linux/kernel/stop_machine.c
Akinobu Mita 4ce6494dbd stop_machine: convert cpu notifier to return encapsulate errno value
In commit e6bde73b07edeb703d4c89c1daabc09c303de11f ("cpu-hotplug: return
better errno on cpu hotplug failure"), the cpu notifier can return an
encapsulated errno value.

This converts the cpu notifier to return an encapsulated errno value for
stop_machine().

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-10-26 16:52:15 -07:00

489 lines
13 KiB
C

/*
* kernel/stop_machine.c
*
* Copyright (C) 2008, 2005 IBM Corporation.
* Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au
* Copyright (C) 2010 SUSE Linux Products GmbH
* Copyright (C) 2010 Tejun Heo <tj@kernel.org>
*
* This file is released under the GPLv2 and any later version.
*/
#include <linux/completion.h>
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/stop_machine.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <asm/atomic.h>
/*
* Structure to determine completion condition and record errors. May
* be shared by works on different cpus.
*/
struct cpu_stop_done {
atomic_t nr_todo; /* nr left to execute */
bool executed; /* actually executed? */
int ret; /* collected return value */
struct completion completion; /* fired if nr_todo reaches 0 */
};
/* the actual stopper, one per every possible cpu, enabled on online cpus */
struct cpu_stopper {
spinlock_t lock;
bool enabled; /* is this stopper enabled? */
struct list_head works; /* list of pending works */
struct task_struct *thread; /* stopper thread */
};
static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
{
memset(done, 0, sizeof(*done));
atomic_set(&done->nr_todo, nr_todo);
init_completion(&done->completion);
}
/* signal completion unless @done is NULL */
static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
{
if (done) {
if (executed)
done->executed = true;
if (atomic_dec_and_test(&done->nr_todo))
complete(&done->completion);
}
}
/* queue @work to @stopper. if offline, @work is completed immediately */
static void cpu_stop_queue_work(struct cpu_stopper *stopper,
struct cpu_stop_work *work)
{
unsigned long flags;
spin_lock_irqsave(&stopper->lock, flags);
if (stopper->enabled) {
list_add_tail(&work->list, &stopper->works);
wake_up_process(stopper->thread);
} else
cpu_stop_signal_done(work->done, false);
spin_unlock_irqrestore(&stopper->lock, flags);
}
/**
* stop_one_cpu - stop a cpu
* @cpu: cpu to stop
* @fn: function to execute
* @arg: argument to @fn
*
* Execute @fn(@arg) on @cpu. @fn is run in a process context with
* the highest priority preempting any task on the cpu and
* monopolizing it. This function returns after the execution is
* complete.
*
* This function doesn't guarantee @cpu stays online till @fn
* completes. If @cpu goes down in the middle, execution may happen
* partially or fully on different cpus. @fn should either be ready
* for that or the caller should ensure that @cpu stays online until
* this function completes.
*
* CONTEXT:
* Might sleep.
*
* RETURNS:
* -ENOENT if @fn(@arg) was not executed because @cpu was offline;
* otherwise, the return value of @fn.
*/
int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
{
struct cpu_stop_done done;
struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
cpu_stop_init_done(&done, 1);
cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
wait_for_completion(&done.completion);
return done.executed ? done.ret : -ENOENT;
}
/**
* stop_one_cpu_nowait - stop a cpu but don't wait for completion
* @cpu: cpu to stop
* @fn: function to execute
* @arg: argument to @fn
*
* Similar to stop_one_cpu() but doesn't wait for completion. The
* caller is responsible for ensuring @work_buf is currently unused
* and will remain untouched until stopper starts executing @fn.
*
* CONTEXT:
* Don't care.
*/
void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
struct cpu_stop_work *work_buf)
{
*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
}
/* static data for stop_cpus */
static DEFINE_MUTEX(stop_cpus_mutex);
static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
{
struct cpu_stop_work *work;
struct cpu_stop_done done;
unsigned int cpu;
/* initialize works and done */
for_each_cpu(cpu, cpumask) {
work = &per_cpu(stop_cpus_work, cpu);
work->fn = fn;
work->arg = arg;
work->done = &done;
}
cpu_stop_init_done(&done, cpumask_weight(cpumask));
/*
* Disable preemption while queueing to avoid getting
* preempted by a stopper which might wait for other stoppers
* to enter @fn which can lead to deadlock.
*/
preempt_disable();
for_each_cpu(cpu, cpumask)
cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
&per_cpu(stop_cpus_work, cpu));
preempt_enable();
wait_for_completion(&done.completion);
return done.executed ? done.ret : -ENOENT;
}
/**
* stop_cpus - stop multiple cpus
* @cpumask: cpus to stop
* @fn: function to execute
* @arg: argument to @fn
*
* Execute @fn(@arg) on online cpus in @cpumask. On each target cpu,
* @fn is run in a process context with the highest priority
* preempting any task on the cpu and monopolizing it. This function
* returns after all executions are complete.
*
* This function doesn't guarantee the cpus in @cpumask stay online
* till @fn completes. If some cpus go down in the middle, execution
* on the cpu may happen partially or fully on different cpus. @fn
* should either be ready for that or the caller should ensure that
* the cpus stay online until this function completes.
*
* All stop_cpus() calls are serialized making it safe for @fn to wait
* for all cpus to start executing it.
*
* CONTEXT:
* Might sleep.
*
* RETURNS:
* -ENOENT if @fn(@arg) was not executed at all because all cpus in
* @cpumask were offline; otherwise, 0 if all executions of @fn
* returned 0, any non zero return value if any returned non zero.
*/
int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
{
int ret;
/* static works are used, process one request at a time */
mutex_lock(&stop_cpus_mutex);
ret = __stop_cpus(cpumask, fn, arg);
mutex_unlock(&stop_cpus_mutex);
return ret;
}
/**
* try_stop_cpus - try to stop multiple cpus
* @cpumask: cpus to stop
* @fn: function to execute
* @arg: argument to @fn
*
* Identical to stop_cpus() except that it fails with -EAGAIN if
* someone else is already using the facility.
*
* CONTEXT:
* Might sleep.
*
* RETURNS:
* -EAGAIN if someone else is already stopping cpus, -ENOENT if
* @fn(@arg) was not executed at all because all cpus in @cpumask were
* offline; otherwise, 0 if all executions of @fn returned 0, any non
* zero return value if any returned non zero.
*/
int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
{
int ret;
/* static works are used, process one request at a time */
if (!mutex_trylock(&stop_cpus_mutex))
return -EAGAIN;
ret = __stop_cpus(cpumask, fn, arg);
mutex_unlock(&stop_cpus_mutex);
return ret;
}
static int cpu_stopper_thread(void *data)
{
struct cpu_stopper *stopper = data;
struct cpu_stop_work *work;
int ret;
repeat:
set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
return 0;
}
work = NULL;
spin_lock_irq(&stopper->lock);
if (!list_empty(&stopper->works)) {
work = list_first_entry(&stopper->works,
struct cpu_stop_work, list);
list_del_init(&work->list);
}
spin_unlock_irq(&stopper->lock);
if (work) {
cpu_stop_fn_t fn = work->fn;
void *arg = work->arg;
struct cpu_stop_done *done = work->done;
char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
__set_current_state(TASK_RUNNING);
/* cpu stop callbacks are not allowed to sleep */
preempt_disable();
ret = fn(arg);
if (ret)
done->ret = ret;
/* restore preemption and check it's still balanced */
preempt_enable();
WARN_ONCE(preempt_count(),
"cpu_stop: %s(%p) leaked preempt count\n",
kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
ksym_buf), arg);
cpu_stop_signal_done(done, true);
} else
schedule();
goto repeat;
}
extern void sched_set_stop_task(int cpu, struct task_struct *stop);
/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
struct task_struct *p;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_UP_PREPARE:
BUG_ON(stopper->thread || stopper->enabled ||
!list_empty(&stopper->works));
p = kthread_create(cpu_stopper_thread, stopper, "migration/%d",
cpu);
if (IS_ERR(p))
return notifier_from_errno(PTR_ERR(p));
get_task_struct(p);
kthread_bind(p, cpu);
sched_set_stop_task(cpu, p);
stopper->thread = p;
break;
case CPU_ONLINE:
/* strictly unnecessary, as first user will wake it */
wake_up_process(stopper->thread);
/* mark enabled */
spin_lock_irq(&stopper->lock);
stopper->enabled = true;
spin_unlock_irq(&stopper->lock);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_UP_CANCELED:
case CPU_POST_DEAD:
{
struct cpu_stop_work *work;
sched_set_stop_task(cpu, NULL);
/* kill the stopper */
kthread_stop(stopper->thread);
/* drain remaining works */
spin_lock_irq(&stopper->lock);
list_for_each_entry(work, &stopper->works, list)
cpu_stop_signal_done(work->done, false);
stopper->enabled = false;
spin_unlock_irq(&stopper->lock);
/* release the stopper */
put_task_struct(stopper->thread);
stopper->thread = NULL;
break;
}
#endif
}
return NOTIFY_OK;
}
/*
* Give it a higher priority so that cpu stopper is available to other
* cpu notifiers. It currently shares the same priority as sched
* migration_notifier.
*/
static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
.notifier_call = cpu_stop_cpu_callback,
.priority = 10,
};
static int __init cpu_stop_init(void)
{
void *bcpu = (void *)(long)smp_processor_id();
unsigned int cpu;
int err;
for_each_possible_cpu(cpu) {
struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
spin_lock_init(&stopper->lock);
INIT_LIST_HEAD(&stopper->works);
}
/* start one for the boot cpu */
err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
bcpu);
BUG_ON(err != NOTIFY_OK);
cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
register_cpu_notifier(&cpu_stop_cpu_notifier);
return 0;
}
early_initcall(cpu_stop_init);
#ifdef CONFIG_STOP_MACHINE
/* This controls the threads on each CPU. */
enum stopmachine_state {
/* Dummy starting state for thread. */
STOPMACHINE_NONE,
/* Awaiting everyone to be scheduled. */
STOPMACHINE_PREPARE,
/* Disable interrupts. */
STOPMACHINE_DISABLE_IRQ,
/* Run the function */
STOPMACHINE_RUN,
/* Exit */
STOPMACHINE_EXIT,
};
struct stop_machine_data {
int (*fn)(void *);
void *data;
/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
unsigned int num_threads;
const struct cpumask *active_cpus;
enum stopmachine_state state;
atomic_t thread_ack;
};
static void set_state(struct stop_machine_data *smdata,
enum stopmachine_state newstate)
{
/* Reset ack counter. */
atomic_set(&smdata->thread_ack, smdata->num_threads);
smp_wmb();
smdata->state = newstate;
}
/* Last one to ack a state moves to the next state. */
static void ack_state(struct stop_machine_data *smdata)
{
if (atomic_dec_and_test(&smdata->thread_ack))
set_state(smdata, smdata->state + 1);
}
/* This is the cpu_stop function which stops the CPU. */
static int stop_machine_cpu_stop(void *data)
{
struct stop_machine_data *smdata = data;
enum stopmachine_state curstate = STOPMACHINE_NONE;
int cpu = smp_processor_id(), err = 0;
bool is_active;
if (!smdata->active_cpus)
is_active = cpu == cpumask_first(cpu_online_mask);
else
is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
/* Simple state machine */
do {
/* Chill out and ensure we re-read stopmachine_state. */
cpu_relax();
if (smdata->state != curstate) {
curstate = smdata->state;
switch (curstate) {
case STOPMACHINE_DISABLE_IRQ:
local_irq_disable();
hard_irq_disable();
break;
case STOPMACHINE_RUN:
if (is_active)
err = smdata->fn(smdata->data);
break;
default:
break;
}
ack_state(smdata);
}
} while (curstate != STOPMACHINE_EXIT);
local_irq_enable();
return err;
}
int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
{
struct stop_machine_data smdata = { .fn = fn, .data = data,
.num_threads = num_online_cpus(),
.active_cpus = cpus };
/* Set the initial state and stop all online cpus. */
set_state(&smdata, STOPMACHINE_PREPARE);
return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
}
int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
{
int ret;
/* No CPUs can come up or down during this. */
get_online_cpus();
ret = __stop_machine(fn, data, cpus);
put_online_cpus();
return ret;
}
EXPORT_SYMBOL_GPL(stop_machine);
#endif /* CONFIG_STOP_MACHINE */