mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-24 19:44:55 +00:00
bb44e5d1c6
add kernel/sched_rt.c: SCHED_FIFO/SCHED_RR support. The behavior and semantics of SCHED_FIFO/SCHED_RR tasks is unchanged. Signed-off-by: Ingo Molnar <mingo@elte.hu>
256 lines
6.0 KiB
C
256 lines
6.0 KiB
C
/*
|
|
* Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
|
|
* policies)
|
|
*/
|
|
|
|
/*
|
|
* Update the current task's runtime statistics. Skip current tasks that
|
|
* are not in our scheduling class.
|
|
*/
|
|
static inline void update_curr_rt(struct rq *rq, u64 now)
|
|
{
|
|
struct task_struct *curr = rq->curr;
|
|
u64 delta_exec;
|
|
|
|
if (!task_has_rt_policy(curr))
|
|
return;
|
|
|
|
delta_exec = now - curr->se.exec_start;
|
|
if (unlikely((s64)delta_exec < 0))
|
|
delta_exec = 0;
|
|
if (unlikely(delta_exec > curr->se.exec_max))
|
|
curr->se.exec_max = delta_exec;
|
|
|
|
curr->se.sum_exec_runtime += delta_exec;
|
|
curr->se.exec_start = now;
|
|
}
|
|
|
|
static void
|
|
enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
|
|
{
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
list_add_tail(&p->run_list, array->queue + p->prio);
|
|
__set_bit(p->prio, array->bitmap);
|
|
}
|
|
|
|
/*
|
|
* Adding/removing a task to/from a priority array:
|
|
*/
|
|
static void
|
|
dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep, u64 now)
|
|
{
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
update_curr_rt(rq, now);
|
|
|
|
list_del(&p->run_list);
|
|
if (list_empty(array->queue + p->prio))
|
|
__clear_bit(p->prio, array->bitmap);
|
|
}
|
|
|
|
/*
|
|
* Put task to the end of the run list without the overhead of dequeue
|
|
* followed by enqueue.
|
|
*/
|
|
static void requeue_task_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
|
|
list_move_tail(&p->run_list, array->queue + p->prio);
|
|
}
|
|
|
|
static void
|
|
yield_task_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
requeue_task_rt(rq, p);
|
|
}
|
|
|
|
/*
|
|
* Preempt the current task with a newly woken task if needed:
|
|
*/
|
|
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
if (p->prio < rq->curr->prio)
|
|
resched_task(rq->curr);
|
|
}
|
|
|
|
static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
|
|
{
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
struct task_struct *next;
|
|
struct list_head *queue;
|
|
int idx;
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
if (idx >= MAX_RT_PRIO)
|
|
return NULL;
|
|
|
|
queue = array->queue + idx;
|
|
next = list_entry(queue->next, struct task_struct, run_list);
|
|
|
|
next->se.exec_start = now;
|
|
|
|
return next;
|
|
}
|
|
|
|
static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
|
|
{
|
|
update_curr_rt(rq, now);
|
|
p->se.exec_start = 0;
|
|
}
|
|
|
|
/*
|
|
* Load-balancing iterator. Note: while the runqueue stays locked
|
|
* during the whole iteration, the current task might be
|
|
* dequeued so the iterator has to be dequeue-safe. Here we
|
|
* achieve that by always pre-iterating before returning
|
|
* the current task:
|
|
*/
|
|
static struct task_struct *load_balance_start_rt(void *arg)
|
|
{
|
|
struct rq *rq = arg;
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
struct list_head *head, *curr;
|
|
struct task_struct *p;
|
|
int idx;
|
|
|
|
idx = sched_find_first_bit(array->bitmap);
|
|
if (idx >= MAX_RT_PRIO)
|
|
return NULL;
|
|
|
|
head = array->queue + idx;
|
|
curr = head->prev;
|
|
|
|
p = list_entry(curr, struct task_struct, run_list);
|
|
|
|
curr = curr->prev;
|
|
|
|
rq->rt.rt_load_balance_idx = idx;
|
|
rq->rt.rt_load_balance_head = head;
|
|
rq->rt.rt_load_balance_curr = curr;
|
|
|
|
return p;
|
|
}
|
|
|
|
static struct task_struct *load_balance_next_rt(void *arg)
|
|
{
|
|
struct rq *rq = arg;
|
|
struct rt_prio_array *array = &rq->rt.active;
|
|
struct list_head *head, *curr;
|
|
struct task_struct *p;
|
|
int idx;
|
|
|
|
idx = rq->rt.rt_load_balance_idx;
|
|
head = rq->rt.rt_load_balance_head;
|
|
curr = rq->rt.rt_load_balance_curr;
|
|
|
|
/*
|
|
* If we arrived back to the head again then
|
|
* iterate to the next queue (if any):
|
|
*/
|
|
if (unlikely(head == curr)) {
|
|
int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
|
|
|
|
if (next_idx >= MAX_RT_PRIO)
|
|
return NULL;
|
|
|
|
idx = next_idx;
|
|
head = array->queue + idx;
|
|
curr = head->prev;
|
|
|
|
rq->rt.rt_load_balance_idx = idx;
|
|
rq->rt.rt_load_balance_head = head;
|
|
}
|
|
|
|
p = list_entry(curr, struct task_struct, run_list);
|
|
|
|
curr = curr->prev;
|
|
|
|
rq->rt.rt_load_balance_curr = curr;
|
|
|
|
return p;
|
|
}
|
|
|
|
static int
|
|
load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
unsigned long max_nr_move, unsigned long max_load_move,
|
|
struct sched_domain *sd, enum cpu_idle_type idle,
|
|
int *all_pinned, unsigned long *load_moved)
|
|
{
|
|
int this_best_prio, best_prio, best_prio_seen = 0;
|
|
int nr_moved;
|
|
struct rq_iterator rt_rq_iterator;
|
|
|
|
best_prio = sched_find_first_bit(busiest->rt.active.bitmap);
|
|
this_best_prio = sched_find_first_bit(this_rq->rt.active.bitmap);
|
|
|
|
/*
|
|
* Enable handling of the case where there is more than one task
|
|
* with the best priority. If the current running task is one
|
|
* of those with prio==best_prio we know it won't be moved
|
|
* and therefore it's safe to override the skip (based on load)
|
|
* of any task we find with that prio.
|
|
*/
|
|
if (busiest->curr->prio == best_prio)
|
|
best_prio_seen = 1;
|
|
|
|
rt_rq_iterator.start = load_balance_start_rt;
|
|
rt_rq_iterator.next = load_balance_next_rt;
|
|
/* pass 'busiest' rq argument into
|
|
* load_balance_[start|next]_rt iterators
|
|
*/
|
|
rt_rq_iterator.arg = busiest;
|
|
|
|
nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
|
|
max_load_move, sd, idle, all_pinned, load_moved,
|
|
this_best_prio, best_prio, best_prio_seen,
|
|
&rt_rq_iterator);
|
|
|
|
return nr_moved;
|
|
}
|
|
|
|
static void task_tick_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
/*
|
|
* RR tasks need a special form of timeslice management.
|
|
* FIFO tasks have no timeslices.
|
|
*/
|
|
if (p->policy != SCHED_RR)
|
|
return;
|
|
|
|
if (--p->time_slice)
|
|
return;
|
|
|
|
p->time_slice = static_prio_timeslice(p->static_prio);
|
|
set_tsk_need_resched(p);
|
|
|
|
/* put it at the end of the queue: */
|
|
requeue_task_rt(rq, p);
|
|
}
|
|
|
|
/*
|
|
* No parent/child timeslice management necessary for RT tasks,
|
|
* just activate them:
|
|
*/
|
|
static void task_new_rt(struct rq *rq, struct task_struct *p)
|
|
{
|
|
activate_task(rq, p, 1);
|
|
}
|
|
|
|
static struct sched_class rt_sched_class __read_mostly = {
|
|
.enqueue_task = enqueue_task_rt,
|
|
.dequeue_task = dequeue_task_rt,
|
|
.yield_task = yield_task_rt,
|
|
|
|
.check_preempt_curr = check_preempt_curr_rt,
|
|
|
|
.pick_next_task = pick_next_task_rt,
|
|
.put_prev_task = put_prev_task_rt,
|
|
|
|
.load_balance = load_balance_rt,
|
|
|
|
.task_tick = task_tick_rt,
|
|
.task_new = task_new_rt,
|
|
};
|