Dave Jiang ad4a7b5065 dmaengine: ioatdma: adding shutdown support
The ioatdma needs to be queisced and block all additional op submission
during reboots. When NET_DMA was used, this caused issue as ops were still
being sent to ioatdma during reboots even though PCI BME has been turned
off. Even though NET_DMA has been deprecated, we need to prevent similar
situations. The shutdown handler should address that.

Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
2015-09-21 21:10:05 +05:30

750 lines
22 KiB
C

/*
* Intel I/OAT DMA Linux driver
* Copyright(c) 2004 - 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/gfp.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/prefetch.h>
#include "../dmaengine.h"
#include "registers.h"
#include "hw.h"
#include "dma.h"
#define MAX_SCF 1024
/* provide a lookup table for setting the source address in the base or
* extended descriptor of an xor or pq descriptor
*/
static const u8 xor_idx_to_desc = 0xe0;
static const u8 xor_idx_to_field[] = { 1, 4, 5, 6, 7, 0, 1, 2 };
static const u8 pq_idx_to_desc = 0xf8;
static const u8 pq16_idx_to_desc[] = { 0, 0, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2 };
static const u8 pq_idx_to_field[] = { 1, 4, 5, 0, 1, 2, 4, 5 };
static const u8 pq16_idx_to_field[] = { 1, 4, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6 };
static void xor_set_src(struct ioat_raw_descriptor *descs[2],
dma_addr_t addr, u32 offset, int idx)
{
struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
raw->field[xor_idx_to_field[idx]] = addr + offset;
}
static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
{
struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
return raw->field[pq_idx_to_field[idx]];
}
static dma_addr_t pq16_get_src(struct ioat_raw_descriptor *desc[3], int idx)
{
struct ioat_raw_descriptor *raw = desc[pq16_idx_to_desc[idx]];
return raw->field[pq16_idx_to_field[idx]];
}
static void pq_set_src(struct ioat_raw_descriptor *descs[2],
dma_addr_t addr, u32 offset, u8 coef, int idx)
{
struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
raw->field[pq_idx_to_field[idx]] = addr + offset;
pq->coef[idx] = coef;
}
static void pq16_set_src(struct ioat_raw_descriptor *desc[3],
dma_addr_t addr, u32 offset, u8 coef, unsigned idx)
{
struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *)desc[0];
struct ioat_pq16a_descriptor *pq16 =
(struct ioat_pq16a_descriptor *)desc[1];
struct ioat_raw_descriptor *raw = desc[pq16_idx_to_desc[idx]];
raw->field[pq16_idx_to_field[idx]] = addr + offset;
if (idx < 8)
pq->coef[idx] = coef;
else
pq16->coef[idx - 8] = coef;
}
static struct ioat_sed_ent *
ioat3_alloc_sed(struct ioatdma_device *ioat_dma, unsigned int hw_pool)
{
struct ioat_sed_ent *sed;
gfp_t flags = __GFP_ZERO | GFP_ATOMIC;
sed = kmem_cache_alloc(ioat_sed_cache, flags);
if (!sed)
return NULL;
sed->hw_pool = hw_pool;
sed->hw = dma_pool_alloc(ioat_dma->sed_hw_pool[hw_pool],
flags, &sed->dma);
if (!sed->hw) {
kmem_cache_free(ioat_sed_cache, sed);
return NULL;
}
return sed;
}
struct dma_async_tx_descriptor *
ioat_dma_prep_memcpy_lock(struct dma_chan *c, dma_addr_t dma_dest,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(c);
struct ioat_dma_descriptor *hw;
struct ioat_ring_ent *desc;
dma_addr_t dst = dma_dest;
dma_addr_t src = dma_src;
size_t total_len = len;
int num_descs, idx, i;
if (test_bit(IOAT_CHAN_DOWN, &ioat_chan->state))
return NULL;
num_descs = ioat_xferlen_to_descs(ioat_chan, len);
if (likely(num_descs) &&
ioat_check_space_lock(ioat_chan, num_descs) == 0)
idx = ioat_chan->head;
else
return NULL;
i = 0;
do {
size_t copy = min_t(size_t, len, 1 << ioat_chan->xfercap_log);
desc = ioat_get_ring_ent(ioat_chan, idx + i);
hw = desc->hw;
hw->size = copy;
hw->ctl = 0;
hw->src_addr = src;
hw->dst_addr = dst;
len -= copy;
dst += copy;
src += copy;
dump_desc_dbg(ioat_chan, desc);
} while (++i < num_descs);
desc->txd.flags = flags;
desc->len = total_len;
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
hw->ctl_f.compl_write = 1;
dump_desc_dbg(ioat_chan, desc);
/* we leave the channel locked to ensure in order submission */
return &desc->txd;
}
static struct dma_async_tx_descriptor *
__ioat_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
size_t len, unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(c);
struct ioat_ring_ent *compl_desc;
struct ioat_ring_ent *desc;
struct ioat_ring_ent *ext;
size_t total_len = len;
struct ioat_xor_descriptor *xor;
struct ioat_xor_ext_descriptor *xor_ex = NULL;
struct ioat_dma_descriptor *hw;
int num_descs, with_ext, idx, i;
u32 offset = 0;
u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
BUG_ON(src_cnt < 2);
num_descs = ioat_xferlen_to_descs(ioat_chan, len);
/* we need 2x the number of descriptors to cover greater than 5
* sources
*/
if (src_cnt > 5) {
with_ext = 1;
num_descs *= 2;
} else
with_ext = 0;
/* completion writes from the raid engine may pass completion
* writes from the legacy engine, so we need one extra null
* (legacy) descriptor to ensure all completion writes arrive in
* order.
*/
if (likely(num_descs) &&
ioat_check_space_lock(ioat_chan, num_descs+1) == 0)
idx = ioat_chan->head;
else
return NULL;
i = 0;
do {
struct ioat_raw_descriptor *descs[2];
size_t xfer_size = min_t(size_t,
len, 1 << ioat_chan->xfercap_log);
int s;
desc = ioat_get_ring_ent(ioat_chan, idx + i);
xor = desc->xor;
/* save a branch by unconditionally retrieving the
* extended descriptor xor_set_src() knows to not write
* to it in the single descriptor case
*/
ext = ioat_get_ring_ent(ioat_chan, idx + i + 1);
xor_ex = ext->xor_ex;
descs[0] = (struct ioat_raw_descriptor *) xor;
descs[1] = (struct ioat_raw_descriptor *) xor_ex;
for (s = 0; s < src_cnt; s++)
xor_set_src(descs, src[s], offset, s);
xor->size = xfer_size;
xor->dst_addr = dest + offset;
xor->ctl = 0;
xor->ctl_f.op = op;
xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
len -= xfer_size;
offset += xfer_size;
dump_desc_dbg(ioat_chan, desc);
} while ((i += 1 + with_ext) < num_descs);
/* last xor descriptor carries the unmap parameters and fence bit */
desc->txd.flags = flags;
desc->len = total_len;
if (result)
desc->result = result;
xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
/* completion descriptor carries interrupt bit */
compl_desc = ioat_get_ring_ent(ioat_chan, idx + i);
compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
hw = compl_desc->hw;
hw->ctl = 0;
hw->ctl_f.null = 1;
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
hw->ctl_f.compl_write = 1;
hw->size = NULL_DESC_BUFFER_SIZE;
dump_desc_dbg(ioat_chan, compl_desc);
/* we leave the channel locked to ensure in order submission */
return &compl_desc->txd;
}
struct dma_async_tx_descriptor *
ioat_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(chan);
if (test_bit(IOAT_CHAN_DOWN, &ioat_chan->state))
return NULL;
return __ioat_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
}
struct dma_async_tx_descriptor *
ioat_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
unsigned int src_cnt, size_t len,
enum sum_check_flags *result, unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(chan);
if (test_bit(IOAT_CHAN_DOWN, &ioat_chan->state))
return NULL;
/* the cleanup routine only sets bits on validate failure, it
* does not clear bits on validate success... so clear it here
*/
*result = 0;
return __ioat_prep_xor_lock(chan, result, src[0], &src[1],
src_cnt - 1, len, flags);
}
static void
dump_pq_desc_dbg(struct ioatdma_chan *ioat_chan, struct ioat_ring_ent *desc,
struct ioat_ring_ent *ext)
{
struct device *dev = to_dev(ioat_chan);
struct ioat_pq_descriptor *pq = desc->pq;
struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
int i;
dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
" sz: %#10.8x ctl: %#x (op: %#x int: %d compl: %d pq: '%s%s'"
" src_cnt: %d)\n",
desc_id(desc), (unsigned long long) desc->txd.phys,
(unsigned long long) (pq_ex ? pq_ex->next : pq->next),
desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op,
pq->ctl_f.int_en, pq->ctl_f.compl_write,
pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
pq->ctl_f.src_cnt);
for (i = 0; i < src_cnt; i++)
dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
(unsigned long long) pq_get_src(descs, i), pq->coef[i]);
dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
dev_dbg(dev, "\tNEXT: %#llx\n", pq->next);
}
static void dump_pq16_desc_dbg(struct ioatdma_chan *ioat_chan,
struct ioat_ring_ent *desc)
{
struct device *dev = to_dev(ioat_chan);
struct ioat_pq_descriptor *pq = desc->pq;
struct ioat_raw_descriptor *descs[] = { (void *)pq,
(void *)pq,
(void *)pq };
int src_cnt = src16_cnt_to_sw(pq->ctl_f.src_cnt);
int i;
if (desc->sed) {
descs[1] = (void *)desc->sed->hw;
descs[2] = (void *)desc->sed->hw + 64;
}
dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
" sz: %#x ctl: %#x (op: %#x int: %d compl: %d pq: '%s%s'"
" src_cnt: %d)\n",
desc_id(desc), (unsigned long long) desc->txd.phys,
(unsigned long long) pq->next,
desc->txd.flags, pq->size, pq->ctl,
pq->ctl_f.op, pq->ctl_f.int_en,
pq->ctl_f.compl_write,
pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
pq->ctl_f.src_cnt);
for (i = 0; i < src_cnt; i++) {
dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
(unsigned long long) pq16_get_src(descs, i),
pq->coef[i]);
}
dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
}
static struct dma_async_tx_descriptor *
__ioat_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
const dma_addr_t *dst, const dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(c);
struct ioatdma_device *ioat_dma = ioat_chan->ioat_dma;
struct ioat_ring_ent *compl_desc;
struct ioat_ring_ent *desc;
struct ioat_ring_ent *ext;
size_t total_len = len;
struct ioat_pq_descriptor *pq;
struct ioat_pq_ext_descriptor *pq_ex = NULL;
struct ioat_dma_descriptor *hw;
u32 offset = 0;
u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
int i, s, idx, with_ext, num_descs;
int cb32 = (ioat_dma->version < IOAT_VER_3_3) ? 1 : 0;
dev_dbg(to_dev(ioat_chan), "%s\n", __func__);
/* the engine requires at least two sources (we provide
* at least 1 implied source in the DMA_PREP_CONTINUE case)
*/
BUG_ON(src_cnt + dmaf_continue(flags) < 2);
num_descs = ioat_xferlen_to_descs(ioat_chan, len);
/* we need 2x the number of descriptors to cover greater than 3
* sources (we need 1 extra source in the q-only continuation
* case and 3 extra sources in the p+q continuation case.
*/
if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
(dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
with_ext = 1;
num_descs *= 2;
} else
with_ext = 0;
/* completion writes from the raid engine may pass completion
* writes from the legacy engine, so we need one extra null
* (legacy) descriptor to ensure all completion writes arrive in
* order.
*/
if (likely(num_descs) &&
ioat_check_space_lock(ioat_chan, num_descs + cb32) == 0)
idx = ioat_chan->head;
else
return NULL;
i = 0;
do {
struct ioat_raw_descriptor *descs[2];
size_t xfer_size = min_t(size_t, len,
1 << ioat_chan->xfercap_log);
desc = ioat_get_ring_ent(ioat_chan, idx + i);
pq = desc->pq;
/* save a branch by unconditionally retrieving the
* extended descriptor pq_set_src() knows to not write
* to it in the single descriptor case
*/
ext = ioat_get_ring_ent(ioat_chan, idx + i + with_ext);
pq_ex = ext->pq_ex;
descs[0] = (struct ioat_raw_descriptor *) pq;
descs[1] = (struct ioat_raw_descriptor *) pq_ex;
for (s = 0; s < src_cnt; s++)
pq_set_src(descs, src[s], offset, scf[s], s);
/* see the comment for dma_maxpq in include/linux/dmaengine.h */
if (dmaf_p_disabled_continue(flags))
pq_set_src(descs, dst[1], offset, 1, s++);
else if (dmaf_continue(flags)) {
pq_set_src(descs, dst[0], offset, 0, s++);
pq_set_src(descs, dst[1], offset, 1, s++);
pq_set_src(descs, dst[1], offset, 0, s++);
}
pq->size = xfer_size;
pq->p_addr = dst[0] + offset;
pq->q_addr = dst[1] + offset;
pq->ctl = 0;
pq->ctl_f.op = op;
/* we turn on descriptor write back error status */
if (ioat_dma->cap & IOAT_CAP_DWBES)
pq->ctl_f.wb_en = result ? 1 : 0;
pq->ctl_f.src_cnt = src_cnt_to_hw(s);
pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
len -= xfer_size;
offset += xfer_size;
} while ((i += 1 + with_ext) < num_descs);
/* last pq descriptor carries the unmap parameters and fence bit */
desc->txd.flags = flags;
desc->len = total_len;
if (result)
desc->result = result;
pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
dump_pq_desc_dbg(ioat_chan, desc, ext);
if (!cb32) {
pq->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
pq->ctl_f.compl_write = 1;
compl_desc = desc;
} else {
/* completion descriptor carries interrupt bit */
compl_desc = ioat_get_ring_ent(ioat_chan, idx + i);
compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
hw = compl_desc->hw;
hw->ctl = 0;
hw->ctl_f.null = 1;
hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
hw->ctl_f.compl_write = 1;
hw->size = NULL_DESC_BUFFER_SIZE;
dump_desc_dbg(ioat_chan, compl_desc);
}
/* we leave the channel locked to ensure in order submission */
return &compl_desc->txd;
}
static struct dma_async_tx_descriptor *
__ioat_prep_pq16_lock(struct dma_chan *c, enum sum_check_flags *result,
const dma_addr_t *dst, const dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf,
size_t len, unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(c);
struct ioatdma_device *ioat_dma = ioat_chan->ioat_dma;
struct ioat_ring_ent *desc;
size_t total_len = len;
struct ioat_pq_descriptor *pq;
u32 offset = 0;
u8 op;
int i, s, idx, num_descs;
/* this function is only called with 9-16 sources */
op = result ? IOAT_OP_PQ_VAL_16S : IOAT_OP_PQ_16S;
dev_dbg(to_dev(ioat_chan), "%s\n", __func__);
num_descs = ioat_xferlen_to_descs(ioat_chan, len);
/*
* 16 source pq is only available on cb3.3 and has no completion
* write hw bug.
*/
if (num_descs && ioat_check_space_lock(ioat_chan, num_descs) == 0)
idx = ioat_chan->head;
else
return NULL;
i = 0;
do {
struct ioat_raw_descriptor *descs[4];
size_t xfer_size = min_t(size_t, len,
1 << ioat_chan->xfercap_log);
desc = ioat_get_ring_ent(ioat_chan, idx + i);
pq = desc->pq;
descs[0] = (struct ioat_raw_descriptor *) pq;
desc->sed = ioat3_alloc_sed(ioat_dma, (src_cnt-2) >> 3);
if (!desc->sed) {
dev_err(to_dev(ioat_chan),
"%s: no free sed entries\n", __func__);
return NULL;
}
pq->sed_addr = desc->sed->dma;
desc->sed->parent = desc;
descs[1] = (struct ioat_raw_descriptor *)desc->sed->hw;
descs[2] = (void *)descs[1] + 64;
for (s = 0; s < src_cnt; s++)
pq16_set_src(descs, src[s], offset, scf[s], s);
/* see the comment for dma_maxpq in include/linux/dmaengine.h */
if (dmaf_p_disabled_continue(flags))
pq16_set_src(descs, dst[1], offset, 1, s++);
else if (dmaf_continue(flags)) {
pq16_set_src(descs, dst[0], offset, 0, s++);
pq16_set_src(descs, dst[1], offset, 1, s++);
pq16_set_src(descs, dst[1], offset, 0, s++);
}
pq->size = xfer_size;
pq->p_addr = dst[0] + offset;
pq->q_addr = dst[1] + offset;
pq->ctl = 0;
pq->ctl_f.op = op;
pq->ctl_f.src_cnt = src16_cnt_to_hw(s);
/* we turn on descriptor write back error status */
if (ioat_dma->cap & IOAT_CAP_DWBES)
pq->ctl_f.wb_en = result ? 1 : 0;
pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
len -= xfer_size;
offset += xfer_size;
} while (++i < num_descs);
/* last pq descriptor carries the unmap parameters and fence bit */
desc->txd.flags = flags;
desc->len = total_len;
if (result)
desc->result = result;
pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
/* with cb3.3 we should be able to do completion w/o a null desc */
pq->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
pq->ctl_f.compl_write = 1;
dump_pq16_desc_dbg(ioat_chan, desc);
/* we leave the channel locked to ensure in order submission */
return &desc->txd;
}
static int src_cnt_flags(unsigned int src_cnt, unsigned long flags)
{
if (dmaf_p_disabled_continue(flags))
return src_cnt + 1;
else if (dmaf_continue(flags))
return src_cnt + 3;
else
return src_cnt;
}
struct dma_async_tx_descriptor *
ioat_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(chan);
if (test_bit(IOAT_CHAN_DOWN, &ioat_chan->state))
return NULL;
/* specify valid address for disabled result */
if (flags & DMA_PREP_PQ_DISABLE_P)
dst[0] = dst[1];
if (flags & DMA_PREP_PQ_DISABLE_Q)
dst[1] = dst[0];
/* handle the single source multiply case from the raid6
* recovery path
*/
if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
dma_addr_t single_source[2];
unsigned char single_source_coef[2];
BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
single_source[0] = src[0];
single_source[1] = src[0];
single_source_coef[0] = scf[0];
single_source_coef[1] = 0;
return src_cnt_flags(src_cnt, flags) > 8 ?
__ioat_prep_pq16_lock(chan, NULL, dst, single_source,
2, single_source_coef, len,
flags) :
__ioat_prep_pq_lock(chan, NULL, dst, single_source, 2,
single_source_coef, len, flags);
} else {
return src_cnt_flags(src_cnt, flags) > 8 ?
__ioat_prep_pq16_lock(chan, NULL, dst, src, src_cnt,
scf, len, flags) :
__ioat_prep_pq_lock(chan, NULL, dst, src, src_cnt,
scf, len, flags);
}
}
struct dma_async_tx_descriptor *
ioat_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
enum sum_check_flags *pqres, unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(chan);
if (test_bit(IOAT_CHAN_DOWN, &ioat_chan->state))
return NULL;
/* specify valid address for disabled result */
if (flags & DMA_PREP_PQ_DISABLE_P)
pq[0] = pq[1];
if (flags & DMA_PREP_PQ_DISABLE_Q)
pq[1] = pq[0];
/* the cleanup routine only sets bits on validate failure, it
* does not clear bits on validate success... so clear it here
*/
*pqres = 0;
return src_cnt_flags(src_cnt, flags) > 8 ?
__ioat_prep_pq16_lock(chan, pqres, pq, src, src_cnt, scf, len,
flags) :
__ioat_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
flags);
}
struct dma_async_tx_descriptor *
ioat_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
unsigned char scf[MAX_SCF];
dma_addr_t pq[2];
struct ioatdma_chan *ioat_chan = to_ioat_chan(chan);
if (test_bit(IOAT_CHAN_DOWN, &ioat_chan->state))
return NULL;
if (src_cnt > MAX_SCF)
return NULL;
memset(scf, 0, src_cnt);
pq[0] = dst;
flags |= DMA_PREP_PQ_DISABLE_Q;
pq[1] = dst; /* specify valid address for disabled result */
return src_cnt_flags(src_cnt, flags) > 8 ?
__ioat_prep_pq16_lock(chan, NULL, pq, src, src_cnt, scf, len,
flags) :
__ioat_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
flags);
}
struct dma_async_tx_descriptor *
ioat_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
unsigned int src_cnt, size_t len,
enum sum_check_flags *result, unsigned long flags)
{
unsigned char scf[MAX_SCF];
dma_addr_t pq[2];
struct ioatdma_chan *ioat_chan = to_ioat_chan(chan);
if (test_bit(IOAT_CHAN_DOWN, &ioat_chan->state))
return NULL;
if (src_cnt > MAX_SCF)
return NULL;
/* the cleanup routine only sets bits on validate failure, it
* does not clear bits on validate success... so clear it here
*/
*result = 0;
memset(scf, 0, src_cnt);
pq[0] = src[0];
flags |= DMA_PREP_PQ_DISABLE_Q;
pq[1] = pq[0]; /* specify valid address for disabled result */
return src_cnt_flags(src_cnt, flags) > 8 ?
__ioat_prep_pq16_lock(chan, result, pq, &src[1], src_cnt - 1,
scf, len, flags) :
__ioat_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1,
scf, len, flags);
}
struct dma_async_tx_descriptor *
ioat_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
{
struct ioatdma_chan *ioat_chan = to_ioat_chan(c);
struct ioat_ring_ent *desc;
struct ioat_dma_descriptor *hw;
if (test_bit(IOAT_CHAN_DOWN, &ioat_chan->state))
return NULL;
if (ioat_check_space_lock(ioat_chan, 1) == 0)
desc = ioat_get_ring_ent(ioat_chan, ioat_chan->head);
else
return NULL;
hw = desc->hw;
hw->ctl = 0;
hw->ctl_f.null = 1;
hw->ctl_f.int_en = 1;
hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
hw->ctl_f.compl_write = 1;
hw->size = NULL_DESC_BUFFER_SIZE;
hw->src_addr = 0;
hw->dst_addr = 0;
desc->txd.flags = flags;
desc->len = 1;
dump_desc_dbg(ioat_chan, desc);
/* we leave the channel locked to ensure in order submission */
return &desc->txd;
}