mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 04:19:08 +00:00
db74ece990
This test seems to be unnecessary since we always have rootfs mounted before calling a usermodehelper. Signed-off-by: Andreas Gruenbacher <agruen@suse.de> Signed-off-by: Jan Blunck <jblunck@suse.de> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Greg KH <greg@kroah.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
518 lines
14 KiB
C
518 lines
14 KiB
C
/*
|
|
kmod, the new module loader (replaces kerneld)
|
|
Kirk Petersen
|
|
|
|
Reorganized not to be a daemon by Adam Richter, with guidance
|
|
from Greg Zornetzer.
|
|
|
|
Modified to avoid chroot and file sharing problems.
|
|
Mikael Pettersson
|
|
|
|
Limit the concurrent number of kmod modprobes to catch loops from
|
|
"modprobe needs a service that is in a module".
|
|
Keith Owens <kaos@ocs.com.au> December 1999
|
|
|
|
Unblock all signals when we exec a usermode process.
|
|
Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
|
|
|
|
call_usermodehelper wait flag, and remove exec_usermodehelper.
|
|
Rusty Russell <rusty@rustcorp.com.au> Jan 2003
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mnt_namespace.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/file.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/security.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/suspend.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
extern int max_threads;
|
|
|
|
static struct workqueue_struct *khelper_wq;
|
|
|
|
#ifdef CONFIG_KMOD
|
|
|
|
/*
|
|
modprobe_path is set via /proc/sys.
|
|
*/
|
|
char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
|
|
|
|
/**
|
|
* request_module - try to load a kernel module
|
|
* @fmt: printf style format string for the name of the module
|
|
* @varargs: arguements as specified in the format string
|
|
*
|
|
* Load a module using the user mode module loader. The function returns
|
|
* zero on success or a negative errno code on failure. Note that a
|
|
* successful module load does not mean the module did not then unload
|
|
* and exit on an error of its own. Callers must check that the service
|
|
* they requested is now available not blindly invoke it.
|
|
*
|
|
* If module auto-loading support is disabled then this function
|
|
* becomes a no-operation.
|
|
*/
|
|
int request_module(const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
char module_name[MODULE_NAME_LEN];
|
|
unsigned int max_modprobes;
|
|
int ret;
|
|
char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
|
|
static char *envp[] = { "HOME=/",
|
|
"TERM=linux",
|
|
"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
|
|
NULL };
|
|
static atomic_t kmod_concurrent = ATOMIC_INIT(0);
|
|
#define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
|
|
static int kmod_loop_msg;
|
|
|
|
va_start(args, fmt);
|
|
ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
|
|
va_end(args);
|
|
if (ret >= MODULE_NAME_LEN)
|
|
return -ENAMETOOLONG;
|
|
|
|
/* If modprobe needs a service that is in a module, we get a recursive
|
|
* loop. Limit the number of running kmod threads to max_threads/2 or
|
|
* MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
|
|
* would be to run the parents of this process, counting how many times
|
|
* kmod was invoked. That would mean accessing the internals of the
|
|
* process tables to get the command line, proc_pid_cmdline is static
|
|
* and it is not worth changing the proc code just to handle this case.
|
|
* KAO.
|
|
*
|
|
* "trace the ppid" is simple, but will fail if someone's
|
|
* parent exits. I think this is as good as it gets. --RR
|
|
*/
|
|
max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
|
|
atomic_inc(&kmod_concurrent);
|
|
if (atomic_read(&kmod_concurrent) > max_modprobes) {
|
|
/* We may be blaming an innocent here, but unlikely */
|
|
if (kmod_loop_msg++ < 5)
|
|
printk(KERN_ERR
|
|
"request_module: runaway loop modprobe %s\n",
|
|
module_name);
|
|
atomic_dec(&kmod_concurrent);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = call_usermodehelper(modprobe_path, argv, envp, 1);
|
|
atomic_dec(&kmod_concurrent);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(request_module);
|
|
#endif /* CONFIG_KMOD */
|
|
|
|
struct subprocess_info {
|
|
struct work_struct work;
|
|
struct completion *complete;
|
|
char *path;
|
|
char **argv;
|
|
char **envp;
|
|
struct key *ring;
|
|
enum umh_wait wait;
|
|
int retval;
|
|
struct file *stdin;
|
|
void (*cleanup)(char **argv, char **envp);
|
|
};
|
|
|
|
/*
|
|
* This is the task which runs the usermode application
|
|
*/
|
|
static int ____call_usermodehelper(void *data)
|
|
{
|
|
struct subprocess_info *sub_info = data;
|
|
struct key *new_session, *old_session;
|
|
int retval;
|
|
|
|
/* Unblock all signals and set the session keyring. */
|
|
new_session = key_get(sub_info->ring);
|
|
spin_lock_irq(¤t->sighand->siglock);
|
|
old_session = __install_session_keyring(current, new_session);
|
|
flush_signal_handlers(current, 1);
|
|
sigemptyset(¤t->blocked);
|
|
recalc_sigpending();
|
|
spin_unlock_irq(¤t->sighand->siglock);
|
|
|
|
key_put(old_session);
|
|
|
|
/* Install input pipe when needed */
|
|
if (sub_info->stdin) {
|
|
struct files_struct *f = current->files;
|
|
struct fdtable *fdt;
|
|
/* no races because files should be private here */
|
|
sys_close(0);
|
|
fd_install(0, sub_info->stdin);
|
|
spin_lock(&f->file_lock);
|
|
fdt = files_fdtable(f);
|
|
FD_SET(0, fdt->open_fds);
|
|
FD_CLR(0, fdt->close_on_exec);
|
|
spin_unlock(&f->file_lock);
|
|
|
|
/* and disallow core files too */
|
|
current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
|
|
}
|
|
|
|
/* We can run anywhere, unlike our parent keventd(). */
|
|
set_cpus_allowed(current, CPU_MASK_ALL);
|
|
|
|
/*
|
|
* Our parent is keventd, which runs with elevated scheduling priority.
|
|
* Avoid propagating that into the userspace child.
|
|
*/
|
|
set_user_nice(current, 0);
|
|
|
|
retval = kernel_execve(sub_info->path, sub_info->argv, sub_info->envp);
|
|
|
|
/* Exec failed? */
|
|
sub_info->retval = retval;
|
|
do_exit(0);
|
|
}
|
|
|
|
void call_usermodehelper_freeinfo(struct subprocess_info *info)
|
|
{
|
|
if (info->cleanup)
|
|
(*info->cleanup)(info->argv, info->envp);
|
|
kfree(info);
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_freeinfo);
|
|
|
|
/* Keventd can't block, but this (a child) can. */
|
|
static int wait_for_helper(void *data)
|
|
{
|
|
struct subprocess_info *sub_info = data;
|
|
pid_t pid;
|
|
|
|
/* Install a handler: if SIGCLD isn't handled sys_wait4 won't
|
|
* populate the status, but will return -ECHILD. */
|
|
allow_signal(SIGCHLD);
|
|
|
|
pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
|
|
if (pid < 0) {
|
|
sub_info->retval = pid;
|
|
} else {
|
|
int ret;
|
|
|
|
/*
|
|
* Normally it is bogus to call wait4() from in-kernel because
|
|
* wait4() wants to write the exit code to a userspace address.
|
|
* But wait_for_helper() always runs as keventd, and put_user()
|
|
* to a kernel address works OK for kernel threads, due to their
|
|
* having an mm_segment_t which spans the entire address space.
|
|
*
|
|
* Thus the __user pointer cast is valid here.
|
|
*/
|
|
sys_wait4(pid, (int __user *)&ret, 0, NULL);
|
|
|
|
/*
|
|
* If ret is 0, either ____call_usermodehelper failed and the
|
|
* real error code is already in sub_info->retval or
|
|
* sub_info->retval is 0 anyway, so don't mess with it then.
|
|
*/
|
|
if (ret)
|
|
sub_info->retval = ret;
|
|
}
|
|
|
|
if (sub_info->wait == UMH_NO_WAIT)
|
|
call_usermodehelper_freeinfo(sub_info);
|
|
else
|
|
complete(sub_info->complete);
|
|
return 0;
|
|
}
|
|
|
|
/* This is run by khelper thread */
|
|
static void __call_usermodehelper(struct work_struct *work)
|
|
{
|
|
struct subprocess_info *sub_info =
|
|
container_of(work, struct subprocess_info, work);
|
|
pid_t pid;
|
|
enum umh_wait wait = sub_info->wait;
|
|
|
|
/* CLONE_VFORK: wait until the usermode helper has execve'd
|
|
* successfully We need the data structures to stay around
|
|
* until that is done. */
|
|
if (wait == UMH_WAIT_PROC || wait == UMH_NO_WAIT)
|
|
pid = kernel_thread(wait_for_helper, sub_info,
|
|
CLONE_FS | CLONE_FILES | SIGCHLD);
|
|
else
|
|
pid = kernel_thread(____call_usermodehelper, sub_info,
|
|
CLONE_VFORK | SIGCHLD);
|
|
|
|
switch (wait) {
|
|
case UMH_NO_WAIT:
|
|
break;
|
|
|
|
case UMH_WAIT_PROC:
|
|
if (pid > 0)
|
|
break;
|
|
sub_info->retval = pid;
|
|
/* FALLTHROUGH */
|
|
|
|
case UMH_WAIT_EXEC:
|
|
complete(sub_info->complete);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
/*
|
|
* If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
|
|
* (used for preventing user land processes from being created after the user
|
|
* land has been frozen during a system-wide hibernation or suspend operation).
|
|
*/
|
|
static int usermodehelper_disabled;
|
|
|
|
/* Number of helpers running */
|
|
static atomic_t running_helpers = ATOMIC_INIT(0);
|
|
|
|
/*
|
|
* Wait queue head used by usermodehelper_pm_callback() to wait for all running
|
|
* helpers to finish.
|
|
*/
|
|
static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
|
|
|
|
/*
|
|
* Time to wait for running_helpers to become zero before the setting of
|
|
* usermodehelper_disabled in usermodehelper_pm_callback() fails
|
|
*/
|
|
#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
|
|
|
|
static int usermodehelper_pm_callback(struct notifier_block *nfb,
|
|
unsigned long action,
|
|
void *ignored)
|
|
{
|
|
long retval;
|
|
|
|
switch (action) {
|
|
case PM_HIBERNATION_PREPARE:
|
|
case PM_SUSPEND_PREPARE:
|
|
usermodehelper_disabled = 1;
|
|
smp_mb();
|
|
/*
|
|
* From now on call_usermodehelper_exec() won't start any new
|
|
* helpers, so it is sufficient if running_helpers turns out to
|
|
* be zero at one point (it may be increased later, but that
|
|
* doesn't matter).
|
|
*/
|
|
retval = wait_event_timeout(running_helpers_waitq,
|
|
atomic_read(&running_helpers) == 0,
|
|
RUNNING_HELPERS_TIMEOUT);
|
|
if (retval) {
|
|
return NOTIFY_OK;
|
|
} else {
|
|
usermodehelper_disabled = 0;
|
|
return NOTIFY_BAD;
|
|
}
|
|
case PM_POST_HIBERNATION:
|
|
case PM_POST_SUSPEND:
|
|
usermodehelper_disabled = 0;
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static void helper_lock(void)
|
|
{
|
|
atomic_inc(&running_helpers);
|
|
smp_mb__after_atomic_inc();
|
|
}
|
|
|
|
static void helper_unlock(void)
|
|
{
|
|
if (atomic_dec_and_test(&running_helpers))
|
|
wake_up(&running_helpers_waitq);
|
|
}
|
|
|
|
static void register_pm_notifier_callback(void)
|
|
{
|
|
pm_notifier(usermodehelper_pm_callback, 0);
|
|
}
|
|
#else /* CONFIG_PM */
|
|
#define usermodehelper_disabled 0
|
|
|
|
static inline void helper_lock(void) {}
|
|
static inline void helper_unlock(void) {}
|
|
static inline void register_pm_notifier_callback(void) {}
|
|
#endif /* CONFIG_PM */
|
|
|
|
/**
|
|
* call_usermodehelper_setup - prepare to call a usermode helper
|
|
* @path: path to usermode executable
|
|
* @argv: arg vector for process
|
|
* @envp: environment for process
|
|
*
|
|
* Returns either %NULL on allocation failure, or a subprocess_info
|
|
* structure. This should be passed to call_usermodehelper_exec to
|
|
* exec the process and free the structure.
|
|
*/
|
|
struct subprocess_info *call_usermodehelper_setup(char *path,
|
|
char **argv, char **envp)
|
|
{
|
|
struct subprocess_info *sub_info;
|
|
sub_info = kzalloc(sizeof(struct subprocess_info), GFP_ATOMIC);
|
|
if (!sub_info)
|
|
goto out;
|
|
|
|
INIT_WORK(&sub_info->work, __call_usermodehelper);
|
|
sub_info->path = path;
|
|
sub_info->argv = argv;
|
|
sub_info->envp = envp;
|
|
|
|
out:
|
|
return sub_info;
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_setup);
|
|
|
|
/**
|
|
* call_usermodehelper_setkeys - set the session keys for usermode helper
|
|
* @info: a subprocess_info returned by call_usermodehelper_setup
|
|
* @session_keyring: the session keyring for the process
|
|
*/
|
|
void call_usermodehelper_setkeys(struct subprocess_info *info,
|
|
struct key *session_keyring)
|
|
{
|
|
info->ring = session_keyring;
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_setkeys);
|
|
|
|
/**
|
|
* call_usermodehelper_setcleanup - set a cleanup function
|
|
* @info: a subprocess_info returned by call_usermodehelper_setup
|
|
* @cleanup: a cleanup function
|
|
*
|
|
* The cleanup function is just befor ethe subprocess_info is about to
|
|
* be freed. This can be used for freeing the argv and envp. The
|
|
* Function must be runnable in either a process context or the
|
|
* context in which call_usermodehelper_exec is called.
|
|
*/
|
|
void call_usermodehelper_setcleanup(struct subprocess_info *info,
|
|
void (*cleanup)(char **argv, char **envp))
|
|
{
|
|
info->cleanup = cleanup;
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_setcleanup);
|
|
|
|
/**
|
|
* call_usermodehelper_stdinpipe - set up a pipe to be used for stdin
|
|
* @sub_info: a subprocess_info returned by call_usermodehelper_setup
|
|
* @filp: set to the write-end of a pipe
|
|
*
|
|
* This constructs a pipe, and sets the read end to be the stdin of the
|
|
* subprocess, and returns the write-end in *@filp.
|
|
*/
|
|
int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
|
|
struct file **filp)
|
|
{
|
|
struct file *f;
|
|
|
|
f = create_write_pipe();
|
|
if (IS_ERR(f))
|
|
return PTR_ERR(f);
|
|
*filp = f;
|
|
|
|
f = create_read_pipe(f);
|
|
if (IS_ERR(f)) {
|
|
free_write_pipe(*filp);
|
|
return PTR_ERR(f);
|
|
}
|
|
sub_info->stdin = f;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_stdinpipe);
|
|
|
|
/**
|
|
* call_usermodehelper_exec - start a usermode application
|
|
* @sub_info: information about the subprocessa
|
|
* @wait: wait for the application to finish and return status.
|
|
* when -1 don't wait at all, but you get no useful error back when
|
|
* the program couldn't be exec'ed. This makes it safe to call
|
|
* from interrupt context.
|
|
*
|
|
* Runs a user-space application. The application is started
|
|
* asynchronously if wait is not set, and runs as a child of keventd.
|
|
* (ie. it runs with full root capabilities).
|
|
*/
|
|
int call_usermodehelper_exec(struct subprocess_info *sub_info,
|
|
enum umh_wait wait)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(done);
|
|
int retval = 0;
|
|
|
|
helper_lock();
|
|
if (sub_info->path[0] == '\0')
|
|
goto out;
|
|
|
|
if (!khelper_wq || usermodehelper_disabled) {
|
|
retval = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
sub_info->complete = &done;
|
|
sub_info->wait = wait;
|
|
|
|
queue_work(khelper_wq, &sub_info->work);
|
|
if (wait == UMH_NO_WAIT) /* task has freed sub_info */
|
|
goto unlock;
|
|
wait_for_completion(&done);
|
|
retval = sub_info->retval;
|
|
|
|
out:
|
|
call_usermodehelper_freeinfo(sub_info);
|
|
unlock:
|
|
helper_unlock();
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_exec);
|
|
|
|
/**
|
|
* call_usermodehelper_pipe - call a usermode helper process with a pipe stdin
|
|
* @path: path to usermode executable
|
|
* @argv: arg vector for process
|
|
* @envp: environment for process
|
|
* @filp: set to the write-end of a pipe
|
|
*
|
|
* This is a simple wrapper which executes a usermode-helper function
|
|
* with a pipe as stdin. It is implemented entirely in terms of
|
|
* lower-level call_usermodehelper_* functions.
|
|
*/
|
|
int call_usermodehelper_pipe(char *path, char **argv, char **envp,
|
|
struct file **filp)
|
|
{
|
|
struct subprocess_info *sub_info;
|
|
int ret;
|
|
|
|
sub_info = call_usermodehelper_setup(path, argv, envp);
|
|
if (sub_info == NULL)
|
|
return -ENOMEM;
|
|
|
|
ret = call_usermodehelper_stdinpipe(sub_info, filp);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
return call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
|
|
|
|
out:
|
|
call_usermodehelper_freeinfo(sub_info);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(call_usermodehelper_pipe);
|
|
|
|
void __init usermodehelper_init(void)
|
|
{
|
|
khelper_wq = create_singlethread_workqueue("khelper");
|
|
BUG_ON(!khelper_wq);
|
|
register_pm_notifier_callback();
|
|
}
|