mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 01:51:42 +00:00
75c46fa61b
MSI and MSI-X support for interrupt remapping infrastructure. MSI address register will be programmed with interrupt-remapping table entry(IRTE) index and the IRTE will contain information about the vector, cpu destination, etc. For MSI-X, all the IRTE's will be consecutively allocated in the table, and the address registers will contain the starting index to the block and the data register will contain the subindex with in that block. This also introduces a new irq_chip for cleaner irq migration (in the process context as opposed to the current irq migration in the context of an interrupt. interrupt-remapping infrastructure will help us achieve this). As MSI is edge triggered, irq migration is a simple atomic update(of vector and cpu destination) of IRTE and flushing the hardware cache. Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com> Cc: akpm@linux-foundation.org Cc: arjan@linux.intel.com Cc: andi@firstfloor.org Cc: ebiederm@xmission.com Cc: jbarnes@virtuousgeek.org Cc: steiner@sgi.com Signed-off-by: Ingo Molnar <mingo@elte.hu>
472 lines
9.6 KiB
C
472 lines
9.6 KiB
C
#include <linux/dmar.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/irq.h>
|
|
#include <asm/io_apic.h>
|
|
#include "intel-iommu.h"
|
|
#include "intr_remapping.h"
|
|
|
|
static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
|
|
static int ir_ioapic_num;
|
|
int intr_remapping_enabled;
|
|
|
|
static struct {
|
|
struct intel_iommu *iommu;
|
|
u16 irte_index;
|
|
u16 sub_handle;
|
|
u8 irte_mask;
|
|
} irq_2_iommu[NR_IRQS];
|
|
|
|
static DEFINE_SPINLOCK(irq_2_ir_lock);
|
|
|
|
int irq_remapped(int irq)
|
|
{
|
|
if (irq > NR_IRQS)
|
|
return 0;
|
|
|
|
if (!irq_2_iommu[irq].iommu)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int get_irte(int irq, struct irte *entry)
|
|
{
|
|
int index;
|
|
|
|
if (!entry || irq > NR_IRQS)
|
|
return -1;
|
|
|
|
spin_lock(&irq_2_ir_lock);
|
|
if (!irq_2_iommu[irq].iommu) {
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return -1;
|
|
}
|
|
|
|
index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
|
|
*entry = *(irq_2_iommu[irq].iommu->ir_table->base + index);
|
|
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return 0;
|
|
}
|
|
|
|
int alloc_irte(struct intel_iommu *iommu, int irq, u16 count)
|
|
{
|
|
struct ir_table *table = iommu->ir_table;
|
|
u16 index, start_index;
|
|
unsigned int mask = 0;
|
|
int i;
|
|
|
|
if (!count)
|
|
return -1;
|
|
|
|
/*
|
|
* start the IRTE search from index 0.
|
|
*/
|
|
index = start_index = 0;
|
|
|
|
if (count > 1) {
|
|
count = __roundup_pow_of_two(count);
|
|
mask = ilog2(count);
|
|
}
|
|
|
|
if (mask > ecap_max_handle_mask(iommu->ecap)) {
|
|
printk(KERN_ERR
|
|
"Requested mask %x exceeds the max invalidation handle"
|
|
" mask value %Lx\n", mask,
|
|
ecap_max_handle_mask(iommu->ecap));
|
|
return -1;
|
|
}
|
|
|
|
spin_lock(&irq_2_ir_lock);
|
|
do {
|
|
for (i = index; i < index + count; i++)
|
|
if (table->base[i].present)
|
|
break;
|
|
/* empty index found */
|
|
if (i == index + count)
|
|
break;
|
|
|
|
index = (index + count) % INTR_REMAP_TABLE_ENTRIES;
|
|
|
|
if (index == start_index) {
|
|
spin_unlock(&irq_2_ir_lock);
|
|
printk(KERN_ERR "can't allocate an IRTE\n");
|
|
return -1;
|
|
}
|
|
} while (1);
|
|
|
|
for (i = index; i < index + count; i++)
|
|
table->base[i].present = 1;
|
|
|
|
irq_2_iommu[irq].iommu = iommu;
|
|
irq_2_iommu[irq].irte_index = index;
|
|
irq_2_iommu[irq].sub_handle = 0;
|
|
irq_2_iommu[irq].irte_mask = mask;
|
|
|
|
spin_unlock(&irq_2_ir_lock);
|
|
|
|
return index;
|
|
}
|
|
|
|
static void qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
|
|
{
|
|
struct qi_desc desc;
|
|
|
|
desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
|
|
| QI_IEC_SELECTIVE;
|
|
desc.high = 0;
|
|
|
|
qi_submit_sync(&desc, iommu);
|
|
}
|
|
|
|
int map_irq_to_irte_handle(int irq, u16 *sub_handle)
|
|
{
|
|
int index;
|
|
|
|
spin_lock(&irq_2_ir_lock);
|
|
if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return -1;
|
|
}
|
|
|
|
*sub_handle = irq_2_iommu[irq].sub_handle;
|
|
index = irq_2_iommu[irq].irte_index;
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return index;
|
|
}
|
|
|
|
int set_irte_irq(int irq, struct intel_iommu *iommu, u16 index, u16 subhandle)
|
|
{
|
|
spin_lock(&irq_2_ir_lock);
|
|
if (irq >= NR_IRQS || irq_2_iommu[irq].iommu) {
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return -1;
|
|
}
|
|
|
|
irq_2_iommu[irq].iommu = iommu;
|
|
irq_2_iommu[irq].irte_index = index;
|
|
irq_2_iommu[irq].sub_handle = subhandle;
|
|
irq_2_iommu[irq].irte_mask = 0;
|
|
|
|
spin_unlock(&irq_2_ir_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int clear_irte_irq(int irq, struct intel_iommu *iommu, u16 index)
|
|
{
|
|
spin_lock(&irq_2_ir_lock);
|
|
if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return -1;
|
|
}
|
|
|
|
irq_2_iommu[irq].iommu = NULL;
|
|
irq_2_iommu[irq].irte_index = 0;
|
|
irq_2_iommu[irq].sub_handle = 0;
|
|
irq_2_iommu[irq].irte_mask = 0;
|
|
|
|
spin_unlock(&irq_2_ir_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int modify_irte(int irq, struct irte *irte_modified)
|
|
{
|
|
int index;
|
|
struct irte *irte;
|
|
struct intel_iommu *iommu;
|
|
|
|
spin_lock(&irq_2_ir_lock);
|
|
if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return -1;
|
|
}
|
|
|
|
iommu = irq_2_iommu[irq].iommu;
|
|
|
|
index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
|
|
irte = &iommu->ir_table->base[index];
|
|
|
|
set_64bit((unsigned long *)irte, irte_modified->low | (1 << 1));
|
|
__iommu_flush_cache(iommu, irte, sizeof(*irte));
|
|
|
|
qi_flush_iec(iommu, index, 0);
|
|
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return 0;
|
|
}
|
|
|
|
int flush_irte(int irq)
|
|
{
|
|
int index;
|
|
struct intel_iommu *iommu;
|
|
|
|
spin_lock(&irq_2_ir_lock);
|
|
if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return -1;
|
|
}
|
|
|
|
iommu = irq_2_iommu[irq].iommu;
|
|
|
|
index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
|
|
|
|
qi_flush_iec(iommu, index, irq_2_iommu[irq].irte_mask);
|
|
spin_unlock(&irq_2_ir_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct intel_iommu *map_ioapic_to_ir(int apic)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_IO_APICS; i++)
|
|
if (ir_ioapic[i].id == apic)
|
|
return ir_ioapic[i].iommu;
|
|
return NULL;
|
|
}
|
|
|
|
struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
|
|
drhd = dmar_find_matched_drhd_unit(dev);
|
|
if (!drhd)
|
|
return NULL;
|
|
|
|
return drhd->iommu;
|
|
}
|
|
|
|
int free_irte(int irq)
|
|
{
|
|
int index, i;
|
|
struct irte *irte;
|
|
struct intel_iommu *iommu;
|
|
|
|
spin_lock(&irq_2_ir_lock);
|
|
if (irq >= NR_IRQS || !irq_2_iommu[irq].iommu) {
|
|
spin_unlock(&irq_2_ir_lock);
|
|
return -1;
|
|
}
|
|
|
|
iommu = irq_2_iommu[irq].iommu;
|
|
|
|
index = irq_2_iommu[irq].irte_index + irq_2_iommu[irq].sub_handle;
|
|
irte = &iommu->ir_table->base[index];
|
|
|
|
if (!irq_2_iommu[irq].sub_handle) {
|
|
for (i = 0; i < (1 << irq_2_iommu[irq].irte_mask); i++)
|
|
set_64bit((unsigned long *)irte, 0);
|
|
qi_flush_iec(iommu, index, irq_2_iommu[irq].irte_mask);
|
|
}
|
|
|
|
irq_2_iommu[irq].iommu = NULL;
|
|
irq_2_iommu[irq].irte_index = 0;
|
|
irq_2_iommu[irq].sub_handle = 0;
|
|
irq_2_iommu[irq].irte_mask = 0;
|
|
|
|
spin_unlock(&irq_2_ir_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void iommu_set_intr_remapping(struct intel_iommu *iommu, int mode)
|
|
{
|
|
u64 addr;
|
|
u32 cmd, sts;
|
|
unsigned long flags;
|
|
|
|
addr = virt_to_phys((void *)iommu->ir_table->base);
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
dmar_writeq(iommu->reg + DMAR_IRTA_REG,
|
|
(addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
|
|
|
|
/* Set interrupt-remapping table pointer */
|
|
cmd = iommu->gcmd | DMA_GCMD_SIRTP;
|
|
writel(cmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_IRTPS), sts);
|
|
spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
|
|
/*
|
|
* global invalidation of interrupt entry cache before enabling
|
|
* interrupt-remapping.
|
|
*/
|
|
qi_global_iec(iommu);
|
|
|
|
spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
/* Enable interrupt-remapping */
|
|
cmd = iommu->gcmd | DMA_GCMD_IRE;
|
|
iommu->gcmd |= DMA_GCMD_IRE;
|
|
writel(cmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
|
|
readl, (sts & DMA_GSTS_IRES), sts);
|
|
|
|
spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
|
|
static int setup_intr_remapping(struct intel_iommu *iommu, int mode)
|
|
{
|
|
struct ir_table *ir_table;
|
|
struct page *pages;
|
|
|
|
ir_table = iommu->ir_table = kzalloc(sizeof(struct ir_table),
|
|
GFP_KERNEL);
|
|
|
|
if (!iommu->ir_table)
|
|
return -ENOMEM;
|
|
|
|
pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER);
|
|
|
|
if (!pages) {
|
|
printk(KERN_ERR "failed to allocate pages of order %d\n",
|
|
INTR_REMAP_PAGE_ORDER);
|
|
kfree(iommu->ir_table);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ir_table->base = page_address(pages);
|
|
|
|
iommu_set_intr_remapping(iommu, mode);
|
|
return 0;
|
|
}
|
|
|
|
int __init enable_intr_remapping(int eim)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
int setup = 0;
|
|
|
|
/*
|
|
* check for the Interrupt-remapping support
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
struct intel_iommu *iommu = drhd->iommu;
|
|
|
|
if (!ecap_ir_support(iommu->ecap))
|
|
continue;
|
|
|
|
if (eim && !ecap_eim_support(iommu->ecap)) {
|
|
printk(KERN_INFO "DRHD %Lx: EIM not supported by DRHD, "
|
|
" ecap %Lx\n", drhd->reg_base_addr, iommu->ecap);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Enable queued invalidation for all the DRHD's.
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
int ret;
|
|
struct intel_iommu *iommu = drhd->iommu;
|
|
ret = dmar_enable_qi(iommu);
|
|
|
|
if (ret) {
|
|
printk(KERN_ERR "DRHD %Lx: failed to enable queued, "
|
|
" invalidation, ecap %Lx, ret %d\n",
|
|
drhd->reg_base_addr, iommu->ecap, ret);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup Interrupt-remapping for all the DRHD's now.
|
|
*/
|
|
for_each_drhd_unit(drhd) {
|
|
struct intel_iommu *iommu = drhd->iommu;
|
|
|
|
if (!ecap_ir_support(iommu->ecap))
|
|
continue;
|
|
|
|
if (setup_intr_remapping(iommu, eim))
|
|
goto error;
|
|
|
|
setup = 1;
|
|
}
|
|
|
|
if (!setup)
|
|
goto error;
|
|
|
|
intr_remapping_enabled = 1;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
/*
|
|
* handle error condition gracefully here!
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
static int ir_parse_ioapic_scope(struct acpi_dmar_header *header,
|
|
struct intel_iommu *iommu)
|
|
{
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
struct acpi_dmar_device_scope *scope;
|
|
void *start, *end;
|
|
|
|
drhd = (struct acpi_dmar_hardware_unit *)header;
|
|
|
|
start = (void *)(drhd + 1);
|
|
end = ((void *)drhd) + header->length;
|
|
|
|
while (start < end) {
|
|
scope = start;
|
|
if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
|
|
if (ir_ioapic_num == MAX_IO_APICS) {
|
|
printk(KERN_WARNING "Exceeded Max IO APICS\n");
|
|
return -1;
|
|
}
|
|
|
|
printk(KERN_INFO "IOAPIC id %d under DRHD base"
|
|
" 0x%Lx\n", scope->enumeration_id,
|
|
drhd->address);
|
|
|
|
ir_ioapic[ir_ioapic_num].iommu = iommu;
|
|
ir_ioapic[ir_ioapic_num].id = scope->enumeration_id;
|
|
ir_ioapic_num++;
|
|
}
|
|
start += scope->length;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finds the assocaition between IOAPIC's and its Interrupt-remapping
|
|
* hardware unit.
|
|
*/
|
|
int __init parse_ioapics_under_ir(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
int ir_supported = 0;
|
|
|
|
for_each_drhd_unit(drhd) {
|
|
struct intel_iommu *iommu = drhd->iommu;
|
|
|
|
if (ecap_ir_support(iommu->ecap)) {
|
|
if (ir_parse_ioapic_scope(drhd->hdr, iommu))
|
|
return -1;
|
|
|
|
ir_supported = 1;
|
|
}
|
|
}
|
|
|
|
if (ir_supported && ir_ioapic_num != nr_ioapics) {
|
|
printk(KERN_WARNING
|
|
"Not all IO-APIC's listed under remapping hardware\n");
|
|
return -1;
|
|
}
|
|
|
|
return ir_supported;
|
|
}
|