linux/arch/Kconfig
Will Drewry e2cfabdfd0 seccomp: add system call filtering using BPF
[This patch depends on luto@mit.edu's no_new_privs patch:
   https://lkml.org/lkml/2012/1/30/264
 The whole series including Andrew's patches can be found here:
   https://github.com/redpig/linux/tree/seccomp
 Complete diff here:
   https://github.com/redpig/linux/compare/1dc65fed...seccomp
]

This patch adds support for seccomp mode 2.  Mode 2 introduces the
ability for unprivileged processes to install system call filtering
policy expressed in terms of a Berkeley Packet Filter (BPF) program.
This program will be evaluated in the kernel for each system call
the task makes and computes a result based on data in the format
of struct seccomp_data.

A filter program may be installed by calling:
  struct sock_fprog fprog = { ... };
  ...
  prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &fprog);

The return value of the filter program determines if the system call is
allowed to proceed or denied.  If the first filter program installed
allows prctl(2) calls, then the above call may be made repeatedly
by a task to further reduce its access to the kernel.  All attached
programs must be evaluated before a system call will be allowed to
proceed.

Filter programs will be inherited across fork/clone and execve.
However, if the task attaching the filter is unprivileged
(!CAP_SYS_ADMIN) the no_new_privs bit will be set on the task.  This
ensures that unprivileged tasks cannot attach filters that affect
privileged tasks (e.g., setuid binary).

There are a number of benefits to this approach. A few of which are
as follows:
- BPF has been exposed to userland for a long time
- BPF optimization (and JIT'ing) are well understood
- Userland already knows its ABI: system call numbers and desired
  arguments
- No time-of-check-time-of-use vulnerable data accesses are possible.
- system call arguments are loaded on access only to minimize copying
  required for system call policy decisions.

Mode 2 support is restricted to architectures that enable
HAVE_ARCH_SECCOMP_FILTER.  In this patch, the primary dependency is on
syscall_get_arguments().  The full desired scope of this feature will
add a few minor additional requirements expressed later in this series.
Based on discussion, SECCOMP_RET_ERRNO and SECCOMP_RET_TRACE seem to be
the desired additional functionality.

No architectures are enabled in this patch.

Signed-off-by: Will Drewry <wad@chromium.org>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Reviewed-by: Indan Zupancic <indan@nul.nu>
Acked-by: Eric Paris <eparis@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>

v18: - rebase to v3.4-rc2
     - s/chk/check/ (akpm@linux-foundation.org,jmorris@namei.org)
     - allocate with GFP_KERNEL|__GFP_NOWARN (indan@nul.nu)
     - add a comment for get_u32 regarding endianness (akpm@)
     - fix other typos, style mistakes (akpm@)
     - added acked-by
v17: - properly guard seccomp filter needed headers (leann@ubuntu.com)
     - tighten return mask to 0x7fff0000
v16: - no change
v15: - add a 4 instr penalty when counting a path to account for seccomp_filter
       size (indan@nul.nu)
     - drop the max insns to 256KB (indan@nul.nu)
     - return ENOMEM if the max insns limit has been hit (indan@nul.nu)
     - move IP checks after args (indan@nul.nu)
     - drop !user_filter check (indan@nul.nu)
     - only allow explicit bpf codes (indan@nul.nu)
     - exit_code -> exit_sig
v14: - put/get_seccomp_filter takes struct task_struct
       (indan@nul.nu,keescook@chromium.org)
     - adds seccomp_chk_filter and drops general bpf_run/chk_filter user
     - add seccomp_bpf_load for use by net/core/filter.c
     - lower max per-process/per-hierarchy: 1MB
     - moved nnp/capability check prior to allocation
       (all of the above: indan@nul.nu)
v13: - rebase on to 88ebdda6159ffc15699f204c33feb3e431bf9bdc
v12: - added a maximum instruction count per path (indan@nul.nu,oleg@redhat.com)
     - removed copy_seccomp (keescook@chromium.org,indan@nul.nu)
     - reworded the prctl_set_seccomp comment (indan@nul.nu)
v11: - reorder struct seccomp_data to allow future args expansion (hpa@zytor.com)
     - style clean up, @compat dropped, compat_sock_fprog32 (indan@nul.nu)
     - do_exit(SIGSYS) (keescook@chromium.org, luto@mit.edu)
     - pare down Kconfig doc reference.
     - extra comment clean up
v10: - seccomp_data has changed again to be more aesthetically pleasing
       (hpa@zytor.com)
     - calling convention is noted in a new u32 field using syscall_get_arch.
       This allows for cross-calling convention tasks to use seccomp filters.
       (hpa@zytor.com)
     - lots of clean up (thanks, Indan!)
 v9: - n/a
 v8: - use bpf_chk_filter, bpf_run_filter. update load_fns
     - Lots of fixes courtesy of indan@nul.nu:
     -- fix up load behavior, compat fixups, and merge alloc code,
     -- renamed pc and dropped __packed, use bool compat.
     -- Added a hidden CONFIG_SECCOMP_FILTER to synthesize non-arch
        dependencies
 v7:  (massive overhaul thanks to Indan, others)
     - added CONFIG_HAVE_ARCH_SECCOMP_FILTER
     - merged into seccomp.c
     - minimal seccomp_filter.h
     - no config option (part of seccomp)
     - no new prctl
     - doesn't break seccomp on systems without asm/syscall.h
       (works but arg access always fails)
     - dropped seccomp_init_task, extra free functions, ...
     - dropped the no-asm/syscall.h code paths
     - merges with network sk_run_filter and sk_chk_filter
 v6: - fix memory leak on attach compat check failure
     - require no_new_privs || CAP_SYS_ADMIN prior to filter
       installation. (luto@mit.edu)
     - s/seccomp_struct_/seccomp_/ for macros/functions (amwang@redhat.com)
     - cleaned up Kconfig (amwang@redhat.com)
     - on block, note if the call was compat (so the # means something)
 v5: - uses syscall_get_arguments
       (indan@nul.nu,oleg@redhat.com, mcgrathr@chromium.org)
      - uses union-based arg storage with hi/lo struct to
        handle endianness.  Compromises between the two alternate
        proposals to minimize extra arg shuffling and account for
        endianness assuming userspace uses offsetof().
        (mcgrathr@chromium.org, indan@nul.nu)
      - update Kconfig description
      - add include/seccomp_filter.h and add its installation
      - (naive) on-demand syscall argument loading
      - drop seccomp_t (eparis@redhat.com)
 v4:  - adjusted prctl to make room for PR_[SG]ET_NO_NEW_PRIVS
      - now uses current->no_new_privs
        (luto@mit.edu,torvalds@linux-foundation.com)
      - assign names to seccomp modes (rdunlap@xenotime.net)
      - fix style issues (rdunlap@xenotime.net)
      - reworded Kconfig entry (rdunlap@xenotime.net)
 v3:  - macros to inline (oleg@redhat.com)
      - init_task behavior fixed (oleg@redhat.com)
      - drop creator entry and extra NULL check (oleg@redhat.com)
      - alloc returns -EINVAL on bad sizing (serge.hallyn@canonical.com)
      - adds tentative use of "always_unprivileged" as per
        torvalds@linux-foundation.org and luto@mit.edu
 v2:  - (patch 2 only)
Signed-off-by: James Morris <james.l.morris@oracle.com>
2012-04-14 11:13:20 +10:00

237 lines
6.5 KiB
Plaintext

#
# General architecture dependent options
#
config OPROFILE
tristate "OProfile system profiling"
depends on PROFILING
depends on HAVE_OPROFILE
select RING_BUFFER
select RING_BUFFER_ALLOW_SWAP
help
OProfile is a profiling system capable of profiling the
whole system, include the kernel, kernel modules, libraries,
and applications.
If unsure, say N.
config OPROFILE_EVENT_MULTIPLEX
bool "OProfile multiplexing support (EXPERIMENTAL)"
default n
depends on OPROFILE && X86
help
The number of hardware counters is limited. The multiplexing
feature enables OProfile to gather more events than counters
are provided by the hardware. This is realized by switching
between events at an user specified time interval.
If unsure, say N.
config HAVE_OPROFILE
bool
config OPROFILE_NMI_TIMER
def_bool y
depends on PERF_EVENTS && HAVE_PERF_EVENTS_NMI
config KPROBES
bool "Kprobes"
depends on MODULES
depends on HAVE_KPROBES
select KALLSYMS
help
Kprobes allows you to trap at almost any kernel address and
execute a callback function. register_kprobe() establishes
a probepoint and specifies the callback. Kprobes is useful
for kernel debugging, non-intrusive instrumentation and testing.
If in doubt, say "N".
config JUMP_LABEL
bool "Optimize very unlikely/likely branches"
depends on HAVE_ARCH_JUMP_LABEL
help
This option enables a transparent branch optimization that
makes certain almost-always-true or almost-always-false branch
conditions even cheaper to execute within the kernel.
Certain performance-sensitive kernel code, such as trace points,
scheduler functionality, networking code and KVM have such
branches and include support for this optimization technique.
If it is detected that the compiler has support for "asm goto",
the kernel will compile such branches with just a nop
instruction. When the condition flag is toggled to true, the
nop will be converted to a jump instruction to execute the
conditional block of instructions.
This technique lowers overhead and stress on the branch prediction
of the processor and generally makes the kernel faster. The update
of the condition is slower, but those are always very rare.
( On 32-bit x86, the necessary options added to the compiler
flags may increase the size of the kernel slightly. )
config OPTPROBES
def_bool y
depends on KPROBES && HAVE_OPTPROBES
depends on !PREEMPT
config HAVE_EFFICIENT_UNALIGNED_ACCESS
bool
help
Some architectures are unable to perform unaligned accesses
without the use of get_unaligned/put_unaligned. Others are
unable to perform such accesses efficiently (e.g. trap on
unaligned access and require fixing it up in the exception
handler.)
This symbol should be selected by an architecture if it can
perform unaligned accesses efficiently to allow different
code paths to be selected for these cases. Some network
drivers, for example, could opt to not fix up alignment
problems with received packets if doing so would not help
much.
See Documentation/unaligned-memory-access.txt for more
information on the topic of unaligned memory accesses.
config HAVE_SYSCALL_WRAPPERS
bool
config KRETPROBES
def_bool y
depends on KPROBES && HAVE_KRETPROBES
config USER_RETURN_NOTIFIER
bool
depends on HAVE_USER_RETURN_NOTIFIER
help
Provide a kernel-internal notification when a cpu is about to
switch to user mode.
config HAVE_IOREMAP_PROT
bool
config HAVE_KPROBES
bool
config HAVE_KRETPROBES
bool
config HAVE_OPTPROBES
bool
config HAVE_NMI_WATCHDOG
bool
#
# An arch should select this if it provides all these things:
#
# task_pt_regs() in asm/processor.h or asm/ptrace.h
# arch_has_single_step() if there is hardware single-step support
# arch_has_block_step() if there is hardware block-step support
# asm/syscall.h supplying asm-generic/syscall.h interface
# linux/regset.h user_regset interfaces
# CORE_DUMP_USE_REGSET #define'd in linux/elf.h
# TIF_SYSCALL_TRACE calls tracehook_report_syscall_{entry,exit}
# TIF_NOTIFY_RESUME calls tracehook_notify_resume()
# signal delivery calls tracehook_signal_handler()
#
config HAVE_ARCH_TRACEHOOK
bool
config HAVE_DMA_ATTRS
bool
config USE_GENERIC_SMP_HELPERS
bool
config HAVE_REGS_AND_STACK_ACCESS_API
bool
help
This symbol should be selected by an architecure if it supports
the API needed to access registers and stack entries from pt_regs,
declared in asm/ptrace.h
For example the kprobes-based event tracer needs this API.
config HAVE_CLK
bool
help
The <linux/clk.h> calls support software clock gating and
thus are a key power management tool on many systems.
config HAVE_DMA_API_DEBUG
bool
config HAVE_HW_BREAKPOINT
bool
depends on PERF_EVENTS
config HAVE_MIXED_BREAKPOINTS_REGS
bool
depends on HAVE_HW_BREAKPOINT
help
Depending on the arch implementation of hardware breakpoints,
some of them have separate registers for data and instruction
breakpoints addresses, others have mixed registers to store
them but define the access type in a control register.
Select this option if your arch implements breakpoints under the
latter fashion.
config HAVE_USER_RETURN_NOTIFIER
bool
config HAVE_PERF_EVENTS_NMI
bool
help
System hardware can generate an NMI using the perf event
subsystem. Also has support for calculating CPU cycle events
to determine how many clock cycles in a given period.
config HAVE_ARCH_JUMP_LABEL
bool
config HAVE_ARCH_MUTEX_CPU_RELAX
bool
config HAVE_RCU_TABLE_FREE
bool
config ARCH_HAVE_NMI_SAFE_CMPXCHG
bool
config HAVE_ALIGNED_STRUCT_PAGE
bool
help
This makes sure that struct pages are double word aligned and that
e.g. the SLUB allocator can perform double word atomic operations
on a struct page for better performance. However selecting this
might increase the size of a struct page by a word.
config HAVE_CMPXCHG_LOCAL
bool
config HAVE_CMPXCHG_DOUBLE
bool
config ARCH_WANT_OLD_COMPAT_IPC
bool
config HAVE_ARCH_SECCOMP_FILTER
bool
help
This symbol should be selected by an architecure if it provides
asm/syscall.h, specifically syscall_get_arguments() and
syscall_get_arch().
config SECCOMP_FILTER
def_bool y
depends on HAVE_ARCH_SECCOMP_FILTER && SECCOMP && NET
help
Enable tasks to build secure computing environments defined
in terms of Berkeley Packet Filter programs which implement
task-defined system call filtering polices.
See Documentation/prctl/seccomp_filter.txt for details.
source "kernel/gcov/Kconfig"