mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 18:14:04 +00:00
592913ecb8
Now that all arches have been converted over to use generic time via clocksources or arch_gettimeoffset(), we can remove the GENERIC_TIME config option and simplify the generic code. Signed-off-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1279068988-21864-4-git-send-email-johnstul@us.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
711 lines
18 KiB
C
711 lines
18 KiB
C
/*
|
|
* linux/kernel/time.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* This file contains the interface functions for the various
|
|
* time related system calls: time, stime, gettimeofday, settimeofday,
|
|
* adjtime
|
|
*/
|
|
/*
|
|
* Modification history kernel/time.c
|
|
*
|
|
* 1993-09-02 Philip Gladstone
|
|
* Created file with time related functions from sched.c and adjtimex()
|
|
* 1993-10-08 Torsten Duwe
|
|
* adjtime interface update and CMOS clock write code
|
|
* 1995-08-13 Torsten Duwe
|
|
* kernel PLL updated to 1994-12-13 specs (rfc-1589)
|
|
* 1999-01-16 Ulrich Windl
|
|
* Introduced error checking for many cases in adjtimex().
|
|
* Updated NTP code according to technical memorandum Jan '96
|
|
* "A Kernel Model for Precision Timekeeping" by Dave Mills
|
|
* Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
|
|
* (Even though the technical memorandum forbids it)
|
|
* 2004-07-14 Christoph Lameter
|
|
* Added getnstimeofday to allow the posix timer functions to return
|
|
* with nanosecond accuracy
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/security.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/unistd.h>
|
|
|
|
#include "timeconst.h"
|
|
|
|
/*
|
|
* The timezone where the local system is located. Used as a default by some
|
|
* programs who obtain this value by using gettimeofday.
|
|
*/
|
|
struct timezone sys_tz;
|
|
|
|
EXPORT_SYMBOL(sys_tz);
|
|
|
|
#ifdef __ARCH_WANT_SYS_TIME
|
|
|
|
/*
|
|
* sys_time() can be implemented in user-level using
|
|
* sys_gettimeofday(). Is this for backwards compatibility? If so,
|
|
* why not move it into the appropriate arch directory (for those
|
|
* architectures that need it).
|
|
*/
|
|
SYSCALL_DEFINE1(time, time_t __user *, tloc)
|
|
{
|
|
time_t i = get_seconds();
|
|
|
|
if (tloc) {
|
|
if (put_user(i,tloc))
|
|
return -EFAULT;
|
|
}
|
|
force_successful_syscall_return();
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* sys_stime() can be implemented in user-level using
|
|
* sys_settimeofday(). Is this for backwards compatibility? If so,
|
|
* why not move it into the appropriate arch directory (for those
|
|
* architectures that need it).
|
|
*/
|
|
|
|
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
|
|
{
|
|
struct timespec tv;
|
|
int err;
|
|
|
|
if (get_user(tv.tv_sec, tptr))
|
|
return -EFAULT;
|
|
|
|
tv.tv_nsec = 0;
|
|
|
|
err = security_settime(&tv, NULL);
|
|
if (err)
|
|
return err;
|
|
|
|
do_settimeofday(&tv);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* __ARCH_WANT_SYS_TIME */
|
|
|
|
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
if (likely(tv != NULL)) {
|
|
struct timeval ktv;
|
|
do_gettimeofday(&ktv);
|
|
if (copy_to_user(tv, &ktv, sizeof(ktv)))
|
|
return -EFAULT;
|
|
}
|
|
if (unlikely(tz != NULL)) {
|
|
if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
|
|
return -EFAULT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Adjust the time obtained from the CMOS to be UTC time instead of
|
|
* local time.
|
|
*
|
|
* This is ugly, but preferable to the alternatives. Otherwise we
|
|
* would either need to write a program to do it in /etc/rc (and risk
|
|
* confusion if the program gets run more than once; it would also be
|
|
* hard to make the program warp the clock precisely n hours) or
|
|
* compile in the timezone information into the kernel. Bad, bad....
|
|
*
|
|
* - TYT, 1992-01-01
|
|
*
|
|
* The best thing to do is to keep the CMOS clock in universal time (UTC)
|
|
* as real UNIX machines always do it. This avoids all headaches about
|
|
* daylight saving times and warping kernel clocks.
|
|
*/
|
|
static inline void warp_clock(void)
|
|
{
|
|
struct timespec adjust;
|
|
|
|
adjust = current_kernel_time();
|
|
adjust.tv_sec += sys_tz.tz_minuteswest * 60;
|
|
do_settimeofday(&adjust);
|
|
}
|
|
|
|
/*
|
|
* In case for some reason the CMOS clock has not already been running
|
|
* in UTC, but in some local time: The first time we set the timezone,
|
|
* we will warp the clock so that it is ticking UTC time instead of
|
|
* local time. Presumably, if someone is setting the timezone then we
|
|
* are running in an environment where the programs understand about
|
|
* timezones. This should be done at boot time in the /etc/rc script,
|
|
* as soon as possible, so that the clock can be set right. Otherwise,
|
|
* various programs will get confused when the clock gets warped.
|
|
*/
|
|
|
|
int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
|
|
{
|
|
static int firsttime = 1;
|
|
int error = 0;
|
|
|
|
if (tv && !timespec_valid(tv))
|
|
return -EINVAL;
|
|
|
|
error = security_settime(tv, tz);
|
|
if (error)
|
|
return error;
|
|
|
|
if (tz) {
|
|
/* SMP safe, global irq locking makes it work. */
|
|
sys_tz = *tz;
|
|
update_vsyscall_tz();
|
|
if (firsttime) {
|
|
firsttime = 0;
|
|
if (!tv)
|
|
warp_clock();
|
|
}
|
|
}
|
|
if (tv)
|
|
{
|
|
/* SMP safe, again the code in arch/foo/time.c should
|
|
* globally block out interrupts when it runs.
|
|
*/
|
|
return do_settimeofday(tv);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
|
|
struct timezone __user *, tz)
|
|
{
|
|
struct timeval user_tv;
|
|
struct timespec new_ts;
|
|
struct timezone new_tz;
|
|
|
|
if (tv) {
|
|
if (copy_from_user(&user_tv, tv, sizeof(*tv)))
|
|
return -EFAULT;
|
|
new_ts.tv_sec = user_tv.tv_sec;
|
|
new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
|
|
}
|
|
if (tz) {
|
|
if (copy_from_user(&new_tz, tz, sizeof(*tz)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
|
|
{
|
|
struct timex txc; /* Local copy of parameter */
|
|
int ret;
|
|
|
|
/* Copy the user data space into the kernel copy
|
|
* structure. But bear in mind that the structures
|
|
* may change
|
|
*/
|
|
if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
|
|
return -EFAULT;
|
|
ret = do_adjtimex(&txc);
|
|
return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
|
|
}
|
|
|
|
/**
|
|
* current_fs_time - Return FS time
|
|
* @sb: Superblock.
|
|
*
|
|
* Return the current time truncated to the time granularity supported by
|
|
* the fs.
|
|
*/
|
|
struct timespec current_fs_time(struct super_block *sb)
|
|
{
|
|
struct timespec now = current_kernel_time();
|
|
return timespec_trunc(now, sb->s_time_gran);
|
|
}
|
|
EXPORT_SYMBOL(current_fs_time);
|
|
|
|
/*
|
|
* Convert jiffies to milliseconds and back.
|
|
*
|
|
* Avoid unnecessary multiplications/divisions in the
|
|
* two most common HZ cases:
|
|
*/
|
|
unsigned int inline jiffies_to_msecs(const unsigned long j)
|
|
{
|
|
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
|
return (MSEC_PER_SEC / HZ) * j;
|
|
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
|
return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
|
|
#else
|
|
# if BITS_PER_LONG == 32
|
|
return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
|
|
# else
|
|
return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
|
|
# endif
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_msecs);
|
|
|
|
unsigned int inline jiffies_to_usecs(const unsigned long j)
|
|
{
|
|
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
|
|
return (USEC_PER_SEC / HZ) * j;
|
|
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
|
|
return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
|
|
#else
|
|
# if BITS_PER_LONG == 32
|
|
return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
|
|
# else
|
|
return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
|
|
# endif
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_usecs);
|
|
|
|
/**
|
|
* timespec_trunc - Truncate timespec to a granularity
|
|
* @t: Timespec
|
|
* @gran: Granularity in ns.
|
|
*
|
|
* Truncate a timespec to a granularity. gran must be smaller than a second.
|
|
* Always rounds down.
|
|
*
|
|
* This function should be only used for timestamps returned by
|
|
* current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
|
|
* it doesn't handle the better resolution of the latter.
|
|
*/
|
|
struct timespec timespec_trunc(struct timespec t, unsigned gran)
|
|
{
|
|
/*
|
|
* Division is pretty slow so avoid it for common cases.
|
|
* Currently current_kernel_time() never returns better than
|
|
* jiffies resolution. Exploit that.
|
|
*/
|
|
if (gran <= jiffies_to_usecs(1) * 1000) {
|
|
/* nothing */
|
|
} else if (gran == 1000000000) {
|
|
t.tv_nsec = 0;
|
|
} else {
|
|
t.tv_nsec -= t.tv_nsec % gran;
|
|
}
|
|
return t;
|
|
}
|
|
EXPORT_SYMBOL(timespec_trunc);
|
|
|
|
/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
|
|
* Assumes input in normal date format, i.e. 1980-12-31 23:59:59
|
|
* => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
|
|
*
|
|
* [For the Julian calendar (which was used in Russia before 1917,
|
|
* Britain & colonies before 1752, anywhere else before 1582,
|
|
* and is still in use by some communities) leave out the
|
|
* -year/100+year/400 terms, and add 10.]
|
|
*
|
|
* This algorithm was first published by Gauss (I think).
|
|
*
|
|
* WARNING: this function will overflow on 2106-02-07 06:28:16 on
|
|
* machines where long is 32-bit! (However, as time_t is signed, we
|
|
* will already get problems at other places on 2038-01-19 03:14:08)
|
|
*/
|
|
unsigned long
|
|
mktime(const unsigned int year0, const unsigned int mon0,
|
|
const unsigned int day, const unsigned int hour,
|
|
const unsigned int min, const unsigned int sec)
|
|
{
|
|
unsigned int mon = mon0, year = year0;
|
|
|
|
/* 1..12 -> 11,12,1..10 */
|
|
if (0 >= (int) (mon -= 2)) {
|
|
mon += 12; /* Puts Feb last since it has leap day */
|
|
year -= 1;
|
|
}
|
|
|
|
return ((((unsigned long)
|
|
(year/4 - year/100 + year/400 + 367*mon/12 + day) +
|
|
year*365 - 719499
|
|
)*24 + hour /* now have hours */
|
|
)*60 + min /* now have minutes */
|
|
)*60 + sec; /* finally seconds */
|
|
}
|
|
|
|
EXPORT_SYMBOL(mktime);
|
|
|
|
/**
|
|
* set_normalized_timespec - set timespec sec and nsec parts and normalize
|
|
*
|
|
* @ts: pointer to timespec variable to be set
|
|
* @sec: seconds to set
|
|
* @nsec: nanoseconds to set
|
|
*
|
|
* Set seconds and nanoseconds field of a timespec variable and
|
|
* normalize to the timespec storage format
|
|
*
|
|
* Note: The tv_nsec part is always in the range of
|
|
* 0 <= tv_nsec < NSEC_PER_SEC
|
|
* For negative values only the tv_sec field is negative !
|
|
*/
|
|
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
|
|
{
|
|
while (nsec >= NSEC_PER_SEC) {
|
|
/*
|
|
* The following asm() prevents the compiler from
|
|
* optimising this loop into a modulo operation. See
|
|
* also __iter_div_u64_rem() in include/linux/time.h
|
|
*/
|
|
asm("" : "+rm"(nsec));
|
|
nsec -= NSEC_PER_SEC;
|
|
++sec;
|
|
}
|
|
while (nsec < 0) {
|
|
asm("" : "+rm"(nsec));
|
|
nsec += NSEC_PER_SEC;
|
|
--sec;
|
|
}
|
|
ts->tv_sec = sec;
|
|
ts->tv_nsec = nsec;
|
|
}
|
|
EXPORT_SYMBOL(set_normalized_timespec);
|
|
|
|
/**
|
|
* ns_to_timespec - Convert nanoseconds to timespec
|
|
* @nsec: the nanoseconds value to be converted
|
|
*
|
|
* Returns the timespec representation of the nsec parameter.
|
|
*/
|
|
struct timespec ns_to_timespec(const s64 nsec)
|
|
{
|
|
struct timespec ts;
|
|
s32 rem;
|
|
|
|
if (!nsec)
|
|
return (struct timespec) {0, 0};
|
|
|
|
ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
|
|
if (unlikely(rem < 0)) {
|
|
ts.tv_sec--;
|
|
rem += NSEC_PER_SEC;
|
|
}
|
|
ts.tv_nsec = rem;
|
|
|
|
return ts;
|
|
}
|
|
EXPORT_SYMBOL(ns_to_timespec);
|
|
|
|
/**
|
|
* ns_to_timeval - Convert nanoseconds to timeval
|
|
* @nsec: the nanoseconds value to be converted
|
|
*
|
|
* Returns the timeval representation of the nsec parameter.
|
|
*/
|
|
struct timeval ns_to_timeval(const s64 nsec)
|
|
{
|
|
struct timespec ts = ns_to_timespec(nsec);
|
|
struct timeval tv;
|
|
|
|
tv.tv_sec = ts.tv_sec;
|
|
tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
|
|
|
|
return tv;
|
|
}
|
|
EXPORT_SYMBOL(ns_to_timeval);
|
|
|
|
/*
|
|
* When we convert to jiffies then we interpret incoming values
|
|
* the following way:
|
|
*
|
|
* - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
|
|
*
|
|
* - 'too large' values [that would result in larger than
|
|
* MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
|
|
*
|
|
* - all other values are converted to jiffies by either multiplying
|
|
* the input value by a factor or dividing it with a factor
|
|
*
|
|
* We must also be careful about 32-bit overflows.
|
|
*/
|
|
unsigned long msecs_to_jiffies(const unsigned int m)
|
|
{
|
|
/*
|
|
* Negative value, means infinite timeout:
|
|
*/
|
|
if ((int)m < 0)
|
|
return MAX_JIFFY_OFFSET;
|
|
|
|
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
|
|
/*
|
|
* HZ is equal to or smaller than 1000, and 1000 is a nice
|
|
* round multiple of HZ, divide with the factor between them,
|
|
* but round upwards:
|
|
*/
|
|
return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
|
|
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
|
|
/*
|
|
* HZ is larger than 1000, and HZ is a nice round multiple of
|
|
* 1000 - simply multiply with the factor between them.
|
|
*
|
|
* But first make sure the multiplication result cannot
|
|
* overflow:
|
|
*/
|
|
if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
|
|
return MAX_JIFFY_OFFSET;
|
|
|
|
return m * (HZ / MSEC_PER_SEC);
|
|
#else
|
|
/*
|
|
* Generic case - multiply, round and divide. But first
|
|
* check that if we are doing a net multiplication, that
|
|
* we wouldn't overflow:
|
|
*/
|
|
if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
|
|
return MAX_JIFFY_OFFSET;
|
|
|
|
return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
|
|
>> MSEC_TO_HZ_SHR32;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(msecs_to_jiffies);
|
|
|
|
unsigned long usecs_to_jiffies(const unsigned int u)
|
|
{
|
|
if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
|
|
return MAX_JIFFY_OFFSET;
|
|
#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
|
|
return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
|
|
#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
|
|
return u * (HZ / USEC_PER_SEC);
|
|
#else
|
|
return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
|
|
>> USEC_TO_HZ_SHR32;
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(usecs_to_jiffies);
|
|
|
|
/*
|
|
* The TICK_NSEC - 1 rounds up the value to the next resolution. Note
|
|
* that a remainder subtract here would not do the right thing as the
|
|
* resolution values don't fall on second boundries. I.e. the line:
|
|
* nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
|
|
*
|
|
* Rather, we just shift the bits off the right.
|
|
*
|
|
* The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
|
|
* value to a scaled second value.
|
|
*/
|
|
unsigned long
|
|
timespec_to_jiffies(const struct timespec *value)
|
|
{
|
|
unsigned long sec = value->tv_sec;
|
|
long nsec = value->tv_nsec + TICK_NSEC - 1;
|
|
|
|
if (sec >= MAX_SEC_IN_JIFFIES){
|
|
sec = MAX_SEC_IN_JIFFIES;
|
|
nsec = 0;
|
|
}
|
|
return (((u64)sec * SEC_CONVERSION) +
|
|
(((u64)nsec * NSEC_CONVERSION) >>
|
|
(NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
|
|
|
}
|
|
EXPORT_SYMBOL(timespec_to_jiffies);
|
|
|
|
void
|
|
jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
|
|
{
|
|
/*
|
|
* Convert jiffies to nanoseconds and separate with
|
|
* one divide.
|
|
*/
|
|
u32 rem;
|
|
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
|
NSEC_PER_SEC, &rem);
|
|
value->tv_nsec = rem;
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_timespec);
|
|
|
|
/* Same for "timeval"
|
|
*
|
|
* Well, almost. The problem here is that the real system resolution is
|
|
* in nanoseconds and the value being converted is in micro seconds.
|
|
* Also for some machines (those that use HZ = 1024, in-particular),
|
|
* there is a LARGE error in the tick size in microseconds.
|
|
|
|
* The solution we use is to do the rounding AFTER we convert the
|
|
* microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
|
|
* Instruction wise, this should cost only an additional add with carry
|
|
* instruction above the way it was done above.
|
|
*/
|
|
unsigned long
|
|
timeval_to_jiffies(const struct timeval *value)
|
|
{
|
|
unsigned long sec = value->tv_sec;
|
|
long usec = value->tv_usec;
|
|
|
|
if (sec >= MAX_SEC_IN_JIFFIES){
|
|
sec = MAX_SEC_IN_JIFFIES;
|
|
usec = 0;
|
|
}
|
|
return (((u64)sec * SEC_CONVERSION) +
|
|
(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
|
|
(USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
|
|
}
|
|
EXPORT_SYMBOL(timeval_to_jiffies);
|
|
|
|
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
|
|
{
|
|
/*
|
|
* Convert jiffies to nanoseconds and separate with
|
|
* one divide.
|
|
*/
|
|
u32 rem;
|
|
|
|
value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
|
|
NSEC_PER_SEC, &rem);
|
|
value->tv_usec = rem / NSEC_PER_USEC;
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_timeval);
|
|
|
|
/*
|
|
* Convert jiffies/jiffies_64 to clock_t and back.
|
|
*/
|
|
clock_t jiffies_to_clock_t(long x)
|
|
{
|
|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
|
# if HZ < USER_HZ
|
|
return x * (USER_HZ / HZ);
|
|
# else
|
|
return x / (HZ / USER_HZ);
|
|
# endif
|
|
#else
|
|
return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(jiffies_to_clock_t);
|
|
|
|
unsigned long clock_t_to_jiffies(unsigned long x)
|
|
{
|
|
#if (HZ % USER_HZ)==0
|
|
if (x >= ~0UL / (HZ / USER_HZ))
|
|
return ~0UL;
|
|
return x * (HZ / USER_HZ);
|
|
#else
|
|
/* Don't worry about loss of precision here .. */
|
|
if (x >= ~0UL / HZ * USER_HZ)
|
|
return ~0UL;
|
|
|
|
/* .. but do try to contain it here */
|
|
return div_u64((u64)x * HZ, USER_HZ);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL(clock_t_to_jiffies);
|
|
|
|
u64 jiffies_64_to_clock_t(u64 x)
|
|
{
|
|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
|
|
# if HZ < USER_HZ
|
|
x = div_u64(x * USER_HZ, HZ);
|
|
# elif HZ > USER_HZ
|
|
x = div_u64(x, HZ / USER_HZ);
|
|
# else
|
|
/* Nothing to do */
|
|
# endif
|
|
#else
|
|
/*
|
|
* There are better ways that don't overflow early,
|
|
* but even this doesn't overflow in hundreds of years
|
|
* in 64 bits, so..
|
|
*/
|
|
x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
|
|
#endif
|
|
return x;
|
|
}
|
|
EXPORT_SYMBOL(jiffies_64_to_clock_t);
|
|
|
|
u64 nsec_to_clock_t(u64 x)
|
|
{
|
|
#if (NSEC_PER_SEC % USER_HZ) == 0
|
|
return div_u64(x, NSEC_PER_SEC / USER_HZ);
|
|
#elif (USER_HZ % 512) == 0
|
|
return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
|
|
#else
|
|
/*
|
|
* max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
|
|
* overflow after 64.99 years.
|
|
* exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
|
|
*/
|
|
return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* nsecs_to_jiffies - Convert nsecs in u64 to jiffies
|
|
*
|
|
* @n: nsecs in u64
|
|
*
|
|
* Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
|
|
* And this doesn't return MAX_JIFFY_OFFSET since this function is designed
|
|
* for scheduler, not for use in device drivers to calculate timeout value.
|
|
*
|
|
* note:
|
|
* NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
|
|
* ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
|
|
*/
|
|
unsigned long nsecs_to_jiffies(u64 n)
|
|
{
|
|
#if (NSEC_PER_SEC % HZ) == 0
|
|
/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
|
|
return div_u64(n, NSEC_PER_SEC / HZ);
|
|
#elif (HZ % 512) == 0
|
|
/* overflow after 292 years if HZ = 1024 */
|
|
return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
|
|
#else
|
|
/*
|
|
* Generic case - optimized for cases where HZ is a multiple of 3.
|
|
* overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
|
|
*/
|
|
return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
|
|
#endif
|
|
}
|
|
|
|
#if (BITS_PER_LONG < 64)
|
|
u64 get_jiffies_64(void)
|
|
{
|
|
unsigned long seq;
|
|
u64 ret;
|
|
|
|
do {
|
|
seq = read_seqbegin(&xtime_lock);
|
|
ret = jiffies_64;
|
|
} while (read_seqretry(&xtime_lock, seq));
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(get_jiffies_64);
|
|
#endif
|
|
|
|
EXPORT_SYMBOL(jiffies);
|
|
|
|
/*
|
|
* Add two timespec values and do a safety check for overflow.
|
|
* It's assumed that both values are valid (>= 0)
|
|
*/
|
|
struct timespec timespec_add_safe(const struct timespec lhs,
|
|
const struct timespec rhs)
|
|
{
|
|
struct timespec res;
|
|
|
|
set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
|
|
lhs.tv_nsec + rhs.tv_nsec);
|
|
|
|
if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
|
|
res.tv_sec = TIME_T_MAX;
|
|
|
|
return res;
|
|
}
|