mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 01:51:42 +00:00
44c11430b5
If NMI is received during handling of another NMI it should be injected immediately after IRET from previous NMI handler, but SVM intercept IRET before instruction execution so we can't inject pending NMI at this point and there is not way to request exit when NMI window opens. This patch fix SVM code to open NMI window after IRET by single stepping over IRET instruction. Signed-off-by: Gleb Natapov <gleb@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2751 lines
70 KiB
C
2751 lines
70 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* AMD SVM support
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
*
|
|
* Authors:
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Avi Kivity <avi@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include "kvm_svm.h"
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/desc.h>
|
|
|
|
#include <asm/virtext.h>
|
|
|
|
#define __ex(x) __kvm_handle_fault_on_reboot(x)
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#define IOPM_ALLOC_ORDER 2
|
|
#define MSRPM_ALLOC_ORDER 1
|
|
|
|
#define SEG_TYPE_LDT 2
|
|
#define SEG_TYPE_BUSY_TSS16 3
|
|
|
|
#define SVM_FEATURE_NPT (1 << 0)
|
|
#define SVM_FEATURE_LBRV (1 << 1)
|
|
#define SVM_FEATURE_SVML (1 << 2)
|
|
|
|
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
|
|
|
|
/* Turn on to get debugging output*/
|
|
/* #define NESTED_DEBUG */
|
|
|
|
#ifdef NESTED_DEBUG
|
|
#define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
|
|
#else
|
|
#define nsvm_printk(fmt, args...) do {} while(0)
|
|
#endif
|
|
|
|
/* enable NPT for AMD64 and X86 with PAE */
|
|
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
|
|
static bool npt_enabled = true;
|
|
#else
|
|
static bool npt_enabled = false;
|
|
#endif
|
|
static int npt = 1;
|
|
|
|
module_param(npt, int, S_IRUGO);
|
|
|
|
static int nested = 0;
|
|
module_param(nested, int, S_IRUGO);
|
|
|
|
static void svm_flush_tlb(struct kvm_vcpu *vcpu);
|
|
|
|
static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override);
|
|
static int nested_svm_vmexit(struct vcpu_svm *svm);
|
|
static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
|
|
void *arg2, void *opaque);
|
|
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
|
|
bool has_error_code, u32 error_code);
|
|
|
|
static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
|
|
{
|
|
return container_of(vcpu, struct vcpu_svm, vcpu);
|
|
}
|
|
|
|
static inline bool is_nested(struct vcpu_svm *svm)
|
|
{
|
|
return svm->nested_vmcb;
|
|
}
|
|
|
|
static unsigned long iopm_base;
|
|
|
|
struct kvm_ldttss_desc {
|
|
u16 limit0;
|
|
u16 base0;
|
|
unsigned base1 : 8, type : 5, dpl : 2, p : 1;
|
|
unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
|
|
u32 base3;
|
|
u32 zero1;
|
|
} __attribute__((packed));
|
|
|
|
struct svm_cpu_data {
|
|
int cpu;
|
|
|
|
u64 asid_generation;
|
|
u32 max_asid;
|
|
u32 next_asid;
|
|
struct kvm_ldttss_desc *tss_desc;
|
|
|
|
struct page *save_area;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
|
|
static uint32_t svm_features;
|
|
|
|
struct svm_init_data {
|
|
int cpu;
|
|
int r;
|
|
};
|
|
|
|
static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
|
|
|
|
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
|
|
#define MSRS_RANGE_SIZE 2048
|
|
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
|
|
|
|
#define MAX_INST_SIZE 15
|
|
|
|
static inline u32 svm_has(u32 feat)
|
|
{
|
|
return svm_features & feat;
|
|
}
|
|
|
|
static inline void clgi(void)
|
|
{
|
|
asm volatile (__ex(SVM_CLGI));
|
|
}
|
|
|
|
static inline void stgi(void)
|
|
{
|
|
asm volatile (__ex(SVM_STGI));
|
|
}
|
|
|
|
static inline void invlpga(unsigned long addr, u32 asid)
|
|
{
|
|
asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
|
|
}
|
|
|
|
static inline unsigned long kvm_read_cr2(void)
|
|
{
|
|
unsigned long cr2;
|
|
|
|
asm volatile ("mov %%cr2, %0" : "=r" (cr2));
|
|
return cr2;
|
|
}
|
|
|
|
static inline void kvm_write_cr2(unsigned long val)
|
|
{
|
|
asm volatile ("mov %0, %%cr2" :: "r" (val));
|
|
}
|
|
|
|
static inline void force_new_asid(struct kvm_vcpu *vcpu)
|
|
{
|
|
to_svm(vcpu)->asid_generation--;
|
|
}
|
|
|
|
static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
force_new_asid(vcpu);
|
|
}
|
|
|
|
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
if (!npt_enabled && !(efer & EFER_LMA))
|
|
efer &= ~EFER_LME;
|
|
|
|
to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
|
|
vcpu->arch.shadow_efer = efer;
|
|
}
|
|
|
|
static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
|
|
bool has_error_code, u32 error_code)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/* If we are within a nested VM we'd better #VMEXIT and let the
|
|
guest handle the exception */
|
|
if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
|
|
return;
|
|
|
|
svm->vmcb->control.event_inj = nr
|
|
| SVM_EVTINJ_VALID
|
|
| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
|
|
| SVM_EVTINJ_TYPE_EXEPT;
|
|
svm->vmcb->control.event_inj_err = error_code;
|
|
}
|
|
|
|
static int is_external_interrupt(u32 info)
|
|
{
|
|
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
|
|
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
|
|
}
|
|
|
|
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 ret = 0;
|
|
|
|
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
|
|
ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
|
|
return ret & mask;
|
|
}
|
|
|
|
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (mask == 0)
|
|
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
|
|
else
|
|
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
|
|
|
|
}
|
|
|
|
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!svm->next_rip) {
|
|
if (emulate_instruction(vcpu, vcpu->run, 0, 0, EMULTYPE_SKIP) !=
|
|
EMULATE_DONE)
|
|
printk(KERN_DEBUG "%s: NOP\n", __func__);
|
|
return;
|
|
}
|
|
if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
|
|
printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
|
|
__func__, kvm_rip_read(vcpu), svm->next_rip);
|
|
|
|
kvm_rip_write(vcpu, svm->next_rip);
|
|
svm_set_interrupt_shadow(vcpu, 0);
|
|
}
|
|
|
|
static int has_svm(void)
|
|
{
|
|
const char *msg;
|
|
|
|
if (!cpu_has_svm(&msg)) {
|
|
printk(KERN_INFO "has_svm: %s\n", msg);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void svm_hardware_disable(void *garbage)
|
|
{
|
|
cpu_svm_disable();
|
|
}
|
|
|
|
static void svm_hardware_enable(void *garbage)
|
|
{
|
|
|
|
struct svm_cpu_data *svm_data;
|
|
uint64_t efer;
|
|
struct desc_ptr gdt_descr;
|
|
struct desc_struct *gdt;
|
|
int me = raw_smp_processor_id();
|
|
|
|
if (!has_svm()) {
|
|
printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
|
|
return;
|
|
}
|
|
svm_data = per_cpu(svm_data, me);
|
|
|
|
if (!svm_data) {
|
|
printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
|
|
me);
|
|
return;
|
|
}
|
|
|
|
svm_data->asid_generation = 1;
|
|
svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
|
|
svm_data->next_asid = svm_data->max_asid + 1;
|
|
|
|
asm volatile ("sgdt %0" : "=m"(gdt_descr));
|
|
gdt = (struct desc_struct *)gdt_descr.address;
|
|
svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
|
|
|
|
rdmsrl(MSR_EFER, efer);
|
|
wrmsrl(MSR_EFER, efer | EFER_SVME);
|
|
|
|
wrmsrl(MSR_VM_HSAVE_PA,
|
|
page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
|
|
}
|
|
|
|
static void svm_cpu_uninit(int cpu)
|
|
{
|
|
struct svm_cpu_data *svm_data
|
|
= per_cpu(svm_data, raw_smp_processor_id());
|
|
|
|
if (!svm_data)
|
|
return;
|
|
|
|
per_cpu(svm_data, raw_smp_processor_id()) = NULL;
|
|
__free_page(svm_data->save_area);
|
|
kfree(svm_data);
|
|
}
|
|
|
|
static int svm_cpu_init(int cpu)
|
|
{
|
|
struct svm_cpu_data *svm_data;
|
|
int r;
|
|
|
|
svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
|
|
if (!svm_data)
|
|
return -ENOMEM;
|
|
svm_data->cpu = cpu;
|
|
svm_data->save_area = alloc_page(GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!svm_data->save_area)
|
|
goto err_1;
|
|
|
|
per_cpu(svm_data, cpu) = svm_data;
|
|
|
|
return 0;
|
|
|
|
err_1:
|
|
kfree(svm_data);
|
|
return r;
|
|
|
|
}
|
|
|
|
static void set_msr_interception(u32 *msrpm, unsigned msr,
|
|
int read, int write)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_MSR_MAPS; i++) {
|
|
if (msr >= msrpm_ranges[i] &&
|
|
msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
|
|
u32 msr_offset = (i * MSRS_IN_RANGE + msr -
|
|
msrpm_ranges[i]) * 2;
|
|
|
|
u32 *base = msrpm + (msr_offset / 32);
|
|
u32 msr_shift = msr_offset % 32;
|
|
u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
|
|
*base = (*base & ~(0x3 << msr_shift)) |
|
|
(mask << msr_shift);
|
|
return;
|
|
}
|
|
}
|
|
BUG();
|
|
}
|
|
|
|
static void svm_vcpu_init_msrpm(u32 *msrpm)
|
|
{
|
|
memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
|
|
|
|
#ifdef CONFIG_X86_64
|
|
set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
|
|
set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
|
|
set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
|
|
set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
|
|
set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
|
|
set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
|
|
#endif
|
|
set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
|
|
}
|
|
|
|
static void svm_enable_lbrv(struct vcpu_svm *svm)
|
|
{
|
|
u32 *msrpm = svm->msrpm;
|
|
|
|
svm->vmcb->control.lbr_ctl = 1;
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
|
|
}
|
|
|
|
static void svm_disable_lbrv(struct vcpu_svm *svm)
|
|
{
|
|
u32 *msrpm = svm->msrpm;
|
|
|
|
svm->vmcb->control.lbr_ctl = 0;
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
|
|
}
|
|
|
|
static __init int svm_hardware_setup(void)
|
|
{
|
|
int cpu;
|
|
struct page *iopm_pages;
|
|
void *iopm_va;
|
|
int r;
|
|
|
|
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
|
|
|
|
if (!iopm_pages)
|
|
return -ENOMEM;
|
|
|
|
iopm_va = page_address(iopm_pages);
|
|
memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
|
|
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_NX))
|
|
kvm_enable_efer_bits(EFER_NX);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
|
|
kvm_enable_efer_bits(EFER_FFXSR);
|
|
|
|
if (nested) {
|
|
printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
|
|
kvm_enable_efer_bits(EFER_SVME);
|
|
}
|
|
|
|
for_each_online_cpu(cpu) {
|
|
r = svm_cpu_init(cpu);
|
|
if (r)
|
|
goto err;
|
|
}
|
|
|
|
svm_features = cpuid_edx(SVM_CPUID_FUNC);
|
|
|
|
if (!svm_has(SVM_FEATURE_NPT))
|
|
npt_enabled = false;
|
|
|
|
if (npt_enabled && !npt) {
|
|
printk(KERN_INFO "kvm: Nested Paging disabled\n");
|
|
npt_enabled = false;
|
|
}
|
|
|
|
if (npt_enabled) {
|
|
printk(KERN_INFO "kvm: Nested Paging enabled\n");
|
|
kvm_enable_tdp();
|
|
} else
|
|
kvm_disable_tdp();
|
|
|
|
return 0;
|
|
|
|
err:
|
|
__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
|
|
iopm_base = 0;
|
|
return r;
|
|
}
|
|
|
|
static __exit void svm_hardware_unsetup(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu)
|
|
svm_cpu_uninit(cpu);
|
|
|
|
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
|
|
iopm_base = 0;
|
|
}
|
|
|
|
static void init_seg(struct vmcb_seg *seg)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
|
|
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | type;
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static void init_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
|
|
control->intercept_cr_read = INTERCEPT_CR0_MASK |
|
|
INTERCEPT_CR3_MASK |
|
|
INTERCEPT_CR4_MASK;
|
|
|
|
control->intercept_cr_write = INTERCEPT_CR0_MASK |
|
|
INTERCEPT_CR3_MASK |
|
|
INTERCEPT_CR4_MASK |
|
|
INTERCEPT_CR8_MASK;
|
|
|
|
control->intercept_dr_read = INTERCEPT_DR0_MASK |
|
|
INTERCEPT_DR1_MASK |
|
|
INTERCEPT_DR2_MASK |
|
|
INTERCEPT_DR3_MASK;
|
|
|
|
control->intercept_dr_write = INTERCEPT_DR0_MASK |
|
|
INTERCEPT_DR1_MASK |
|
|
INTERCEPT_DR2_MASK |
|
|
INTERCEPT_DR3_MASK |
|
|
INTERCEPT_DR5_MASK |
|
|
INTERCEPT_DR7_MASK;
|
|
|
|
control->intercept_exceptions = (1 << PF_VECTOR) |
|
|
(1 << UD_VECTOR) |
|
|
(1 << MC_VECTOR);
|
|
|
|
|
|
control->intercept = (1ULL << INTERCEPT_INTR) |
|
|
(1ULL << INTERCEPT_NMI) |
|
|
(1ULL << INTERCEPT_SMI) |
|
|
(1ULL << INTERCEPT_CPUID) |
|
|
(1ULL << INTERCEPT_INVD) |
|
|
(1ULL << INTERCEPT_HLT) |
|
|
(1ULL << INTERCEPT_INVLPG) |
|
|
(1ULL << INTERCEPT_INVLPGA) |
|
|
(1ULL << INTERCEPT_IOIO_PROT) |
|
|
(1ULL << INTERCEPT_MSR_PROT) |
|
|
(1ULL << INTERCEPT_TASK_SWITCH) |
|
|
(1ULL << INTERCEPT_SHUTDOWN) |
|
|
(1ULL << INTERCEPT_VMRUN) |
|
|
(1ULL << INTERCEPT_VMMCALL) |
|
|
(1ULL << INTERCEPT_VMLOAD) |
|
|
(1ULL << INTERCEPT_VMSAVE) |
|
|
(1ULL << INTERCEPT_STGI) |
|
|
(1ULL << INTERCEPT_CLGI) |
|
|
(1ULL << INTERCEPT_SKINIT) |
|
|
(1ULL << INTERCEPT_WBINVD) |
|
|
(1ULL << INTERCEPT_MONITOR) |
|
|
(1ULL << INTERCEPT_MWAIT);
|
|
|
|
control->iopm_base_pa = iopm_base;
|
|
control->msrpm_base_pa = __pa(svm->msrpm);
|
|
control->tsc_offset = 0;
|
|
control->int_ctl = V_INTR_MASKING_MASK;
|
|
|
|
init_seg(&save->es);
|
|
init_seg(&save->ss);
|
|
init_seg(&save->ds);
|
|
init_seg(&save->fs);
|
|
init_seg(&save->gs);
|
|
|
|
save->cs.selector = 0xf000;
|
|
/* Executable/Readable Code Segment */
|
|
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
|
|
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
|
|
save->cs.limit = 0xffff;
|
|
/*
|
|
* cs.base should really be 0xffff0000, but vmx can't handle that, so
|
|
* be consistent with it.
|
|
*
|
|
* Replace when we have real mode working for vmx.
|
|
*/
|
|
save->cs.base = 0xf0000;
|
|
|
|
save->gdtr.limit = 0xffff;
|
|
save->idtr.limit = 0xffff;
|
|
|
|
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
|
|
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
|
|
|
|
save->efer = EFER_SVME;
|
|
save->dr6 = 0xffff0ff0;
|
|
save->dr7 = 0x400;
|
|
save->rflags = 2;
|
|
save->rip = 0x0000fff0;
|
|
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
|
|
|
|
/*
|
|
* cr0 val on cpu init should be 0x60000010, we enable cpu
|
|
* cache by default. the orderly way is to enable cache in bios.
|
|
*/
|
|
save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
|
|
save->cr4 = X86_CR4_PAE;
|
|
/* rdx = ?? */
|
|
|
|
if (npt_enabled) {
|
|
/* Setup VMCB for Nested Paging */
|
|
control->nested_ctl = 1;
|
|
control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
|
|
(1ULL << INTERCEPT_INVLPG));
|
|
control->intercept_exceptions &= ~(1 << PF_VECTOR);
|
|
control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
|
|
INTERCEPT_CR3_MASK);
|
|
control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
|
|
INTERCEPT_CR3_MASK);
|
|
save->g_pat = 0x0007040600070406ULL;
|
|
/* enable caching because the QEMU Bios doesn't enable it */
|
|
save->cr0 = X86_CR0_ET;
|
|
save->cr3 = 0;
|
|
save->cr4 = 0;
|
|
}
|
|
force_new_asid(&svm->vcpu);
|
|
|
|
svm->nested_vmcb = 0;
|
|
svm->vcpu.arch.hflags = HF_GIF_MASK;
|
|
}
|
|
|
|
static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
init_vmcb(svm);
|
|
|
|
if (vcpu->vcpu_id != 0) {
|
|
kvm_rip_write(vcpu, 0);
|
|
svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
|
|
svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
|
|
}
|
|
vcpu->arch.regs_avail = ~0;
|
|
vcpu->arch.regs_dirty = ~0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
|
|
{
|
|
struct vcpu_svm *svm;
|
|
struct page *page;
|
|
struct page *msrpm_pages;
|
|
struct page *hsave_page;
|
|
struct page *nested_msrpm_pages;
|
|
int err;
|
|
|
|
svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!svm) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
err = kvm_vcpu_init(&svm->vcpu, kvm, id);
|
|
if (err)
|
|
goto free_svm;
|
|
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto uninit;
|
|
}
|
|
|
|
err = -ENOMEM;
|
|
msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
|
|
if (!msrpm_pages)
|
|
goto uninit;
|
|
|
|
nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
|
|
if (!nested_msrpm_pages)
|
|
goto uninit;
|
|
|
|
svm->msrpm = page_address(msrpm_pages);
|
|
svm_vcpu_init_msrpm(svm->msrpm);
|
|
|
|
hsave_page = alloc_page(GFP_KERNEL);
|
|
if (!hsave_page)
|
|
goto uninit;
|
|
svm->hsave = page_address(hsave_page);
|
|
|
|
svm->nested_msrpm = page_address(nested_msrpm_pages);
|
|
|
|
svm->vmcb = page_address(page);
|
|
clear_page(svm->vmcb);
|
|
svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
|
|
svm->asid_generation = 0;
|
|
init_vmcb(svm);
|
|
|
|
fx_init(&svm->vcpu);
|
|
svm->vcpu.fpu_active = 1;
|
|
svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
|
|
if (svm->vcpu.vcpu_id == 0)
|
|
svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
|
|
|
|
return &svm->vcpu;
|
|
|
|
uninit:
|
|
kvm_vcpu_uninit(&svm->vcpu);
|
|
free_svm:
|
|
kmem_cache_free(kvm_vcpu_cache, svm);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
|
|
__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
|
|
__free_page(virt_to_page(svm->hsave));
|
|
__free_pages(virt_to_page(svm->nested_msrpm), MSRPM_ALLOC_ORDER);
|
|
kvm_vcpu_uninit(vcpu);
|
|
kmem_cache_free(kvm_vcpu_cache, svm);
|
|
}
|
|
|
|
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int i;
|
|
|
|
if (unlikely(cpu != vcpu->cpu)) {
|
|
u64 tsc_this, delta;
|
|
|
|
/*
|
|
* Make sure that the guest sees a monotonically
|
|
* increasing TSC.
|
|
*/
|
|
rdtscll(tsc_this);
|
|
delta = vcpu->arch.host_tsc - tsc_this;
|
|
svm->vmcb->control.tsc_offset += delta;
|
|
vcpu->cpu = cpu;
|
|
kvm_migrate_timers(vcpu);
|
|
}
|
|
|
|
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
|
|
rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
|
|
}
|
|
|
|
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int i;
|
|
|
|
++vcpu->stat.host_state_reload;
|
|
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
|
|
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
|
|
|
|
rdtscll(vcpu->arch.host_tsc);
|
|
}
|
|
|
|
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
return to_svm(vcpu)->vmcb->save.rflags;
|
|
}
|
|
|
|
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
to_svm(vcpu)->vmcb->save.rflags = rflags;
|
|
}
|
|
|
|
static void svm_set_vintr(struct vcpu_svm *svm)
|
|
{
|
|
svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
|
|
}
|
|
|
|
static void svm_clear_vintr(struct vcpu_svm *svm)
|
|
{
|
|
svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
|
|
}
|
|
|
|
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_CS: return &save->cs;
|
|
case VCPU_SREG_DS: return &save->ds;
|
|
case VCPU_SREG_ES: return &save->es;
|
|
case VCPU_SREG_FS: return &save->fs;
|
|
case VCPU_SREG_GS: return &save->gs;
|
|
case VCPU_SREG_SS: return &save->ss;
|
|
case VCPU_SREG_TR: return &save->tr;
|
|
case VCPU_SREG_LDTR: return &save->ldtr;
|
|
}
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
return s->base;
|
|
}
|
|
|
|
static void svm_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
var->base = s->base;
|
|
var->limit = s->limit;
|
|
var->selector = s->selector;
|
|
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
|
|
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
|
|
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
|
|
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
|
|
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
|
|
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
|
|
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
|
|
var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
|
|
|
|
/* AMD's VMCB does not have an explicit unusable field, so emulate it
|
|
* for cross vendor migration purposes by "not present"
|
|
*/
|
|
var->unusable = !var->present || (var->type == 0);
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_CS:
|
|
/*
|
|
* SVM always stores 0 for the 'G' bit in the CS selector in
|
|
* the VMCB on a VMEXIT. This hurts cross-vendor migration:
|
|
* Intel's VMENTRY has a check on the 'G' bit.
|
|
*/
|
|
var->g = s->limit > 0xfffff;
|
|
break;
|
|
case VCPU_SREG_TR:
|
|
/*
|
|
* Work around a bug where the busy flag in the tr selector
|
|
* isn't exposed
|
|
*/
|
|
var->type |= 0x2;
|
|
break;
|
|
case VCPU_SREG_DS:
|
|
case VCPU_SREG_ES:
|
|
case VCPU_SREG_FS:
|
|
case VCPU_SREG_GS:
|
|
/*
|
|
* The accessed bit must always be set in the segment
|
|
* descriptor cache, although it can be cleared in the
|
|
* descriptor, the cached bit always remains at 1. Since
|
|
* Intel has a check on this, set it here to support
|
|
* cross-vendor migration.
|
|
*/
|
|
if (!var->unusable)
|
|
var->type |= 0x1;
|
|
break;
|
|
case VCPU_SREG_SS:
|
|
/* On AMD CPUs sometimes the DB bit in the segment
|
|
* descriptor is left as 1, although the whole segment has
|
|
* been made unusable. Clear it here to pass an Intel VMX
|
|
* entry check when cross vendor migrating.
|
|
*/
|
|
if (var->unusable)
|
|
var->db = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int svm_get_cpl(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
return save->cpl;
|
|
}
|
|
|
|
static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->limit = svm->vmcb->save.idtr.limit;
|
|
dt->base = svm->vmcb->save.idtr.base;
|
|
}
|
|
|
|
static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.idtr.limit = dt->limit;
|
|
svm->vmcb->save.idtr.base = dt->base ;
|
|
}
|
|
|
|
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->limit = svm->vmcb->save.gdtr.limit;
|
|
dt->base = svm->vmcb->save.gdtr.base;
|
|
}
|
|
|
|
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.gdtr.limit = dt->limit;
|
|
svm->vmcb->save.gdtr.base = dt->base ;
|
|
}
|
|
|
|
static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->arch.shadow_efer & EFER_LME) {
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.shadow_efer |= EFER_LMA;
|
|
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
|
|
}
|
|
|
|
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.shadow_efer &= ~EFER_LMA;
|
|
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
|
|
}
|
|
}
|
|
#endif
|
|
if (npt_enabled)
|
|
goto set;
|
|
|
|
if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
|
|
svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
|
|
vcpu->fpu_active = 1;
|
|
}
|
|
|
|
vcpu->arch.cr0 = cr0;
|
|
cr0 |= X86_CR0_PG | X86_CR0_WP;
|
|
if (!vcpu->fpu_active) {
|
|
svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
|
|
cr0 |= X86_CR0_TS;
|
|
}
|
|
set:
|
|
/*
|
|
* re-enable caching here because the QEMU bios
|
|
* does not do it - this results in some delay at
|
|
* reboot
|
|
*/
|
|
cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
|
svm->vmcb->save.cr0 = cr0;
|
|
}
|
|
|
|
static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
|
|
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
|
|
|
|
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
|
|
force_new_asid(vcpu);
|
|
|
|
vcpu->arch.cr4 = cr4;
|
|
if (!npt_enabled)
|
|
cr4 |= X86_CR4_PAE;
|
|
cr4 |= host_cr4_mce;
|
|
to_svm(vcpu)->vmcb->save.cr4 = cr4;
|
|
}
|
|
|
|
static void svm_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
s->base = var->base;
|
|
s->limit = var->limit;
|
|
s->selector = var->selector;
|
|
if (var->unusable)
|
|
s->attrib = 0;
|
|
else {
|
|
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
|
|
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
|
|
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
|
|
s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
|
|
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
|
|
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
|
|
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
|
|
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
|
|
}
|
|
if (seg == VCPU_SREG_CS)
|
|
svm->vmcb->save.cpl
|
|
= (svm->vmcb->save.cs.attrib
|
|
>> SVM_SELECTOR_DPL_SHIFT) & 3;
|
|
|
|
}
|
|
|
|
static void update_db_intercept(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.intercept_exceptions &=
|
|
~((1 << DB_VECTOR) | (1 << BP_VECTOR));
|
|
|
|
if (vcpu->arch.singlestep)
|
|
svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
|
|
if (vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
|
|
svm->vmcb->control.intercept_exceptions |=
|
|
1 << DB_VECTOR;
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
|
|
svm->vmcb->control.intercept_exceptions |=
|
|
1 << BP_VECTOR;
|
|
} else
|
|
vcpu->guest_debug = 0;
|
|
}
|
|
|
|
static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
|
|
{
|
|
int old_debug = vcpu->guest_debug;
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
vcpu->guest_debug = dbg->control;
|
|
|
|
update_db_intercept(vcpu);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
|
|
else
|
|
svm->vmcb->save.dr7 = vcpu->arch.dr7;
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
svm->vmcb->save.rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
|
|
else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
|
|
svm->vmcb->save.rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void load_host_msrs(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
|
|
#endif
|
|
}
|
|
|
|
static void save_host_msrs(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
|
|
#endif
|
|
}
|
|
|
|
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
|
|
{
|
|
if (svm_data->next_asid > svm_data->max_asid) {
|
|
++svm_data->asid_generation;
|
|
svm_data->next_asid = 1;
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
|
|
}
|
|
|
|
svm->vcpu.cpu = svm_data->cpu;
|
|
svm->asid_generation = svm_data->asid_generation;
|
|
svm->vmcb->control.asid = svm_data->next_asid++;
|
|
}
|
|
|
|
static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
unsigned long val;
|
|
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
val = vcpu->arch.db[dr];
|
|
break;
|
|
case 6:
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
val = vcpu->arch.dr6;
|
|
else
|
|
val = svm->vmcb->save.dr6;
|
|
break;
|
|
case 7:
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
|
|
val = vcpu->arch.dr7;
|
|
else
|
|
val = svm->vmcb->save.dr7;
|
|
break;
|
|
default:
|
|
val = 0;
|
|
}
|
|
|
|
KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
|
|
return val;
|
|
}
|
|
|
|
static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
|
|
int *exception)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)value, handler);
|
|
|
|
*exception = 0;
|
|
|
|
switch (dr) {
|
|
case 0 ... 3:
|
|
vcpu->arch.db[dr] = value;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
|
|
vcpu->arch.eff_db[dr] = value;
|
|
return;
|
|
case 4 ... 5:
|
|
if (vcpu->arch.cr4 & X86_CR4_DE)
|
|
*exception = UD_VECTOR;
|
|
return;
|
|
case 6:
|
|
if (value & 0xffffffff00000000ULL) {
|
|
*exception = GP_VECTOR;
|
|
return;
|
|
}
|
|
vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
|
|
return;
|
|
case 7:
|
|
if (value & 0xffffffff00000000ULL) {
|
|
*exception = GP_VECTOR;
|
|
return;
|
|
}
|
|
vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
|
|
if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
|
|
svm->vmcb->save.dr7 = vcpu->arch.dr7;
|
|
vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
|
|
}
|
|
return;
|
|
default:
|
|
/* FIXME: Possible case? */
|
|
printk(KERN_DEBUG "%s: unexpected dr %u\n",
|
|
__func__, dr);
|
|
*exception = UD_VECTOR;
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
u64 fault_address;
|
|
u32 error_code;
|
|
|
|
fault_address = svm->vmcb->control.exit_info_2;
|
|
error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
if (!npt_enabled)
|
|
KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
|
|
(u32)fault_address, (u32)(fault_address >> 32),
|
|
handler);
|
|
else
|
|
KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
|
|
(u32)fault_address, (u32)(fault_address >> 32),
|
|
handler);
|
|
/*
|
|
* FIXME: Tis shouldn't be necessary here, but there is a flush
|
|
* missing in the MMU code. Until we find this bug, flush the
|
|
* complete TLB here on an NPF
|
|
*/
|
|
if (npt_enabled)
|
|
svm_flush_tlb(&svm->vcpu);
|
|
else {
|
|
if (kvm_event_needs_reinjection(&svm->vcpu))
|
|
kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
|
|
}
|
|
return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
|
|
}
|
|
|
|
static int db_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
if (!(svm->vcpu.guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
|
|
!svm->vcpu.arch.singlestep) {
|
|
kvm_queue_exception(&svm->vcpu, DB_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (svm->vcpu.arch.singlestep) {
|
|
svm->vcpu.arch.singlestep = false;
|
|
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
|
|
svm->vmcb->save.rflags &=
|
|
~(X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
update_db_intercept(&svm->vcpu);
|
|
}
|
|
|
|
if (svm->vcpu.guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc =
|
|
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int bp_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = BP_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
int er;
|
|
|
|
er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
|
|
if (er != EMULATE_DONE)
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
|
|
if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
|
|
svm->vmcb->save.cr0 &= ~X86_CR0_TS;
|
|
svm->vcpu.fpu_active = 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
/*
|
|
* On an #MC intercept the MCE handler is not called automatically in
|
|
* the host. So do it by hand here.
|
|
*/
|
|
asm volatile (
|
|
"int $0x12\n");
|
|
/* not sure if we ever come back to this point */
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
/*
|
|
* VMCB is undefined after a SHUTDOWN intercept
|
|
* so reinitialize it.
|
|
*/
|
|
clear_page(svm->vmcb);
|
|
init_vmcb(svm);
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
|
|
static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
|
|
int size, in, string;
|
|
unsigned port;
|
|
|
|
++svm->vcpu.stat.io_exits;
|
|
|
|
svm->next_rip = svm->vmcb->control.exit_info_2;
|
|
|
|
string = (io_info & SVM_IOIO_STR_MASK) != 0;
|
|
|
|
if (string) {
|
|
if (emulate_instruction(&svm->vcpu,
|
|
kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
|
|
port = io_info >> 16;
|
|
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
|
|
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
|
|
}
|
|
|
|
static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
KVMTRACE_0D(NMI, &svm->vcpu, handler);
|
|
return 1;
|
|
}
|
|
|
|
static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
++svm->vcpu.stat.irq_exits;
|
|
KVMTRACE_0D(INTR, &svm->vcpu, handler);
|
|
return 1;
|
|
}
|
|
|
|
static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
return kvm_emulate_halt(&svm->vcpu);
|
|
}
|
|
|
|
static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
kvm_emulate_hypercall(&svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int nested_svm_check_permissions(struct vcpu_svm *svm)
|
|
{
|
|
if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
|
|
|| !is_paging(&svm->vcpu)) {
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (svm->vmcb->save.cpl) {
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
|
|
bool has_error_code, u32 error_code)
|
|
{
|
|
if (is_nested(svm)) {
|
|
svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
|
|
svm->vmcb->control.exit_code_hi = 0;
|
|
svm->vmcb->control.exit_info_1 = error_code;
|
|
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
|
|
if (nested_svm_exit_handled(svm, false)) {
|
|
nsvm_printk("VMexit -> EXCP 0x%x\n", nr);
|
|
|
|
nested_svm_vmexit(svm);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int nested_svm_intr(struct vcpu_svm *svm)
|
|
{
|
|
if (is_nested(svm)) {
|
|
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
|
|
return 0;
|
|
|
|
if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
|
|
return 0;
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_INTR;
|
|
|
|
if (nested_svm_exit_handled(svm, false)) {
|
|
nsvm_printk("VMexit -> INTR\n");
|
|
nested_svm_vmexit(svm);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct page *nested_svm_get_page(struct vcpu_svm *svm, u64 gpa)
|
|
{
|
|
struct page *page;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
if (is_error_page(page)) {
|
|
printk(KERN_INFO "%s: could not find page at 0x%llx\n",
|
|
__func__, gpa);
|
|
kvm_release_page_clean(page);
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
return NULL;
|
|
}
|
|
return page;
|
|
}
|
|
|
|
static int nested_svm_do(struct vcpu_svm *svm,
|
|
u64 arg1_gpa, u64 arg2_gpa, void *opaque,
|
|
int (*handler)(struct vcpu_svm *svm,
|
|
void *arg1,
|
|
void *arg2,
|
|
void *opaque))
|
|
{
|
|
struct page *arg1_page;
|
|
struct page *arg2_page = NULL;
|
|
void *arg1;
|
|
void *arg2 = NULL;
|
|
int retval;
|
|
|
|
arg1_page = nested_svm_get_page(svm, arg1_gpa);
|
|
if(arg1_page == NULL)
|
|
return 1;
|
|
|
|
if (arg2_gpa) {
|
|
arg2_page = nested_svm_get_page(svm, arg2_gpa);
|
|
if(arg2_page == NULL) {
|
|
kvm_release_page_clean(arg1_page);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
arg1 = kmap_atomic(arg1_page, KM_USER0);
|
|
if (arg2_gpa)
|
|
arg2 = kmap_atomic(arg2_page, KM_USER1);
|
|
|
|
retval = handler(svm, arg1, arg2, opaque);
|
|
|
|
kunmap_atomic(arg1, KM_USER0);
|
|
if (arg2_gpa)
|
|
kunmap_atomic(arg2, KM_USER1);
|
|
|
|
kvm_release_page_dirty(arg1_page);
|
|
if (arg2_gpa)
|
|
kvm_release_page_dirty(arg2_page);
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int nested_svm_exit_handled_real(struct vcpu_svm *svm,
|
|
void *arg1,
|
|
void *arg2,
|
|
void *opaque)
|
|
{
|
|
struct vmcb *nested_vmcb = (struct vmcb *)arg1;
|
|
bool kvm_overrides = *(bool *)opaque;
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
|
|
if (kvm_overrides) {
|
|
switch (exit_code) {
|
|
case SVM_EXIT_INTR:
|
|
case SVM_EXIT_NMI:
|
|
return 0;
|
|
/* For now we are always handling NPFs when using them */
|
|
case SVM_EXIT_NPF:
|
|
if (npt_enabled)
|
|
return 0;
|
|
break;
|
|
/* When we're shadowing, trap PFs */
|
|
case SVM_EXIT_EXCP_BASE + PF_VECTOR:
|
|
if (!npt_enabled)
|
|
return 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (exit_code) {
|
|
case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
|
|
u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
|
|
if (nested_vmcb->control.intercept_cr_read & cr_bits)
|
|
return 1;
|
|
break;
|
|
}
|
|
case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
|
|
u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
|
|
if (nested_vmcb->control.intercept_cr_write & cr_bits)
|
|
return 1;
|
|
break;
|
|
}
|
|
case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
|
|
u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
|
|
if (nested_vmcb->control.intercept_dr_read & dr_bits)
|
|
return 1;
|
|
break;
|
|
}
|
|
case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
|
|
u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
|
|
if (nested_vmcb->control.intercept_dr_write & dr_bits)
|
|
return 1;
|
|
break;
|
|
}
|
|
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
|
|
u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
|
|
if (nested_vmcb->control.intercept_exceptions & excp_bits)
|
|
return 1;
|
|
break;
|
|
}
|
|
default: {
|
|
u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
|
|
nsvm_printk("exit code: 0x%x\n", exit_code);
|
|
if (nested_vmcb->control.intercept & exit_bits)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm,
|
|
void *arg1, void *arg2,
|
|
void *opaque)
|
|
{
|
|
struct vmcb *nested_vmcb = (struct vmcb *)arg1;
|
|
u8 *msrpm = (u8 *)arg2;
|
|
u32 t0, t1;
|
|
u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
|
|
u32 param = svm->vmcb->control.exit_info_1 & 1;
|
|
|
|
if (!(nested_vmcb->control.intercept & (1ULL << INTERCEPT_MSR_PROT)))
|
|
return 0;
|
|
|
|
switch(msr) {
|
|
case 0 ... 0x1fff:
|
|
t0 = (msr * 2) % 8;
|
|
t1 = msr / 8;
|
|
break;
|
|
case 0xc0000000 ... 0xc0001fff:
|
|
t0 = (8192 + msr - 0xc0000000) * 2;
|
|
t1 = (t0 / 8);
|
|
t0 %= 8;
|
|
break;
|
|
case 0xc0010000 ... 0xc0011fff:
|
|
t0 = (16384 + msr - 0xc0010000) * 2;
|
|
t1 = (t0 / 8);
|
|
t0 %= 8;
|
|
break;
|
|
default:
|
|
return 1;
|
|
break;
|
|
}
|
|
if (msrpm[t1] & ((1 << param) << t0))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_exit_handled(struct vcpu_svm *svm, bool kvm_override)
|
|
{
|
|
bool k = kvm_override;
|
|
|
|
switch (svm->vmcb->control.exit_code) {
|
|
case SVM_EXIT_MSR:
|
|
return nested_svm_do(svm, svm->nested_vmcb,
|
|
svm->nested_vmcb_msrpm, NULL,
|
|
nested_svm_exit_handled_msr);
|
|
default: break;
|
|
}
|
|
|
|
return nested_svm_do(svm, svm->nested_vmcb, 0, &k,
|
|
nested_svm_exit_handled_real);
|
|
}
|
|
|
|
static int nested_svm_vmexit_real(struct vcpu_svm *svm, void *arg1,
|
|
void *arg2, void *opaque)
|
|
{
|
|
struct vmcb *nested_vmcb = (struct vmcb *)arg1;
|
|
struct vmcb *hsave = svm->hsave;
|
|
u64 nested_save[] = { nested_vmcb->save.cr0,
|
|
nested_vmcb->save.cr3,
|
|
nested_vmcb->save.cr4,
|
|
nested_vmcb->save.efer,
|
|
nested_vmcb->control.intercept_cr_read,
|
|
nested_vmcb->control.intercept_cr_write,
|
|
nested_vmcb->control.intercept_dr_read,
|
|
nested_vmcb->control.intercept_dr_write,
|
|
nested_vmcb->control.intercept_exceptions,
|
|
nested_vmcb->control.intercept,
|
|
nested_vmcb->control.msrpm_base_pa,
|
|
nested_vmcb->control.iopm_base_pa,
|
|
nested_vmcb->control.tsc_offset };
|
|
|
|
/* Give the current vmcb to the guest */
|
|
memcpy(nested_vmcb, svm->vmcb, sizeof(struct vmcb));
|
|
nested_vmcb->save.cr0 = nested_save[0];
|
|
if (!npt_enabled)
|
|
nested_vmcb->save.cr3 = nested_save[1];
|
|
nested_vmcb->save.cr4 = nested_save[2];
|
|
nested_vmcb->save.efer = nested_save[3];
|
|
nested_vmcb->control.intercept_cr_read = nested_save[4];
|
|
nested_vmcb->control.intercept_cr_write = nested_save[5];
|
|
nested_vmcb->control.intercept_dr_read = nested_save[6];
|
|
nested_vmcb->control.intercept_dr_write = nested_save[7];
|
|
nested_vmcb->control.intercept_exceptions = nested_save[8];
|
|
nested_vmcb->control.intercept = nested_save[9];
|
|
nested_vmcb->control.msrpm_base_pa = nested_save[10];
|
|
nested_vmcb->control.iopm_base_pa = nested_save[11];
|
|
nested_vmcb->control.tsc_offset = nested_save[12];
|
|
|
|
/* We always set V_INTR_MASKING and remember the old value in hflags */
|
|
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
|
|
nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
|
|
|
|
if ((nested_vmcb->control.int_ctl & V_IRQ_MASK) &&
|
|
(nested_vmcb->control.int_vector)) {
|
|
nsvm_printk("WARNING: IRQ 0x%x still enabled on #VMEXIT\n",
|
|
nested_vmcb->control.int_vector);
|
|
}
|
|
|
|
/* Restore the original control entries */
|
|
svm->vmcb->control = hsave->control;
|
|
|
|
/* Kill any pending exceptions */
|
|
if (svm->vcpu.arch.exception.pending == true)
|
|
nsvm_printk("WARNING: Pending Exception\n");
|
|
svm->vcpu.arch.exception.pending = false;
|
|
|
|
/* Restore selected save entries */
|
|
svm->vmcb->save.es = hsave->save.es;
|
|
svm->vmcb->save.cs = hsave->save.cs;
|
|
svm->vmcb->save.ss = hsave->save.ss;
|
|
svm->vmcb->save.ds = hsave->save.ds;
|
|
svm->vmcb->save.gdtr = hsave->save.gdtr;
|
|
svm->vmcb->save.idtr = hsave->save.idtr;
|
|
svm->vmcb->save.rflags = hsave->save.rflags;
|
|
svm_set_efer(&svm->vcpu, hsave->save.efer);
|
|
svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
|
|
svm_set_cr4(&svm->vcpu, hsave->save.cr4);
|
|
if (npt_enabled) {
|
|
svm->vmcb->save.cr3 = hsave->save.cr3;
|
|
svm->vcpu.arch.cr3 = hsave->save.cr3;
|
|
} else {
|
|
kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
|
|
}
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
|
|
svm->vmcb->save.dr7 = 0;
|
|
svm->vmcb->save.cpl = 0;
|
|
svm->vmcb->control.exit_int_info = 0;
|
|
|
|
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
|
|
/* Exit nested SVM mode */
|
|
svm->nested_vmcb = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_vmexit(struct vcpu_svm *svm)
|
|
{
|
|
nsvm_printk("VMexit\n");
|
|
if (nested_svm_do(svm, svm->nested_vmcb, 0,
|
|
NULL, nested_svm_vmexit_real))
|
|
return 1;
|
|
|
|
kvm_mmu_reset_context(&svm->vcpu);
|
|
kvm_mmu_load(&svm->vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_vmrun_msrpm(struct vcpu_svm *svm, void *arg1,
|
|
void *arg2, void *opaque)
|
|
{
|
|
int i;
|
|
u32 *nested_msrpm = (u32*)arg1;
|
|
for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
|
|
svm->nested_msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
|
|
svm->vmcb->control.msrpm_base_pa = __pa(svm->nested_msrpm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_vmrun(struct vcpu_svm *svm, void *arg1,
|
|
void *arg2, void *opaque)
|
|
{
|
|
struct vmcb *nested_vmcb = (struct vmcb *)arg1;
|
|
struct vmcb *hsave = svm->hsave;
|
|
|
|
/* nested_vmcb is our indicator if nested SVM is activated */
|
|
svm->nested_vmcb = svm->vmcb->save.rax;
|
|
|
|
/* Clear internal status */
|
|
svm->vcpu.arch.exception.pending = false;
|
|
|
|
/* Save the old vmcb, so we don't need to pick what we save, but
|
|
can restore everything when a VMEXIT occurs */
|
|
memcpy(hsave, svm->vmcb, sizeof(struct vmcb));
|
|
/* We need to remember the original CR3 in the SPT case */
|
|
if (!npt_enabled)
|
|
hsave->save.cr3 = svm->vcpu.arch.cr3;
|
|
hsave->save.cr4 = svm->vcpu.arch.cr4;
|
|
hsave->save.rip = svm->next_rip;
|
|
|
|
if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
|
|
svm->vcpu.arch.hflags |= HF_HIF_MASK;
|
|
else
|
|
svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
|
|
|
|
/* Load the nested guest state */
|
|
svm->vmcb->save.es = nested_vmcb->save.es;
|
|
svm->vmcb->save.cs = nested_vmcb->save.cs;
|
|
svm->vmcb->save.ss = nested_vmcb->save.ss;
|
|
svm->vmcb->save.ds = nested_vmcb->save.ds;
|
|
svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
|
|
svm->vmcb->save.idtr = nested_vmcb->save.idtr;
|
|
svm->vmcb->save.rflags = nested_vmcb->save.rflags;
|
|
svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
|
|
svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
|
|
svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
|
|
if (npt_enabled) {
|
|
svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
|
|
svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
|
|
} else {
|
|
kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
|
|
kvm_mmu_reset_context(&svm->vcpu);
|
|
}
|
|
svm->vmcb->save.cr2 = nested_vmcb->save.cr2;
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
|
|
/* In case we don't even reach vcpu_run, the fields are not updated */
|
|
svm->vmcb->save.rax = nested_vmcb->save.rax;
|
|
svm->vmcb->save.rsp = nested_vmcb->save.rsp;
|
|
svm->vmcb->save.rip = nested_vmcb->save.rip;
|
|
svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
|
|
svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
|
|
svm->vmcb->save.cpl = nested_vmcb->save.cpl;
|
|
|
|
/* We don't want a nested guest to be more powerful than the guest,
|
|
so all intercepts are ORed */
|
|
svm->vmcb->control.intercept_cr_read |=
|
|
nested_vmcb->control.intercept_cr_read;
|
|
svm->vmcb->control.intercept_cr_write |=
|
|
nested_vmcb->control.intercept_cr_write;
|
|
svm->vmcb->control.intercept_dr_read |=
|
|
nested_vmcb->control.intercept_dr_read;
|
|
svm->vmcb->control.intercept_dr_write |=
|
|
nested_vmcb->control.intercept_dr_write;
|
|
svm->vmcb->control.intercept_exceptions |=
|
|
nested_vmcb->control.intercept_exceptions;
|
|
|
|
svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
|
|
|
|
svm->nested_vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
|
|
|
|
force_new_asid(&svm->vcpu);
|
|
svm->vmcb->control.exit_int_info = nested_vmcb->control.exit_int_info;
|
|
svm->vmcb->control.exit_int_info_err = nested_vmcb->control.exit_int_info_err;
|
|
svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
|
|
if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
|
|
nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
|
|
nested_vmcb->control.int_ctl);
|
|
}
|
|
if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
|
|
svm->vcpu.arch.hflags |= HF_VINTR_MASK;
|
|
else
|
|
svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
|
|
|
|
nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
|
|
nested_vmcb->control.exit_int_info,
|
|
nested_vmcb->control.int_state);
|
|
|
|
svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
|
|
svm->vmcb->control.int_state = nested_vmcb->control.int_state;
|
|
svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
|
|
if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
|
|
nsvm_printk("Injecting Event: 0x%x\n",
|
|
nested_vmcb->control.event_inj);
|
|
svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
|
|
svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
|
|
|
|
svm->vcpu.arch.hflags |= HF_GIF_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
|
|
{
|
|
to_vmcb->save.fs = from_vmcb->save.fs;
|
|
to_vmcb->save.gs = from_vmcb->save.gs;
|
|
to_vmcb->save.tr = from_vmcb->save.tr;
|
|
to_vmcb->save.ldtr = from_vmcb->save.ldtr;
|
|
to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
|
|
to_vmcb->save.star = from_vmcb->save.star;
|
|
to_vmcb->save.lstar = from_vmcb->save.lstar;
|
|
to_vmcb->save.cstar = from_vmcb->save.cstar;
|
|
to_vmcb->save.sfmask = from_vmcb->save.sfmask;
|
|
to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
|
|
to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
|
|
to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int nested_svm_vmload(struct vcpu_svm *svm, void *nested_vmcb,
|
|
void *arg2, void *opaque)
|
|
{
|
|
return nested_svm_vmloadsave((struct vmcb *)nested_vmcb, svm->vmcb);
|
|
}
|
|
|
|
static int nested_svm_vmsave(struct vcpu_svm *svm, void *nested_vmcb,
|
|
void *arg2, void *opaque)
|
|
{
|
|
return nested_svm_vmloadsave(svm->vmcb, (struct vmcb *)nested_vmcb);
|
|
}
|
|
|
|
static int vmload_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmload);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int vmsave_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
nested_svm_do(svm, svm->vmcb->save.rax, 0, NULL, nested_svm_vmsave);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int vmrun_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
nsvm_printk("VMrun\n");
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
if (nested_svm_do(svm, svm->vmcb->save.rax, 0,
|
|
NULL, nested_svm_vmrun))
|
|
return 1;
|
|
|
|
if (nested_svm_do(svm, svm->nested_vmcb_msrpm, 0,
|
|
NULL, nested_svm_vmrun_msrpm))
|
|
return 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int stgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
svm->vcpu.arch.hflags |= HF_GIF_MASK;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int clgi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
|
|
|
|
/* After a CLGI no interrupts should come */
|
|
svm_clear_vintr(svm);
|
|
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int invalid_op_interception(struct vcpu_svm *svm,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static int task_switch_interception(struct vcpu_svm *svm,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
u16 tss_selector;
|
|
int reason;
|
|
int int_type = svm->vmcb->control.exit_int_info &
|
|
SVM_EXITINTINFO_TYPE_MASK;
|
|
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
|
|
uint32_t type =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
|
|
uint32_t idt_v =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
|
|
|
|
tss_selector = (u16)svm->vmcb->control.exit_info_1;
|
|
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
|
|
reason = TASK_SWITCH_IRET;
|
|
else if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
|
|
reason = TASK_SWITCH_JMP;
|
|
else if (idt_v)
|
|
reason = TASK_SWITCH_GATE;
|
|
else
|
|
reason = TASK_SWITCH_CALL;
|
|
|
|
if (reason == TASK_SWITCH_GATE) {
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (reason != TASK_SWITCH_GATE ||
|
|
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
|
|
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
|
|
(int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
return kvm_task_switch(&svm->vcpu, tss_selector, reason);
|
|
}
|
|
|
|
static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
kvm_emulate_cpuid(&svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int iret_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
++svm->vcpu.stat.nmi_window_exits;
|
|
svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
|
|
svm->vcpu.arch.hflags |= HF_IRET_MASK;
|
|
return 1;
|
|
}
|
|
|
|
static int invlpg_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0) != EMULATE_DONE)
|
|
pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
static int emulate_on_interception(struct vcpu_svm *svm,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
|
|
pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
|
|
/* instruction emulation calls kvm_set_cr8() */
|
|
emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
|
|
if (irqchip_in_kernel(svm->vcpu.kvm)) {
|
|
svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
|
|
return 1;
|
|
}
|
|
if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
|
|
return 1;
|
|
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
|
|
return 0;
|
|
}
|
|
|
|
static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
switch (ecx) {
|
|
case MSR_IA32_TIME_STAMP_COUNTER: {
|
|
u64 tsc;
|
|
|
|
rdtscll(tsc);
|
|
*data = svm->vmcb->control.tsc_offset + tsc;
|
|
break;
|
|
}
|
|
case MSR_K6_STAR:
|
|
*data = svm->vmcb->save.star;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
*data = svm->vmcb->save.lstar;
|
|
break;
|
|
case MSR_CSTAR:
|
|
*data = svm->vmcb->save.cstar;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
*data = svm->vmcb->save.kernel_gs_base;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
*data = svm->vmcb->save.sfmask;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
*data = svm->vmcb->save.sysenter_cs;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
*data = svm->vmcb->save.sysenter_eip;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
*data = svm->vmcb->save.sysenter_esp;
|
|
break;
|
|
/* Nobody will change the following 5 values in the VMCB so
|
|
we can safely return them on rdmsr. They will always be 0
|
|
until LBRV is implemented. */
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
*data = svm->vmcb->save.dbgctl;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHFROMIP:
|
|
*data = svm->vmcb->save.br_from;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHTOIP:
|
|
*data = svm->vmcb->save.br_to;
|
|
break;
|
|
case MSR_IA32_LASTINTFROMIP:
|
|
*data = svm->vmcb->save.last_excp_from;
|
|
break;
|
|
case MSR_IA32_LASTINTTOIP:
|
|
*data = svm->vmcb->save.last_excp_to;
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
*data = svm->hsave_msr;
|
|
break;
|
|
case MSR_VM_CR:
|
|
*data = 0;
|
|
break;
|
|
case MSR_IA32_UCODE_REV:
|
|
*data = 0x01000065;
|
|
break;
|
|
default:
|
|
return kvm_get_msr_common(vcpu, ecx, data);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
|
|
u64 data;
|
|
|
|
if (svm_get_msr(&svm->vcpu, ecx, &data))
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
else {
|
|
KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
|
|
(u32)(data >> 32), handler);
|
|
|
|
svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
|
|
svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
switch (ecx) {
|
|
case MSR_IA32_TIME_STAMP_COUNTER: {
|
|
u64 tsc;
|
|
|
|
rdtscll(tsc);
|
|
svm->vmcb->control.tsc_offset = data - tsc;
|
|
break;
|
|
}
|
|
case MSR_K6_STAR:
|
|
svm->vmcb->save.star = data;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
svm->vmcb->save.lstar = data;
|
|
break;
|
|
case MSR_CSTAR:
|
|
svm->vmcb->save.cstar = data;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
svm->vmcb->save.kernel_gs_base = data;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
svm->vmcb->save.sfmask = data;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
svm->vmcb->save.sysenter_cs = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
svm->vmcb->save.sysenter_eip = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
svm->vmcb->save.sysenter_esp = data;
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
if (!svm_has(SVM_FEATURE_LBRV)) {
|
|
pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
|
|
__func__, data);
|
|
break;
|
|
}
|
|
if (data & DEBUGCTL_RESERVED_BITS)
|
|
return 1;
|
|
|
|
svm->vmcb->save.dbgctl = data;
|
|
if (data & (1ULL<<0))
|
|
svm_enable_lbrv(svm);
|
|
else
|
|
svm_disable_lbrv(svm);
|
|
break;
|
|
case MSR_K7_EVNTSEL0:
|
|
case MSR_K7_EVNTSEL1:
|
|
case MSR_K7_EVNTSEL2:
|
|
case MSR_K7_EVNTSEL3:
|
|
case MSR_K7_PERFCTR0:
|
|
case MSR_K7_PERFCTR1:
|
|
case MSR_K7_PERFCTR2:
|
|
case MSR_K7_PERFCTR3:
|
|
/*
|
|
* Just discard all writes to the performance counters; this
|
|
* should keep both older linux and windows 64-bit guests
|
|
* happy
|
|
*/
|
|
pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
|
|
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
svm->hsave_msr = data;
|
|
break;
|
|
default:
|
|
return kvm_set_msr_common(vcpu, ecx, data);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
|
|
u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
|
|
| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
|
|
|
|
KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
|
|
handler);
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
if (svm_set_msr(&svm->vcpu, ecx, data))
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
else
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
|
|
{
|
|
if (svm->vmcb->control.exit_info_1)
|
|
return wrmsr_interception(svm, kvm_run);
|
|
else
|
|
return rdmsr_interception(svm, kvm_run);
|
|
}
|
|
|
|
static int interrupt_window_interception(struct vcpu_svm *svm,
|
|
struct kvm_run *kvm_run)
|
|
{
|
|
KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
|
|
|
|
svm_clear_vintr(svm);
|
|
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
|
|
/*
|
|
* If the user space waits to inject interrupts, exit as soon as
|
|
* possible
|
|
*/
|
|
if (!irqchip_in_kernel(svm->vcpu.kvm) &&
|
|
kvm_run->request_interrupt_window &&
|
|
!kvm_cpu_has_interrupt(&svm->vcpu)) {
|
|
++svm->vcpu.stat.irq_window_exits;
|
|
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
|
|
struct kvm_run *kvm_run) = {
|
|
[SVM_EXIT_READ_CR0] = emulate_on_interception,
|
|
[SVM_EXIT_READ_CR3] = emulate_on_interception,
|
|
[SVM_EXIT_READ_CR4] = emulate_on_interception,
|
|
[SVM_EXIT_READ_CR8] = emulate_on_interception,
|
|
/* for now: */
|
|
[SVM_EXIT_WRITE_CR0] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_CR3] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_CR4] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
|
|
[SVM_EXIT_READ_DR0] = emulate_on_interception,
|
|
[SVM_EXIT_READ_DR1] = emulate_on_interception,
|
|
[SVM_EXIT_READ_DR2] = emulate_on_interception,
|
|
[SVM_EXIT_READ_DR3] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_DR0] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_DR1] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_DR2] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_DR3] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_DR5] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_DR7] = emulate_on_interception,
|
|
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
|
|
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
|
|
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
|
|
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
|
|
[SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
|
|
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
|
|
[SVM_EXIT_INTR] = intr_interception,
|
|
[SVM_EXIT_NMI] = nmi_interception,
|
|
[SVM_EXIT_SMI] = nop_on_interception,
|
|
[SVM_EXIT_INIT] = nop_on_interception,
|
|
[SVM_EXIT_VINTR] = interrupt_window_interception,
|
|
/* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
|
|
[SVM_EXIT_CPUID] = cpuid_interception,
|
|
[SVM_EXIT_IRET] = iret_interception,
|
|
[SVM_EXIT_INVD] = emulate_on_interception,
|
|
[SVM_EXIT_HLT] = halt_interception,
|
|
[SVM_EXIT_INVLPG] = invlpg_interception,
|
|
[SVM_EXIT_INVLPGA] = invalid_op_interception,
|
|
[SVM_EXIT_IOIO] = io_interception,
|
|
[SVM_EXIT_MSR] = msr_interception,
|
|
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
|
|
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
|
|
[SVM_EXIT_VMRUN] = vmrun_interception,
|
|
[SVM_EXIT_VMMCALL] = vmmcall_interception,
|
|
[SVM_EXIT_VMLOAD] = vmload_interception,
|
|
[SVM_EXIT_VMSAVE] = vmsave_interception,
|
|
[SVM_EXIT_STGI] = stgi_interception,
|
|
[SVM_EXIT_CLGI] = clgi_interception,
|
|
[SVM_EXIT_SKINIT] = invalid_op_interception,
|
|
[SVM_EXIT_WBINVD] = emulate_on_interception,
|
|
[SVM_EXIT_MONITOR] = invalid_op_interception,
|
|
[SVM_EXIT_MWAIT] = invalid_op_interception,
|
|
[SVM_EXIT_NPF] = pf_interception,
|
|
};
|
|
|
|
static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
|
|
KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
|
|
(u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
|
|
|
|
if (is_nested(svm)) {
|
|
nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
|
|
exit_code, svm->vmcb->control.exit_info_1,
|
|
svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
|
|
if (nested_svm_exit_handled(svm, true)) {
|
|
nested_svm_vmexit(svm);
|
|
nsvm_printk("-> #VMEXIT\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (npt_enabled) {
|
|
int mmu_reload = 0;
|
|
if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
|
|
svm_set_cr0(vcpu, svm->vmcb->save.cr0);
|
|
mmu_reload = 1;
|
|
}
|
|
vcpu->arch.cr0 = svm->vmcb->save.cr0;
|
|
vcpu->arch.cr3 = svm->vmcb->save.cr3;
|
|
if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
|
|
if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return 1;
|
|
}
|
|
}
|
|
if (mmu_reload) {
|
|
kvm_mmu_reset_context(vcpu);
|
|
kvm_mmu_load(vcpu);
|
|
}
|
|
}
|
|
|
|
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
|
|
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
kvm_run->fail_entry.hardware_entry_failure_reason
|
|
= svm->vmcb->control.exit_code;
|
|
return 0;
|
|
}
|
|
|
|
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
|
|
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
|
|
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
|
|
printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
|
|
"exit_code 0x%x\n",
|
|
__func__, svm->vmcb->control.exit_int_info,
|
|
exit_code);
|
|
|
|
if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
|
|
|| !svm_exit_handlers[exit_code]) {
|
|
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
kvm_run->hw.hardware_exit_reason = exit_code;
|
|
return 0;
|
|
}
|
|
|
|
return svm_exit_handlers[exit_code](svm, kvm_run);
|
|
}
|
|
|
|
static void reload_tss(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
|
|
svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
|
|
load_TR_desc();
|
|
}
|
|
|
|
static void pre_svm_run(struct vcpu_svm *svm)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
|
|
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
|
|
if (svm->vcpu.cpu != cpu ||
|
|
svm->asid_generation != svm_data->asid_generation)
|
|
new_asid(svm, svm_data);
|
|
}
|
|
|
|
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
|
|
vcpu->arch.hflags |= HF_NMI_MASK;
|
|
svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
|
|
++vcpu->stat.nmi_injections;
|
|
}
|
|
|
|
static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
|
|
{
|
|
struct vmcb_control_area *control;
|
|
|
|
KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
|
|
|
|
++svm->vcpu.stat.irq_injections;
|
|
control = &svm->vmcb->control;
|
|
control->int_vector = irq;
|
|
control->int_ctl &= ~V_INTR_PRIO_MASK;
|
|
control->int_ctl |= V_IRQ_MASK |
|
|
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
|
|
}
|
|
|
|
static void svm_queue_irq(struct kvm_vcpu *vcpu, unsigned nr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.event_inj = nr |
|
|
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
|
|
}
|
|
|
|
static void svm_set_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
nested_svm_intr(svm);
|
|
|
|
svm_queue_irq(vcpu, vcpu->arch.interrupt.nr);
|
|
}
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (irr == -1)
|
|
return;
|
|
|
|
if (tpr >= irr)
|
|
svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
|
|
}
|
|
|
|
static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
|
|
!(svm->vcpu.arch.hflags & HF_NMI_MASK);
|
|
}
|
|
|
|
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
return (vmcb->save.rflags & X86_EFLAGS_IF) &&
|
|
!(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
|
|
(svm->vcpu.arch.hflags & HF_GIF_MASK);
|
|
}
|
|
|
|
static void enable_irq_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
svm_set_vintr(to_svm(vcpu));
|
|
svm_inject_irq(to_svm(vcpu), 0x0);
|
|
}
|
|
|
|
static void enable_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
|
|
== HF_NMI_MASK)
|
|
return; /* IRET will cause a vm exit */
|
|
|
|
/* Something prevents NMI from been injected. Single step over
|
|
possible problem (IRET or exception injection or interrupt
|
|
shadow) */
|
|
vcpu->arch.singlestep = true;
|
|
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
update_db_intercept(vcpu);
|
|
}
|
|
|
|
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void svm_flush_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
force_new_asid(vcpu);
|
|
}
|
|
|
|
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
|
|
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
|
|
kvm_set_cr8(vcpu, cr8);
|
|
}
|
|
}
|
|
|
|
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 cr8;
|
|
|
|
cr8 = kvm_get_cr8(vcpu);
|
|
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
|
|
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
|
|
}
|
|
|
|
static void svm_complete_interrupts(struct vcpu_svm *svm)
|
|
{
|
|
u8 vector;
|
|
int type;
|
|
u32 exitintinfo = svm->vmcb->control.exit_int_info;
|
|
|
|
if (svm->vcpu.arch.hflags & HF_IRET_MASK)
|
|
svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
|
|
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
|
|
return;
|
|
|
|
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
|
|
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
|
|
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
svm->vcpu.arch.nmi_injected = true;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
/* In case of software exception do not reinject an exception
|
|
vector, but re-execute and instruction instead */
|
|
if (kvm_exception_is_soft(vector))
|
|
break;
|
|
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
|
|
u32 err = svm->vmcb->control.exit_int_info_err;
|
|
kvm_queue_exception_e(&svm->vcpu, vector, err);
|
|
|
|
} else
|
|
kvm_queue_exception(&svm->vcpu, vector);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_queue_interrupt(&svm->vcpu, vector, false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
#define R "r"
|
|
#else
|
|
#define R "e"
|
|
#endif
|
|
|
|
static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u16 fs_selector;
|
|
u16 gs_selector;
|
|
u16 ldt_selector;
|
|
|
|
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
|
|
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
|
|
|
|
pre_svm_run(svm);
|
|
|
|
sync_lapic_to_cr8(vcpu);
|
|
|
|
save_host_msrs(vcpu);
|
|
fs_selector = kvm_read_fs();
|
|
gs_selector = kvm_read_gs();
|
|
ldt_selector = kvm_read_ldt();
|
|
svm->host_cr2 = kvm_read_cr2();
|
|
if (!is_nested(svm))
|
|
svm->vmcb->save.cr2 = vcpu->arch.cr2;
|
|
/* required for live migration with NPT */
|
|
if (npt_enabled)
|
|
svm->vmcb->save.cr3 = vcpu->arch.cr3;
|
|
|
|
clgi();
|
|
|
|
local_irq_enable();
|
|
|
|
asm volatile (
|
|
"push %%"R"bp; \n\t"
|
|
"mov %c[rbx](%[svm]), %%"R"bx \n\t"
|
|
"mov %c[rcx](%[svm]), %%"R"cx \n\t"
|
|
"mov %c[rdx](%[svm]), %%"R"dx \n\t"
|
|
"mov %c[rsi](%[svm]), %%"R"si \n\t"
|
|
"mov %c[rdi](%[svm]), %%"R"di \n\t"
|
|
"mov %c[rbp](%[svm]), %%"R"bp \n\t"
|
|
#ifdef CONFIG_X86_64
|
|
"mov %c[r8](%[svm]), %%r8 \n\t"
|
|
"mov %c[r9](%[svm]), %%r9 \n\t"
|
|
"mov %c[r10](%[svm]), %%r10 \n\t"
|
|
"mov %c[r11](%[svm]), %%r11 \n\t"
|
|
"mov %c[r12](%[svm]), %%r12 \n\t"
|
|
"mov %c[r13](%[svm]), %%r13 \n\t"
|
|
"mov %c[r14](%[svm]), %%r14 \n\t"
|
|
"mov %c[r15](%[svm]), %%r15 \n\t"
|
|
#endif
|
|
|
|
/* Enter guest mode */
|
|
"push %%"R"ax \n\t"
|
|
"mov %c[vmcb](%[svm]), %%"R"ax \n\t"
|
|
__ex(SVM_VMLOAD) "\n\t"
|
|
__ex(SVM_VMRUN) "\n\t"
|
|
__ex(SVM_VMSAVE) "\n\t"
|
|
"pop %%"R"ax \n\t"
|
|
|
|
/* Save guest registers, load host registers */
|
|
"mov %%"R"bx, %c[rbx](%[svm]) \n\t"
|
|
"mov %%"R"cx, %c[rcx](%[svm]) \n\t"
|
|
"mov %%"R"dx, %c[rdx](%[svm]) \n\t"
|
|
"mov %%"R"si, %c[rsi](%[svm]) \n\t"
|
|
"mov %%"R"di, %c[rdi](%[svm]) \n\t"
|
|
"mov %%"R"bp, %c[rbp](%[svm]) \n\t"
|
|
#ifdef CONFIG_X86_64
|
|
"mov %%r8, %c[r8](%[svm]) \n\t"
|
|
"mov %%r9, %c[r9](%[svm]) \n\t"
|
|
"mov %%r10, %c[r10](%[svm]) \n\t"
|
|
"mov %%r11, %c[r11](%[svm]) \n\t"
|
|
"mov %%r12, %c[r12](%[svm]) \n\t"
|
|
"mov %%r13, %c[r13](%[svm]) \n\t"
|
|
"mov %%r14, %c[r14](%[svm]) \n\t"
|
|
"mov %%r15, %c[r15](%[svm]) \n\t"
|
|
#endif
|
|
"pop %%"R"bp"
|
|
:
|
|
: [svm]"a"(svm),
|
|
[vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
|
|
[rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
|
|
[rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
|
|
[rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
|
|
[rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
|
|
[rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
|
|
[rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
|
|
#ifdef CONFIG_X86_64
|
|
, [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
|
|
[r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
|
|
[r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
|
|
[r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
|
|
[r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
|
|
[r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
|
|
[r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
|
|
[r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
|
|
#endif
|
|
: "cc", "memory"
|
|
, R"bx", R"cx", R"dx", R"si", R"di"
|
|
#ifdef CONFIG_X86_64
|
|
, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
|
|
#endif
|
|
);
|
|
|
|
vcpu->arch.cr2 = svm->vmcb->save.cr2;
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
|
|
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
|
|
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
|
|
|
|
kvm_write_cr2(svm->host_cr2);
|
|
|
|
kvm_load_fs(fs_selector);
|
|
kvm_load_gs(gs_selector);
|
|
kvm_load_ldt(ldt_selector);
|
|
load_host_msrs(vcpu);
|
|
|
|
reload_tss(vcpu);
|
|
|
|
local_irq_disable();
|
|
|
|
stgi();
|
|
|
|
sync_cr8_to_lapic(vcpu);
|
|
|
|
svm->next_rip = 0;
|
|
|
|
svm_complete_interrupts(svm);
|
|
}
|
|
|
|
#undef R
|
|
|
|
static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (npt_enabled) {
|
|
svm->vmcb->control.nested_cr3 = root;
|
|
force_new_asid(vcpu);
|
|
return;
|
|
}
|
|
|
|
svm->vmcb->save.cr3 = root;
|
|
force_new_asid(vcpu);
|
|
|
|
if (vcpu->fpu_active) {
|
|
svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
|
|
svm->vmcb->save.cr0 |= X86_CR0_TS;
|
|
vcpu->fpu_active = 0;
|
|
}
|
|
}
|
|
|
|
static int is_disabled(void)
|
|
{
|
|
u64 vm_cr;
|
|
|
|
rdmsrl(MSR_VM_CR, vm_cr);
|
|
if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
|
|
{
|
|
/*
|
|
* Patch in the VMMCALL instruction:
|
|
*/
|
|
hypercall[0] = 0x0f;
|
|
hypercall[1] = 0x01;
|
|
hypercall[2] = 0xd9;
|
|
}
|
|
|
|
static void svm_check_processor_compat(void *rtn)
|
|
{
|
|
*(int *)rtn = 0;
|
|
}
|
|
|
|
static bool svm_cpu_has_accelerated_tpr(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static int get_npt_level(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return PT64_ROOT_LEVEL;
|
|
#else
|
|
return PT32E_ROOT_LEVEL;
|
|
#endif
|
|
}
|
|
|
|
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_x86_ops svm_x86_ops = {
|
|
.cpu_has_kvm_support = has_svm,
|
|
.disabled_by_bios = is_disabled,
|
|
.hardware_setup = svm_hardware_setup,
|
|
.hardware_unsetup = svm_hardware_unsetup,
|
|
.check_processor_compatibility = svm_check_processor_compat,
|
|
.hardware_enable = svm_hardware_enable,
|
|
.hardware_disable = svm_hardware_disable,
|
|
.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
|
|
|
|
.vcpu_create = svm_create_vcpu,
|
|
.vcpu_free = svm_free_vcpu,
|
|
.vcpu_reset = svm_vcpu_reset,
|
|
|
|
.prepare_guest_switch = svm_prepare_guest_switch,
|
|
.vcpu_load = svm_vcpu_load,
|
|
.vcpu_put = svm_vcpu_put,
|
|
|
|
.set_guest_debug = svm_guest_debug,
|
|
.get_msr = svm_get_msr,
|
|
.set_msr = svm_set_msr,
|
|
.get_segment_base = svm_get_segment_base,
|
|
.get_segment = svm_get_segment,
|
|
.set_segment = svm_set_segment,
|
|
.get_cpl = svm_get_cpl,
|
|
.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
|
|
.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
|
|
.set_cr0 = svm_set_cr0,
|
|
.set_cr3 = svm_set_cr3,
|
|
.set_cr4 = svm_set_cr4,
|
|
.set_efer = svm_set_efer,
|
|
.get_idt = svm_get_idt,
|
|
.set_idt = svm_set_idt,
|
|
.get_gdt = svm_get_gdt,
|
|
.set_gdt = svm_set_gdt,
|
|
.get_dr = svm_get_dr,
|
|
.set_dr = svm_set_dr,
|
|
.get_rflags = svm_get_rflags,
|
|
.set_rflags = svm_set_rflags,
|
|
|
|
.tlb_flush = svm_flush_tlb,
|
|
|
|
.run = svm_vcpu_run,
|
|
.handle_exit = handle_exit,
|
|
.skip_emulated_instruction = skip_emulated_instruction,
|
|
.set_interrupt_shadow = svm_set_interrupt_shadow,
|
|
.get_interrupt_shadow = svm_get_interrupt_shadow,
|
|
.patch_hypercall = svm_patch_hypercall,
|
|
.set_irq = svm_set_irq,
|
|
.set_nmi = svm_inject_nmi,
|
|
.queue_exception = svm_queue_exception,
|
|
.interrupt_allowed = svm_interrupt_allowed,
|
|
.nmi_allowed = svm_nmi_allowed,
|
|
.enable_nmi_window = enable_nmi_window,
|
|
.enable_irq_window = enable_irq_window,
|
|
.update_cr8_intercept = update_cr8_intercept,
|
|
|
|
.set_tss_addr = svm_set_tss_addr,
|
|
.get_tdp_level = get_npt_level,
|
|
.get_mt_mask = svm_get_mt_mask,
|
|
};
|
|
|
|
static int __init svm_init(void)
|
|
{
|
|
return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
|
|
THIS_MODULE);
|
|
}
|
|
|
|
static void __exit svm_exit(void)
|
|
{
|
|
kvm_exit();
|
|
}
|
|
|
|
module_init(svm_init)
|
|
module_exit(svm_exit)
|