; /* with root here */
|
|
int dead;
|
|
int count;
|
|
atomic_long_t refs;
|
|
struct rcu_head head;
|
|
struct node {
|
|
struct list_head list;
|
|
struct audit_tree *owner;
|
|
unsigned index; /* index; upper bit indicates 'will prune' */
|
|
} owners[];
|
|
};
|
|
|
|
static LIST_HEAD(tree_list);
|
|
static LIST_HEAD(prune_list);
|
|
static struct task_struct *prune_thread;
|
|
|
|
/*
|
|
* One struct chunk is attached to each inode of interest.
|
|
* We replace struct chunk on tagging/untagging.
|
|
* Rules have pointer to struct audit_tree.
|
|
* Rules have struct list_head rlist forming a list of rules over
|
|
* the same tree.
|
|
* References to struct chunk are collected at audit_inode{,_child}()
|
|
* time and used in AUDIT_TREE rule matching.
|
|
* These references are dropped at the same time we are calling
|
|
* audit_free_names(), etc.
|
|
*
|
|
* Cyclic lists galore:
|
|
* tree.chunks anchors chunk.owners[].list hash_lock
|
|
* tree.rules anchors rule.rlist audit_filter_mutex
|
|
* chunk.trees anchors tree.same_root hash_lock
|
|
* chunk.hash is a hash with middle bits of watch.inode as
|
|
* a hash function. RCU, hash_lock
|
|
*
|
|
* tree is refcounted; one reference for "some rules on rules_list refer to
|
|
* it", one for each chunk with pointer to it.
|
|
*
|
|
* chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
|
|
* of watch contributes 1 to .refs).
|
|
*
|
|
* node.index allows to get from node.list to containing chunk.
|
|
* MSB of that sucker is stolen to mark taggings that we might have to
|
|
* revert - several operations have very unpleasant cleanup logics and
|
|
* that makes a difference. Some.
|
|
*/
|
|
|
|
static struct fsnotify_group *audit_tree_group;
|
|
|
|
static struct audit_tree *alloc_tree(const char *s)
|
|
{
|
|
struct audit_tree *tree;
|
|
|
|
tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
|
|
if (tree) {
|
|
refcount_set(&tree->count, 1);
|
|
tree->goner = 0;
|
|
INIT_LIST_HEAD(&tree->chunks);
|
|
INIT_LIST_HEAD(&tree->rules);
|
|
INIT_LIST_HEAD(&tree->list);
|
|
INIT_LIST_HEAD(&tree->same_root);
|
|
tree->root = NULL;
|
|
strcpy(tree->pathname, s);
|
|
}
|
|
return tree;
|
|
}
|
|
|
|
static inline void get_tree(struct audit_tree *tree)
|
|
{
|
|
refcount_inc(&tree->count);
|
|
}
|
|
|
|
static inline void put_tree(struct audit_tree *tree)
|
|
{
|
|
if (refcount_dec_and_test(&tree->count))
|
|
kfree_rcu(tree, head);
|
|
}
|
|
|
|
/* to avoid bringing the entire thing in audit.h */
|
|
const char *audit_tree_path(struct audit_tree *tree)
|
|
{
|
|
return tree->pathname;
|
|
}
|
|
|
|
static void free_chunk(struct audit_chunk *chunk)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < chunk->count; i++) {
|
|
if (chunk->owners[i].owner)
|
|
put_tree(chunk->owners[i].owner);
|
|
}
|
|
kfree(chunk);
|
|
}
|
|
|
|
void audit_put_chunk(struct audit_chunk *chunk)
|
|
{
|
|
if (atomic_long_dec_and_test(&chunk->refs))
|
|
free_chunk(chunk);
|
|
}
|
|
|
|
static void __put_chunk(struct rcu_head *rcu)
|
|
{
|
|
struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
|
|
audit_put_chunk(chunk);
|
|
}
|
|
|
|
static void audit_tree_destroy_watch(struct fsnotify_mark *entry)
|
|
{
|
|
struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
|
|
call_rcu(&chunk->head, __put_chunk);
|
|
}
|
|
|
|
static struct audit_chunk *alloc_chunk(int count)
|
|
{
|
|
struct audit_chunk *chunk;
|
|
size_t size;
|
|
int i;
|
|
|
|
size = offsetof(struct audit_chunk, owners) + count * sizeof(struct node);
|
|
chunk = kzalloc(size, GFP_KERNEL);
|
|
if (!chunk)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&chunk->hash);
|
|
INIT_LIST_HEAD(&chunk->trees);
|
|
chunk->count = count;
|
|
atomic_long_set(&chunk->refs, 1);
|
|
for (i = 0; i < count; i++) {
|
|
INIT_LIST_HEAD(&chunk->owners[i].list);
|
|
chunk->owners[i].index = i;
|
|
}
|
|
fsnotify_init_mark(&chunk->mark, audit_tree_group);
|
|
chunk->mark.mask = FS_IN_IGNORED;
|
|
return chunk;
|
|
}
|
|
|
|
enum {HASH_SIZE = 128};
|
|
static struct list_head chunk_hash_heads[HASH_SIZE];
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
|
|
|
|
/* Function to return search key in our hash from inode. */
|
|
static unsigned long inode_to_key(const struct inode *inode)
|
|
{
|
|
return (unsigned long)inode;
|
|
}
|
|
|
|
/*
|
|
* Function to return search key in our hash from chunk. Key 0 is special and
|
|
* should never be present in the hash.
|
|
*/
|
|
static unsigned long chunk_to_key(struct audit_chunk *chunk)
|
|
{
|
|
/*
|
|
* We have a reference to the mark so it should be attached to a
|
|
* connector.
|
|
*/
|
|
if (WARN_ON_ONCE(!chunk->mark.connector))
|
|
return 0;
|
|
return (unsigned long)chunk->mark.connector->inode;
|
|
}
|
|
|
|
static inline struct list_head *chunk_hash(unsigned long key)
|
|
{
|
|
unsigned long n = key / L1_CACHE_BYTES;
|
|
return chunk_hash_heads + n % HASH_SIZE;
|
|
}
|
|
|
|
/* hash_lock & entry->lock is held by caller */
|
|
static void insert_hash(struct audit_chunk *chunk)
|
|
{
|
|
unsigned long key = chunk_to_key(chunk);
|
|
struct list_head *list;
|
|
|
|
if (!(chunk->mark.flags & FSNOTIFY_MARK_FLAG_ATTACHED))
|
|
return;
|
|
list = chunk_hash(key);
|
|
list_add_rcu(&chunk->hash, list);
|
|
}
|
|
|
|
/* called under rcu_read_lock */
|
|
struct audit_chunk *audit_tree_lookup(const struct inode *inode)
|
|
{
|
|
unsigned long key = inode_to_key(inode);
|
|
struct list_head *list = chunk_hash(key);
|
|
struct audit_chunk *p;
|
|
|
|
list_for_each_entry_rcu(p, list, hash) {
|
|
if (chunk_to_key(p) == key) {
|
|
atomic_long_inc(&p->refs);
|
|
return p;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
|
|
{
|
|
int n;
|
|
for (n = 0; n < chunk->count; n++)
|
|
if (chunk->owners[n].owner == tree)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* tagging and untagging inodes with trees */
|
|
|
|
static struct audit_chunk *find_chunk(struct node *p)
|
|
{
|
|
int index = p->index & ~(1U<<31);
|
|
p -= index;
|
|
return container_of(p, struct audit_chunk, owners[0]);
|
|
}
|
|
|
|
static void untag_chunk(struct node *p)
|
|
{
|
|
struct audit_chunk *chunk = find_chunk(p);
|
|
struct fsnotify_mark *entry = &chunk->mark;
|
|
struct audit_chunk *new = NULL;
|
|
struct audit_tree *owner;
|
|
int size = chunk->count - 1;
|
|
int i, j;
|
|
|
|
fsnotify_get_mark(entry);
|
|
|
|
spin_unlock(&hash_lock);
|
|
|
|
if (size)
|
|
new = alloc_chunk(size);
|
|
|
|
mutex_lock(&entry->group->mark_mutex);
|
|
spin_lock(&entry->lock);
|
|
/*
|
|
* mark_mutex protects mark from getting detached and thus also from
|
|
* mark->connector->inode getting NULL.
|
|
*/
|
|
if (chunk->dead || !(entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
|
|
spin_unlock(&entry->lock);
|
|
mutex_unlock(&entry->group->mark_mutex);
|
|
if (new)
|
|
fsnotify_put_mark(&new->mark);
|
|
goto out;
|
|
}
|
|
|
|
owner = p->owner;
|
|
|
|
if (!size) {
|
|
chunk->dead = 1;
|
|
spin_lock(&hash_lock);
|
|
list_del_init(&chunk->trees);
|
|
if (owner->root == chunk)
|
|
owner->root = NULL;
|
|
list_del_init(&p->list);
|
|
list_del_rcu(&chunk->hash);
|
|
spin_unlock(&hash_lock);
|
|
spin_unlock(&entry->lock);
|
|
mutex_unlock(&entry->group->mark_mutex);
|
|
fsnotify_destroy_mark(entry, audit_tree_group);
|
|
goto out;
|
|
}
|
|
|
|
if (!new)
|
|
goto Fallback;
|
|
|
|
if (fsnotify_add_mark_locked(&new->mark, entry->connector->inode,
|
|
NULL, 1)) {
|
|
fsnotify_put_mark(&new->mark);
|
|
goto Fallback;
|
|
}
|
|
|
|
chunk->dead = 1;
|
|
spin_lock(&hash_lock);
|
|
list_replace_init(&chunk->trees, &new->trees);
|
|
if (owner->root == chunk) {
|
|
list_del_init(&owner->same_root);
|
|
owner->root = NULL;
|
|
}
|
|
|
|
for (i = j = 0; j <= size; i++, j++) {
|
|
struct audit_tree *s;
|
|
if (&chunk->owners[j] == p) {
|
|
list_del_init(&p->list);
|
|
i--;
|
|
continue;
|
|
}
|
|
s = chunk->owners[j].owner;
|
|
new->owners[i].owner = s;
|
|
new->owners[i].index = chunk->owners[j].index - j + i;
|
|
if (!s) /* result of earlier fallback */
|
|
continue;
|
|
get_tree(s);
|
|
list_replace_init(&chunk->owners[j].list, &new->owners[i].list);
|
|
}
|
|
|
|
list_replace_rcu(&chunk->hash, &new->hash);
|
|
list_for_each_entry(owner, &new->trees, same_root)
|
|
owner->root = new;
|
|
spin_unlock(&hash_lock);
|
|
spin_unlock(&entry->lock);
|
|
mutex_unlock(&entry->group->mark_mutex);
|
|
fsnotify_destroy_mark(entry, audit_tree_group);
|
|
fsnotify_put_mark(&new->mark); /* drop initial reference */
|
|
goto out;
|
|
|
|
Fallback:
|
|
// do the best we can
|
|
spin_lock(&hash_lock);
|
|
if (owner->root == chunk) {
|
|
list_del_init(&owner->same_root);
|
|
owner->root = NULL;
|
|
}
|
|
list_del_init(&p->list);
|
|
p->owner = NULL;
|
|
put_tree(owner);
|
|
spin_unlock(&hash_lock);
|
|
spin_unlock(&entry->lock);
|
|
mutex_unlock(&entry->group->mark_mutex);
|
|
out:
|
|
fsnotify_put_mark(entry);
|
|
spin_lock(&hash_lock);
|
|
}
|
|
|
|
static int create_chunk(struct inode *inode, struct audit_tree *tree)
|
|
{
|
|
struct fsnotify_mark *entry;
|
|
struct audit_chunk *chunk = alloc_chunk(1);
|
|
if (!chunk)
|
|
return -ENOMEM;
|
|
|
|
entry = &chunk->mark;
|
|
if (fsnotify_add_mark(entry, inode, NULL, 0)) {
|
|
fsnotify_put_mark(entry);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
spin_lock(&entry->lock);
|
|
spin_lock(&hash_lock);
|
|
if (tree->goner) {
|
|
spin_unlock(&hash_lock);
|
|
chunk->dead = 1;
|
|
spin_unlock(&entry->lock);
|
|
fsnotify_destroy_mark(entry, audit_tree_group);
|
|
fsnotify_put_mark(entry);
|
|
return 0;
|
|
}
|
|
chunk->owners[0].index = (1U << 31);
|
|
chunk->owners[0].owner = tree;
|
|
get_tree(tree);
|
|
list_add(&chunk->owners[0].list, &tree->chunks);
|
|
if (!tree->root) {
|
|
tree->root = chunk;
|
|
list_add(&tree->same_root, &chunk->trees);
|
|
}
|
|
insert_hash(chunk);
|
|
spin_unlock(&hash_lock);
|
|
spin_unlock(&entry->lock);
|
|
fsnotify_put_mark(entry); /* drop initial reference */
|
|
return 0;
|
|
}
|
|
|
|
/* the first tagged inode becomes root of tree */
|
|
static int tag_chunk(struct inode *inode, struct audit_tree *tree)
|
|
{
|
|
struct fsnotify_mark *old_entry, *chunk_entry;
|
|
struct audit_tree *owner;
|
|
struct audit_chunk *chunk, *old;
|
|
struct node *p;
|
|
int n;
|
|
|
|
old_entry = fsnotify_find_mark(&inode->i_fsnotify_marks,
|
|
audit_tree_group);
|
|
if (!old_entry)
|
|
return create_chunk(inode, tree);
|
|
|
|
old = container_of(old_entry, struct audit_chunk, mark);
|
|
|
|
/* are we already there? */
|
|
spin_lock(&hash_lock);
|
|
for (n = 0; n < old->count; n++) {
|
|
if (old->owners[n].owner == tree) {
|
|
spin_unlock(&hash_lock);
|
|
fsnotify_put_mark(old_entry);
|
|
return 0;
|
|
}
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
|
|
chunk = alloc_chunk(old->count + 1);
|
|
if (!chunk) {
|
|
fsnotify_put_mark(old_entry);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
chunk_entry = &chunk->mark;
|
|
|
|
mutex_lock(&old_entry->group->mark_mutex);
|
|
spin_lock(&old_entry->lock);
|
|
/*
|
|
* mark_mutex protects mark from getting detached and thus also from
|
|
* mark->connector->inode getting NULL.
|
|
*/
|
|
if (!(old_entry->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
|
|
/* old_entry is being shot, lets just lie */
|
|
spin_unlock(&old_entry->lock);
|
|
mutex_unlock(&old_entry->group->mark_mutex);
|
|
fsnotify_put_mark(old_entry);
|
|
fsnotify_put_mark(&chunk->mark);
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (fsnotify_add_mark_locked(chunk_entry,
|
|
old_entry->connector->inode, NULL, 1)) {
|
|
spin_unlock(&old_entry->lock);
|
|
mutex_unlock(&old_entry->group->mark_mutex);
|
|
fsnotify_put_mark(chunk_entry);
|
|
fsnotify_put_mark(old_entry);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
|
|
spin_lock(&chunk_entry->lock);
|
|
spin_lock(&hash_lock);
|
|
|
|
/* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
|
|
if (tree->goner) {
|
|
spin_unlock(&hash_lock);
|
|
chunk->dead = 1;
|
|
spin_unlock(&chunk_entry->lock);
|
|
spin_unlock(&old_entry->lock);
|
|
mutex_unlock(&old_entry->group->mark_mutex);
|
|
|
|
fsnotify_destroy_mark(chunk_entry, audit_tree_group);
|
|
|
|
fsnotify_put_mark(chunk_entry);
|
|
fsnotify_put_mark(old_entry);
|
|
return 0;
|
|
}
|
|
list_replace_init(&old->trees, &chunk->trees);
|
|
for (n = 0, p = chunk->owners; n < old->count; n++, p++) {
|
|
struct audit_tree *s = old->owners[n].owner;
|
|
p->owner = s;
|
|
p->index = old->owners[n].index;
|
|
if (!s) /* result of fallback in untag */
|
|
continue;
|
|
get_tree(s);
|
|
list_replace_init(&old->owners[n].list, &p->list);
|
|
}
|
|
p->index = (chunk->count - 1) | (1U<<31);
|
|
p->owner = tree;
|
|
get_tree(tree);
|
|
list_add(&p->list, &tree->chunks);
|
|
list_replace_rcu(&old->hash, &chunk->hash);
|
|
list_for_each_entry(owner, &chunk->trees, same_root)
|
|
owner->root = chunk;
|
|
old->dead = 1;
|
|
if (!tree->root) {
|
|
tree->root = chunk;
|
|
list_add(&tree->same_root, &chunk->trees);
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
spin_unlock(&chunk_entry->lock);
|
|
spin_unlock(&old_entry->lock);
|
|
mutex_unlock(&old_entry->group->mark_mutex);
|
|
fsnotify_destroy_mark(old_entry, audit_tree_group);
|
|
fsnotify_put_mark(chunk_entry); /* drop initial reference */
|
|
fsnotify_put_mark(old_entry); /* pair to fsnotify_find mark_entry */
|
|
return 0;
|
|
}
|
|
|
|
static void audit_tree_log_remove_rule(struct audit_krule *rule)
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
|
|
if (unlikely(!ab))
|
|
return;
|
|
audit_log_format(ab, "op=remove_rule");
|
|
audit_log_format(ab, " dir=");
|
|
audit_log_untrustedstring(ab, rule->tree->pathname);
|
|
audit_log_key(ab, rule->filterkey);
|
|
audit_log_format(ab, " list=%d res=1", rule->listnr);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
static void kill_rules(struct audit_tree *tree)
|
|
{
|
|
struct audit_krule *rule, *next;
|
|
struct audit_entry *entry;
|
|
|
|
list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
|
|
entry = container_of(rule, struct audit_entry, rule);
|
|
|
|
list_del_init(&rule->rlist);
|
|
if (rule->tree) {
|
|
/* not a half-baked one */
|
|
audit_tree_log_remove_rule(rule);
|
|
if (entry->rule.exe)
|
|
audit_remove_mark(entry->rule.exe);
|
|
rule->tree = NULL;
|
|
list_del_rcu(&entry->list);
|
|
list_del(&entry->rule.list);
|
|
call_rcu(&entry->rcu, audit_free_rule_rcu);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* finish killing struct audit_tree
|
|
*/
|
|
static void prune_one(struct audit_tree *victim)
|
|
{
|
|
spin_lock(&hash_lock);
|
|
while (!list_empty(&victim->chunks)) {
|
|
struct node *p;
|
|
|
|
p = list_entry(victim->chunks.next, struct node, list);
|
|
|
|
untag_chunk(p);
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
put_tree(victim);
|
|
}
|
|
|
|
/* trim the uncommitted chunks from tree */
|
|
|
|
static void trim_marked(struct audit_tree *tree)
|
|
{
|
|
struct list_head *p, *q;
|
|
spin_lock(&hash_lock);
|
|
if (tree->goner) {
|
|
spin_unlock(&hash_lock);
|
|
return;
|
|
}
|
|
/* reorder */
|
|
for (p = tree->chunks.next; p != &tree->chunks; p = q) {
|
|
struct node *node = list_entry(p, struct node, list);
|
|
q = p->next;
|
|
if (node->index & (1U<<31)) {
|
|
list_del_init(p);
|
|
list_add(p, &tree->chunks);
|
|
}
|
|
}
|
|
|
|
while (!list_empty(&tree->chunks)) {
|
|
struct node *node;
|
|
|
|
node = list_entry(tree->chunks.next, struct node, list);
|
|
|
|
/* have we run out of marked? */
|
|
if (!(node->index & (1U<<31)))
|
|
break;
|
|
|
|
untag_chunk(node);
|
|
}
|
|
if (!tree->root && !tree->goner) {
|
|
tree->goner = 1;
|
|
spin_unlock(&hash_lock);
|
|
mutex_lock(&audit_filter_mutex);
|
|
kill_rules(tree);
|
|
list_del_init(&tree->list);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
prune_one(tree);
|
|
} else {
|
|
spin_unlock(&hash_lock);
|
|
}
|
|
}
|
|
|
|
static void audit_schedule_prune(void);
|
|
|
|
/* called with audit_filter_mutex */
|
|
int audit_remove_tree_rule(struct audit_krule *rule)
|
|
{
|
|
struct audit_tree *tree;
|
|
tree = rule->tree;
|
|
if (tree) {
|
|
spin_lock(&hash_lock);
|
|
list_del_init(&rule->rlist);
|
|
if (list_empty(&tree->rules) && !tree->goner) {
|
|
tree->root = NULL;
|
|
list_del_init(&tree->same_root);
|
|
tree->goner = 1;
|
|
list_move(&tree->list, &prune_list);
|
|
rule->tree = NULL;
|
|
spin_unlock(&hash_lock);
|
|
audit_schedule_prune();
|
|
return 1;
|
|
}
|
|
rule->tree = NULL;
|
|
spin_unlock(&hash_lock);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int compare_root(struct vfsmount *mnt, void *arg)
|
|
{
|
|
return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
|
|
(unsigned long)arg;
|
|
}
|
|
|
|
void audit_trim_trees(void)
|
|
{
|
|
struct list_head cursor;
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
list_add(&cursor, &tree_list);
|
|
while (cursor.next != &tree_list) {
|
|
struct audit_tree *tree;
|
|
struct path path;
|
|
struct vfsmount *root_mnt;
|
|
struct node *node;
|
|
int err;
|
|
|
|
tree = container_of(cursor.next, struct audit_tree, list);
|
|
get_tree(tree);
|
|
list_del(&cursor);
|
|
list_add(&cursor, &tree->list);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
err = kern_path(tree->pathname, 0, &path);
|
|
if (err)
|
|
goto skip_it;
|
|
|
|
root_mnt = collect_mounts(&path);
|
|
path_put(&path);
|
|
if (IS_ERR(root_mnt))
|
|
goto skip_it;
|
|
|
|
spin_lock(&hash_lock);
|
|
list_for_each_entry(node, &tree->chunks, list) {
|
|
struct audit_chunk *chunk = find_chunk(node);
|
|
/* this could be NULL if the watch is dying else where... */
|
|
node->index |= 1U<<31;
|
|
if (iterate_mounts(compare_root,
|
|
(void *)chunk_to_key(chunk),
|
|
root_mnt))
|
|
node->index &= ~(1U<<31);
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
trim_marked(tree);
|
|
drop_collected_mounts(root_mnt);
|
|
skip_it:
|
|
put_tree(tree);
|
|
mutex_lock(&audit_filter_mutex);
|
|
}
|
|
list_del(&cursor);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
}
|
|
|
|
int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
|
|
{
|
|
|
|
if (pathname[0] != '/' ||
|
|
rule->listnr != AUDIT_FILTER_EXIT ||
|
|
op != Audit_equal ||
|
|
rule->inode_f || rule->watch || rule->tree)
|
|
return -EINVAL;
|
|
rule->tree = alloc_tree(pathname);
|
|
if (!rule->tree)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void audit_put_tree(struct audit_tree *tree)
|
|
{
|
|
put_tree(tree);
|
|
}
|
|
|
|
static int tag_mount(struct vfsmount *mnt, void *arg)
|
|
{
|
|
return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
|
|
}
|
|
|
|
/*
|
|
* That gets run when evict_chunk() ends up needing to kill audit_tree.
|
|
* Runs from a separate thread.
|
|
*/
|
|
static int prune_tree_thread(void *unused)
|
|
{
|
|
for (;;) {
|
|
if (list_empty(&prune_list)) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
|
|
mutex_lock(&audit_cmd_mutex);
|
|
mutex_lock(&audit_filter_mutex);
|
|
|
|
while (!list_empty(&prune_list)) {
|
|
struct audit_tree *victim;
|
|
|
|
victim = list_entry(prune_list.next,
|
|
struct audit_tree, list);
|
|
list_del_init(&victim->list);
|
|
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
prune_one(victim);
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
}
|
|
|
|
mutex_unlock(&audit_filter_mutex);
|
|
mutex_unlock(&audit_cmd_mutex);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_launch_prune(void)
|
|
{
|
|
if (prune_thread)
|
|
return 0;
|
|
prune_thread = kthread_run(prune_tree_thread, NULL,
|
|
"audit_prune_tree");
|
|
if (IS_ERR(prune_thread)) {
|
|
pr_err("cannot start thread audit_prune_tree");
|
|
prune_thread = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* called with audit_filter_mutex */
|
|
int audit_add_tree_rule(struct audit_krule *rule)
|
|
{
|
|
struct audit_tree *seed = rule->tree, *tree;
|
|
struct path path;
|
|
struct vfsmount *mnt;
|
|
int err;
|
|
|
|
rule->tree = NULL;
|
|
list_for_each_entry(tree, &tree_list, list) {
|
|
if (!strcmp(seed->pathname, tree->pathname)) {
|
|
put_tree(seed);
|
|
rule->tree = tree;
|
|
list_add(&rule->rlist, &tree->rules);
|
|
return 0;
|
|
}
|
|
}
|
|
tree = seed;
|
|
list_add(&tree->list, &tree_list);
|
|
list_add(&rule->rlist, &tree->rules);
|
|
/* do not set rule->tree yet */
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
if (unlikely(!prune_thread)) {
|
|
err = audit_launch_prune();
|
|
if (err)
|
|
goto Err;
|
|
}
|
|
|
|
err = kern_path(tree->pathname, 0, &path);
|
|
if (err)
|
|
goto Err;
|
|
mnt = collect_mounts(&path);
|
|
path_put(&path);
|
|
if (IS_ERR(mnt)) {
|
|
err = PTR_ERR(mnt);
|
|
goto Err;
|
|
}
|
|
|
|
get_tree(tree);
|
|
err = iterate_mounts(tag_mount, tree, mnt);
|
|
drop_collected_mounts(mnt);
|
|
|
|
if (!err) {
|
|
struct node *node;
|
|
spin_lock(&hash_lock);
|
|
list_for_each_entry(node, &tree->chunks, list)
|
|
node->index &= ~(1U<<31);
|
|
spin_unlock(&hash_lock);
|
|
} else {
|
|
trim_marked(tree);
|
|
goto Err;
|
|
}
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
if (list_empty(&rule->rlist)) {
|
|
put_tree(tree);
|
|
return -ENOENT;
|
|
}
|
|
rule->tree = tree;
|
|
put_tree(tree);
|
|
|
|
return 0;
|
|
Err:
|
|
mutex_lock(&audit_filter_mutex);
|
|
list_del_init(&tree->list);
|
|
list_del_init(&tree->rules);
|
|
put_tree(tree);
|
|
return err;
|
|
}
|
|
|
|
int audit_tag_tree(char *old, char *new)
|
|
{
|
|
struct list_head cursor, barrier;
|
|
int failed = 0;
|
|
struct path path1, path2;
|
|
struct vfsmount *tagged;
|
|
int err;
|
|
|
|
err = kern_path(new, 0, &path2);
|
|
if (err)
|
|
return err;
|
|
tagged = collect_mounts(&path2);
|
|
path_put(&path2);
|
|
if (IS_ERR(tagged))
|
|
return PTR_ERR(tagged);
|
|
|
|
err = kern_path(old, 0, &path1);
|
|
if (err) {
|
|
drop_collected_mounts(tagged);
|
|
return err;
|
|
}
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
list_add(&barrier, &tree_list);
|
|
list_add(&cursor, &barrier);
|
|
|
|
while (cursor.next != &tree_list) {
|
|
struct audit_tree *tree;
|
|
int good_one = 0;
|
|
|
|
tree = container_of(cursor.next, struct audit_tree, list);
|
|
get_tree(tree);
|
|
list_del(&cursor);
|
|
list_add(&cursor, &tree->list);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
err = kern_path(tree->pathname, 0, &path2);
|
|
if (!err) {
|
|
good_one = path_is_under(&path1, &path2);
|
|
path_put(&path2);
|
|
}
|
|
|
|
if (!good_one) {
|
|
put_tree(tree);
|
|
mutex_lock(&audit_filter_mutex);
|
|
continue;
|
|
}
|
|
|
|
failed = iterate_mounts(tag_mount, tree, tagged);
|
|
if (failed) {
|
|
put_tree(tree);
|
|
mutex_lock(&audit_filter_mutex);
|
|
break;
|
|
}
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
spin_lock(&hash_lock);
|
|
if (!tree->goner) {
|
|
list_del(&tree->list);
|
|
list_add(&tree->list, &tree_list);
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
put_tree(tree);
|
|
}
|
|
|
|
while (barrier.prev != &tree_list) {
|
|
struct audit_tree *tree;
|
|
|
|
tree = container_of(barrier.prev, struct audit_tree, list);
|
|
get_tree(tree);
|
|
list_del(&tree->list);
|
|
list_add(&tree->list, &barrier);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
if (!failed) {
|
|
struct node *node;
|
|
spin_lock(&hash_lock);
|
|
list_for_each_entry(node, &tree->chunks, list)
|
|
node->index &= ~(1U<<31);
|
|
spin_unlock(&hash_lock);
|
|
} else {
|
|
trim_marked(tree);
|
|
}
|
|
|
|
put_tree(tree);
|
|
mutex_lock(&audit_filter_mutex);
|
|
}
|
|
list_del(&barrier);
|
|
list_del(&cursor);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
path_put(&path1);
|
|
drop_collected_mounts(tagged);
|
|
return failed;
|
|
}
|
|
|
|
|
|
static void audit_schedule_prune(void)
|
|
{
|
|
wake_up_process(prune_thread);
|
|
}
|
|
|
|
/*
|
|
* ... and that one is done if evict_chunk() decides to delay until the end
|
|
* of syscall. Runs synchronously.
|
|
*/
|
|
void audit_kill_trees(struct list_head *list)
|
|
{
|
|
mutex_lock(&audit_cmd_mutex);
|
|
mutex_lock(&audit_filter_mutex);
|
|
|
|
while (!list_empty(list)) {
|
|
struct audit_tree *victim;
|
|
|
|
victim = list_entry(list->next, struct audit_tree, list);
|
|
kill_rules(victim);
|
|
list_del_init(&victim->list);
|
|
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
prune_one(victim);
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
}
|
|
|
|
mutex_unlock(&audit_filter_mutex);
|
|
mutex_unlock(&audit_cmd_mutex);
|
|
}
|
|
|
|
/*
|
|
* Here comes the stuff asynchronous to auditctl operations
|
|
*/
|
|
|
|
static void evict_chunk(struct audit_chunk *chunk)
|
|
{
|
|
struct audit_tree *owner;
|
|
struct list_head *postponed = audit_killed_trees();
|
|
int need_prune = 0;
|
|
int n;
|
|
|
|
if (chunk->dead)
|
|
return;
|
|
|
|
chunk->dead = 1;
|
|
mutex_lock(&audit_filter_mutex);
|
|
spin_lock(&hash_lock);
|
|
while (!list_empty(&chunk->trees)) {
|
|
owner = list_entry(chunk->trees.next,
|
|
struct audit_tree, same_root);
|
|
owner->goner = 1;
|
|
owner->root = NULL;
|
|
list_del_init(&owner->same_root);
|
|
spin_unlock(&hash_lock);
|
|
if (!postponed) {
|
|
kill_rules(owner);
|
|
list_move(&owner->list, &prune_list);
|
|
need_prune = 1;
|
|
} else {
|
|
list_move(&owner->list, postponed);
|
|
}
|
|
spin_lock(&hash_lock);
|
|
}
|
|
list_del_rcu(&chunk->hash);
|
|
for (n = 0; n < chunk->count; n++)
|
|
list_del_init(&chunk->owners[n].list);
|
|
spin_unlock(&hash_lock);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
if (need_prune)
|
|
audit_schedule_prune();
|
|
}
|
|
|
|
static int audit_tree_handle_event(struct fsnotify_group *group,
|
|
struct inode *to_tell,
|
|
struct fsnotify_mark *inode_mark,
|
|
struct fsnotify_mark *vfsmount_mark,
|
|
u32 mask, const void *data, int data_type,
|
|
const unsigned char *file_name, u32 cookie,
|
|
struct fsnotify_iter_info *iter_info)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void audit_tree_freeing_mark(struct fsnotify_mark *entry, struct fsnotify_group *group)
|
|
{
|
|
struct audit_chunk *chunk = container_of(entry, struct audit_chunk, mark);
|
|
|
|
evict_chunk(chunk);
|
|
|
|
/*
|
|
* We are guaranteed to have at least one reference to the mark from
|
|
* either the inode or the caller of fsnotify_destroy_mark().
|
|
*/
|
|
BUG_ON(atomic_read(&entry->refcnt) < 1);
|
|
}
|
|
|
|
static const struct fsnotify_ops audit_tree_ops = {
|
|
.handle_event = audit_tree_handle_event,
|
|
.freeing_mark = audit_tree_freeing_mark,
|
|
.free_mark = audit_tree_destroy_watch,
|
|
};
|
|
|
|
static int __init audit_tree_init(void)
|
|
{
|
|
int i;
|
|
|
|
audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
|
|
if (IS_ERR(audit_tree_group))
|
|
audit_panic("cannot initialize fsnotify group for rectree watches");
|
|
|
|
for (i = 0; i < HASH_SIZE; i++)
|
|
INIT_LIST_HEAD(&chunk_hash_heads[i]);
|
|
|
|
return 0;
|
|
}
|
|
__initcall(audit_tree_init);
|