mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-09 19:10:45 +00:00
5cbded585d
Run this: #!/bin/sh for f in $(grep -Erl "\([^\)]*\) *k[cmz]alloc" *) ; do echo "De-casting $f..." perl -pi -e "s/ ?= ?\([^\)]*\) *(k[cmz]alloc) *\(/ = \1\(/" $f done And then go through and reinstate those cases where code is casting pointers to non-pointers. And then drop a few hunks which conflicted with outstanding work. Cc: Russell King <rmk@arm.linux.org.uk>, Ian Molton <spyro@f2s.com> Cc: Mikael Starvik <starvik@axis.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Roman Zippel <zippel@linux-m68k.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Kyle McMartin <kyle@mcmartin.ca> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Jeff Dike <jdike@addtoit.com> Cc: Greg KH <greg@kroah.com> Cc: Jens Axboe <jens.axboe@oracle.com> Cc: Paul Fulghum <paulkf@microgate.com> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Cc: Karsten Keil <kkeil@suse.de> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Jeff Garzik <jeff@garzik.org> Cc: James Bottomley <James.Bottomley@steeleye.com> Cc: Ian Kent <raven@themaw.net> Cc: Steven French <sfrench@us.ibm.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Neil Brown <neilb@cse.unsw.edu.au> Cc: Jaroslav Kysela <perex@suse.cz> Cc: Takashi Iwai <tiwai@suse.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
788 lines
22 KiB
C
788 lines
22 KiB
C
/*
|
|
* linux/fs/befs/btree.c
|
|
*
|
|
* Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
|
|
*
|
|
* Licensed under the GNU GPL. See the file COPYING for details.
|
|
*
|
|
* 2002-02-05: Sergey S. Kostyliov added binary search withing
|
|
* btree nodes.
|
|
*
|
|
* Many thanks to:
|
|
*
|
|
* Dominic Giampaolo, author of "Practical File System
|
|
* Design with the Be File System", for such a helpful book.
|
|
*
|
|
* Marcus J. Ranum, author of the b+tree package in
|
|
* comp.sources.misc volume 10. This code is not copied from that
|
|
* work, but it is partially based on it.
|
|
*
|
|
* Makoto Kato, author of the original BeFS for linux filesystem
|
|
* driver.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/buffer_head.h>
|
|
|
|
#include "befs.h"
|
|
#include "btree.h"
|
|
#include "datastream.h"
|
|
|
|
/*
|
|
* The btree functions in this file are built on top of the
|
|
* datastream.c interface, which is in turn built on top of the
|
|
* io.c interface.
|
|
*/
|
|
|
|
/* Befs B+tree structure:
|
|
*
|
|
* The first thing in the tree is the tree superblock. It tells you
|
|
* all kinds of useful things about the tree, like where the rootnode
|
|
* is located, and the size of the nodes (always 1024 with current version
|
|
* of BeOS).
|
|
*
|
|
* The rest of the tree consists of a series of nodes. Nodes contain a header
|
|
* (struct befs_btree_nodehead), the packed key data, an array of shorts
|
|
* containing the ending offsets for each of the keys, and an array of
|
|
* befs_off_t values. In interior nodes, the keys are the ending keys for
|
|
* the childnode they point to, and the values are offsets into the
|
|
* datastream containing the tree.
|
|
*/
|
|
|
|
/* Note:
|
|
*
|
|
* The book states 2 confusing things about befs b+trees. First,
|
|
* it states that the overflow field of node headers is used by internal nodes
|
|
* to point to another node that "effectively continues this one". Here is what
|
|
* I believe that means. Each key in internal nodes points to another node that
|
|
* contains key values less than itself. Inspection reveals that the last key
|
|
* in the internal node is not the last key in the index. Keys that are
|
|
* greater than the last key in the internal node go into the overflow node.
|
|
* I imagine there is a performance reason for this.
|
|
*
|
|
* Second, it states that the header of a btree node is sufficient to
|
|
* distinguish internal nodes from leaf nodes. Without saying exactly how.
|
|
* After figuring out the first, it becomes obvious that internal nodes have
|
|
* overflow nodes and leafnodes do not.
|
|
*/
|
|
|
|
/*
|
|
* Currently, this code is only good for directory B+trees.
|
|
* In order to be used for other BFS indexes, it needs to be extended to handle
|
|
* duplicate keys and non-string keytypes (int32, int64, float, double).
|
|
*/
|
|
|
|
/*
|
|
* In memory structure of each btree node
|
|
*/
|
|
typedef struct {
|
|
befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */
|
|
struct buffer_head *bh;
|
|
befs_btree_nodehead *od_node; /* on disk node */
|
|
} befs_btree_node;
|
|
|
|
/* local constants */
|
|
static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
|
|
|
|
/* local functions */
|
|
static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
|
|
befs_btree_super * bt_super,
|
|
befs_btree_node * this_node,
|
|
befs_off_t * node_off);
|
|
|
|
static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
|
|
befs_btree_super * sup);
|
|
|
|
static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
|
|
befs_btree_node * node, befs_off_t node_off);
|
|
|
|
static int befs_leafnode(befs_btree_node * node);
|
|
|
|
static fs16 *befs_bt_keylen_index(befs_btree_node * node);
|
|
|
|
static fs64 *befs_bt_valarray(befs_btree_node * node);
|
|
|
|
static char *befs_bt_keydata(befs_btree_node * node);
|
|
|
|
static int befs_find_key(struct super_block *sb, befs_btree_node * node,
|
|
const char *findkey, befs_off_t * value);
|
|
|
|
static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
|
|
int index, u16 * keylen);
|
|
|
|
static int befs_compare_strings(const void *key1, int keylen1,
|
|
const void *key2, int keylen2);
|
|
|
|
/**
|
|
* befs_bt_read_super - read in btree superblock convert to cpu byteorder
|
|
* @sb: Filesystem superblock
|
|
* @ds: Datastream to read from
|
|
* @sup: Buffer in which to place the btree superblock
|
|
*
|
|
* Calls befs_read_datastream to read in the btree superblock and
|
|
* makes sure it is in cpu byteorder, byteswapping if necessary.
|
|
*
|
|
* On success, returns BEFS_OK and *@sup contains the btree superblock,
|
|
* in cpu byte order.
|
|
*
|
|
* On failure, BEFS_ERR is returned.
|
|
*/
|
|
static int
|
|
befs_bt_read_super(struct super_block *sb, befs_data_stream * ds,
|
|
befs_btree_super * sup)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
befs_disk_btree_super *od_sup = NULL;
|
|
|
|
befs_debug(sb, "---> befs_btree_read_super()");
|
|
|
|
bh = befs_read_datastream(sb, ds, 0, NULL);
|
|
|
|
if (!bh) {
|
|
befs_error(sb, "Couldn't read index header.");
|
|
goto error;
|
|
}
|
|
od_sup = (befs_disk_btree_super *) bh->b_data;
|
|
befs_dump_index_entry(sb, od_sup);
|
|
|
|
sup->magic = fs32_to_cpu(sb, od_sup->magic);
|
|
sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
|
|
sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
|
|
sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
|
|
sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
|
|
sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
|
|
sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
|
|
|
|
brelse(bh);
|
|
if (sup->magic != BEFS_BTREE_MAGIC) {
|
|
befs_error(sb, "Index header has bad magic.");
|
|
goto error;
|
|
}
|
|
|
|
befs_debug(sb, "<--- befs_btree_read_super()");
|
|
return BEFS_OK;
|
|
|
|
error:
|
|
befs_debug(sb, "<--- befs_btree_read_super() ERROR");
|
|
return BEFS_ERR;
|
|
}
|
|
|
|
/**
|
|
* befs_bt_read_node - read in btree node and convert to cpu byteorder
|
|
* @sb: Filesystem superblock
|
|
* @ds: Datastream to read from
|
|
* @node: Buffer in which to place the btree node
|
|
* @node_off: Starting offset (in bytes) of the node in @ds
|
|
*
|
|
* Calls befs_read_datastream to read in the indicated btree node and
|
|
* makes sure its header fields are in cpu byteorder, byteswapping if
|
|
* necessary.
|
|
* Note: node->bh must be NULL when this function called first
|
|
* time. Don't forget brelse(node->bh) after last call.
|
|
*
|
|
* On success, returns BEFS_OK and *@node contains the btree node that
|
|
* starts at @node_off, with the node->head fields in cpu byte order.
|
|
*
|
|
* On failure, BEFS_ERR is returned.
|
|
*/
|
|
|
|
static int
|
|
befs_bt_read_node(struct super_block *sb, befs_data_stream * ds,
|
|
befs_btree_node * node, befs_off_t node_off)
|
|
{
|
|
uint off = 0;
|
|
|
|
befs_debug(sb, "---> befs_bt_read_node()");
|
|
|
|
if (node->bh)
|
|
brelse(node->bh);
|
|
|
|
node->bh = befs_read_datastream(sb, ds, node_off, &off);
|
|
if (!node->bh) {
|
|
befs_error(sb, "befs_bt_read_node() failed to read "
|
|
"node at %Lu", node_off);
|
|
befs_debug(sb, "<--- befs_bt_read_node() ERROR");
|
|
|
|
return BEFS_ERR;
|
|
}
|
|
node->od_node =
|
|
(befs_btree_nodehead *) ((void *) node->bh->b_data + off);
|
|
|
|
befs_dump_index_node(sb, node->od_node);
|
|
|
|
node->head.left = fs64_to_cpu(sb, node->od_node->left);
|
|
node->head.right = fs64_to_cpu(sb, node->od_node->right);
|
|
node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
|
|
node->head.all_key_count =
|
|
fs16_to_cpu(sb, node->od_node->all_key_count);
|
|
node->head.all_key_length =
|
|
fs16_to_cpu(sb, node->od_node->all_key_length);
|
|
|
|
befs_debug(sb, "<--- befs_btree_read_node()");
|
|
return BEFS_OK;
|
|
}
|
|
|
|
/**
|
|
* befs_btree_find - Find a key in a befs B+tree
|
|
* @sb: Filesystem superblock
|
|
* @ds: Datastream containing btree
|
|
* @key: Key string to lookup in btree
|
|
* @value: Value stored with @key
|
|
*
|
|
* On sucess, returns BEFS_OK and sets *@value to the value stored
|
|
* with @key (usually the disk block number of an inode).
|
|
*
|
|
* On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
|
|
*
|
|
* Algorithm:
|
|
* Read the superblock and rootnode of the b+tree.
|
|
* Drill down through the interior nodes using befs_find_key().
|
|
* Once at the correct leaf node, use befs_find_key() again to get the
|
|
* actuall value stored with the key.
|
|
*/
|
|
int
|
|
befs_btree_find(struct super_block *sb, befs_data_stream * ds,
|
|
const char *key, befs_off_t * value)
|
|
{
|
|
befs_btree_node *this_node = NULL;
|
|
befs_btree_super bt_super;
|
|
befs_off_t node_off;
|
|
int res;
|
|
|
|
befs_debug(sb, "---> befs_btree_find() Key: %s", key);
|
|
|
|
if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
|
|
befs_error(sb,
|
|
"befs_btree_find() failed to read index superblock");
|
|
goto error;
|
|
}
|
|
|
|
this_node = kmalloc(sizeof (befs_btree_node),
|
|
GFP_NOFS);
|
|
if (!this_node) {
|
|
befs_error(sb, "befs_btree_find() failed to allocate %u "
|
|
"bytes of memory", sizeof (befs_btree_node));
|
|
goto error;
|
|
}
|
|
|
|
this_node->bh = NULL;
|
|
|
|
/* read in root node */
|
|
node_off = bt_super.root_node_ptr;
|
|
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
|
|
befs_error(sb, "befs_btree_find() failed to read "
|
|
"node at %Lu", node_off);
|
|
goto error_alloc;
|
|
}
|
|
|
|
while (!befs_leafnode(this_node)) {
|
|
res = befs_find_key(sb, this_node, key, &node_off);
|
|
if (res == BEFS_BT_NOT_FOUND)
|
|
node_off = this_node->head.overflow;
|
|
/* if no match, go to overflow node */
|
|
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
|
|
befs_error(sb, "befs_btree_find() failed to read "
|
|
"node at %Lu", node_off);
|
|
goto error_alloc;
|
|
}
|
|
}
|
|
|
|
/* at the correct leaf node now */
|
|
|
|
res = befs_find_key(sb, this_node, key, value);
|
|
|
|
brelse(this_node->bh);
|
|
kfree(this_node);
|
|
|
|
if (res != BEFS_BT_MATCH) {
|
|
befs_debug(sb, "<--- befs_btree_find() Key %s not found", key);
|
|
*value = 0;
|
|
return BEFS_BT_NOT_FOUND;
|
|
}
|
|
befs_debug(sb, "<--- befs_btree_find() Found key %s, value %Lu",
|
|
key, *value);
|
|
return BEFS_OK;
|
|
|
|
error_alloc:
|
|
kfree(this_node);
|
|
error:
|
|
*value = 0;
|
|
befs_debug(sb, "<--- befs_btree_find() ERROR");
|
|
return BEFS_ERR;
|
|
}
|
|
|
|
/**
|
|
* befs_find_key - Search for a key within a node
|
|
* @sb: Filesystem superblock
|
|
* @node: Node to find the key within
|
|
* @key: Keystring to search for
|
|
* @value: If key is found, the value stored with the key is put here
|
|
*
|
|
* finds exact match if one exists, and returns BEFS_BT_MATCH
|
|
* If no exact match, finds first key in node that is greater
|
|
* (alphabetically) than the search key and returns BEFS_BT_PARMATCH
|
|
* (for partial match, I guess). Can you think of something better to
|
|
* call it?
|
|
*
|
|
* If no key was a match or greater than the search key, return
|
|
* BEFS_BT_NOT_FOUND.
|
|
*
|
|
* Use binary search instead of a linear.
|
|
*/
|
|
static int
|
|
befs_find_key(struct super_block *sb, befs_btree_node * node,
|
|
const char *findkey, befs_off_t * value)
|
|
{
|
|
int first, last, mid;
|
|
int eq;
|
|
u16 keylen;
|
|
int findkey_len;
|
|
char *thiskey;
|
|
fs64 *valarray;
|
|
|
|
befs_debug(sb, "---> befs_find_key() %s", findkey);
|
|
|
|
*value = 0;
|
|
|
|
findkey_len = strlen(findkey);
|
|
|
|
/* if node can not contain key, just skeep this node */
|
|
last = node->head.all_key_count - 1;
|
|
thiskey = befs_bt_get_key(sb, node, last, &keylen);
|
|
|
|
eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
|
|
if (eq < 0) {
|
|
befs_debug(sb, "<--- befs_find_key() %s not found", findkey);
|
|
return BEFS_BT_NOT_FOUND;
|
|
}
|
|
|
|
valarray = befs_bt_valarray(node);
|
|
|
|
/* simple binary search */
|
|
first = 0;
|
|
mid = 0;
|
|
while (last >= first) {
|
|
mid = (last + first) / 2;
|
|
befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
|
|
mid);
|
|
thiskey = befs_bt_get_key(sb, node, mid, &keylen);
|
|
eq = befs_compare_strings(thiskey, keylen, findkey,
|
|
findkey_len);
|
|
|
|
if (eq == 0) {
|
|
befs_debug(sb, "<--- befs_find_key() found %s at %d",
|
|
thiskey, mid);
|
|
|
|
*value = fs64_to_cpu(sb, valarray[mid]);
|
|
return BEFS_BT_MATCH;
|
|
}
|
|
if (eq > 0)
|
|
last = mid - 1;
|
|
else
|
|
first = mid + 1;
|
|
}
|
|
if (eq < 0)
|
|
*value = fs64_to_cpu(sb, valarray[mid + 1]);
|
|
else
|
|
*value = fs64_to_cpu(sb, valarray[mid]);
|
|
befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid);
|
|
return BEFS_BT_PARMATCH;
|
|
}
|
|
|
|
/**
|
|
* befs_btree_read - Traverse leafnodes of a btree
|
|
* @sb: Filesystem superblock
|
|
* @ds: Datastream containing btree
|
|
* @key_no: Key number (alphabetical order) of key to read
|
|
* @bufsize: Size of the buffer to return key in
|
|
* @keybuf: Pointer to a buffer to put the key in
|
|
* @keysize: Length of the returned key
|
|
* @value: Value stored with the returned key
|
|
*
|
|
* Heres how it works: Key_no is the index of the key/value pair to
|
|
* return in keybuf/value.
|
|
* Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
|
|
* the number of charecters in the key (just a convenience).
|
|
*
|
|
* Algorithm:
|
|
* Get the first leafnode of the tree. See if the requested key is in that
|
|
* node. If not, follow the node->right link to the next leafnode. Repeat
|
|
* until the (key_no)th key is found or the tree is out of keys.
|
|
*/
|
|
int
|
|
befs_btree_read(struct super_block *sb, befs_data_stream * ds,
|
|
loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
|
|
befs_off_t * value)
|
|
{
|
|
befs_btree_node *this_node;
|
|
befs_btree_super bt_super;
|
|
befs_off_t node_off = 0;
|
|
int cur_key;
|
|
fs64 *valarray;
|
|
char *keystart;
|
|
u16 keylen;
|
|
int res;
|
|
|
|
uint key_sum = 0;
|
|
|
|
befs_debug(sb, "---> befs_btree_read()");
|
|
|
|
if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
|
|
befs_error(sb,
|
|
"befs_btree_read() failed to read index superblock");
|
|
goto error;
|
|
}
|
|
|
|
if ((this_node = (befs_btree_node *)
|
|
kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) {
|
|
befs_error(sb, "befs_btree_read() failed to allocate %u "
|
|
"bytes of memory", sizeof (befs_btree_node));
|
|
goto error;
|
|
}
|
|
|
|
node_off = bt_super.root_node_ptr;
|
|
this_node->bh = NULL;
|
|
|
|
/* seeks down to first leafnode, reads it into this_node */
|
|
res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
|
|
if (res == BEFS_BT_EMPTY) {
|
|
brelse(this_node->bh);
|
|
kfree(this_node);
|
|
*value = 0;
|
|
*keysize = 0;
|
|
befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY");
|
|
return BEFS_BT_EMPTY;
|
|
} else if (res == BEFS_ERR) {
|
|
goto error_alloc;
|
|
}
|
|
|
|
/* find the leaf node containing the key_no key */
|
|
|
|
while (key_sum + this_node->head.all_key_count <= key_no) {
|
|
|
|
/* no more nodes to look in: key_no is too large */
|
|
if (this_node->head.right == befs_bt_inval) {
|
|
*keysize = 0;
|
|
*value = 0;
|
|
befs_debug(sb,
|
|
"<--- befs_btree_read() END of keys at %Lu",
|
|
key_sum + this_node->head.all_key_count);
|
|
brelse(this_node->bh);
|
|
kfree(this_node);
|
|
return BEFS_BT_END;
|
|
}
|
|
|
|
key_sum += this_node->head.all_key_count;
|
|
node_off = this_node->head.right;
|
|
|
|
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
|
|
befs_error(sb, "befs_btree_read() failed to read "
|
|
"node at %Lu", node_off);
|
|
goto error_alloc;
|
|
}
|
|
}
|
|
|
|
/* how many keys into this_node is key_no */
|
|
cur_key = key_no - key_sum;
|
|
|
|
/* get pointers to datastructures within the node body */
|
|
valarray = befs_bt_valarray(this_node);
|
|
|
|
keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
|
|
|
|
befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen);
|
|
|
|
if (bufsize < keylen + 1) {
|
|
befs_error(sb, "befs_btree_read() keybuf too small (%u) "
|
|
"for key of size %d", bufsize, keylen);
|
|
brelse(this_node->bh);
|
|
goto error_alloc;
|
|
};
|
|
|
|
strncpy(keybuf, keystart, keylen);
|
|
*value = fs64_to_cpu(sb, valarray[cur_key]);
|
|
*keysize = keylen;
|
|
keybuf[keylen] = '\0';
|
|
|
|
befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off,
|
|
cur_key, keylen, keybuf, *value);
|
|
|
|
brelse(this_node->bh);
|
|
kfree(this_node);
|
|
|
|
befs_debug(sb, "<--- befs_btree_read()");
|
|
|
|
return BEFS_OK;
|
|
|
|
error_alloc:
|
|
kfree(this_node);
|
|
|
|
error:
|
|
*keysize = 0;
|
|
*value = 0;
|
|
befs_debug(sb, "<--- befs_btree_read() ERROR");
|
|
return BEFS_ERR;
|
|
}
|
|
|
|
/**
|
|
* befs_btree_seekleaf - Find the first leafnode in the btree
|
|
* @sb: Filesystem superblock
|
|
* @ds: Datastream containing btree
|
|
* @bt_super: Pointer to the superblock of the btree
|
|
* @this_node: Buffer to return the leafnode in
|
|
* @node_off: Pointer to offset of current node within datastream. Modified
|
|
* by the function.
|
|
*
|
|
*
|
|
* Helper function for btree traverse. Moves the current position to the
|
|
* start of the first leaf node.
|
|
*
|
|
* Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
|
|
*/
|
|
static int
|
|
befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds,
|
|
befs_btree_super * bt_super, befs_btree_node * this_node,
|
|
befs_off_t * node_off)
|
|
{
|
|
|
|
befs_debug(sb, "---> befs_btree_seekleaf()");
|
|
|
|
if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
|
|
befs_error(sb, "befs_btree_seekleaf() failed to read "
|
|
"node at %Lu", *node_off);
|
|
goto error;
|
|
}
|
|
befs_debug(sb, "Seekleaf to root node %Lu", *node_off);
|
|
|
|
if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
|
|
befs_debug(sb, "<--- befs_btree_seekleaf() Tree is EMPTY");
|
|
return BEFS_BT_EMPTY;
|
|
}
|
|
|
|
while (!befs_leafnode(this_node)) {
|
|
|
|
if (this_node->head.all_key_count == 0) {
|
|
befs_debug(sb, "befs_btree_seekleaf() encountered "
|
|
"an empty interior node: %Lu. Using Overflow "
|
|
"node: %Lu", *node_off,
|
|
this_node->head.overflow);
|
|
*node_off = this_node->head.overflow;
|
|
} else {
|
|
fs64 *valarray = befs_bt_valarray(this_node);
|
|
*node_off = fs64_to_cpu(sb, valarray[0]);
|
|
}
|
|
if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
|
|
befs_error(sb, "befs_btree_seekleaf() failed to read "
|
|
"node at %Lu", *node_off);
|
|
goto error;
|
|
}
|
|
|
|
befs_debug(sb, "Seekleaf to child node %Lu", *node_off);
|
|
}
|
|
befs_debug(sb, "Node %Lu is a leaf node", *node_off);
|
|
|
|
return BEFS_OK;
|
|
|
|
error:
|
|
befs_debug(sb, "<--- befs_btree_seekleaf() ERROR");
|
|
return BEFS_ERR;
|
|
}
|
|
|
|
/**
|
|
* befs_leafnode - Determine if the btree node is a leaf node or an
|
|
* interior node
|
|
* @node: Pointer to node structure to test
|
|
*
|
|
* Return 1 if leaf, 0 if interior
|
|
*/
|
|
static int
|
|
befs_leafnode(befs_btree_node * node)
|
|
{
|
|
/* all interior nodes (and only interior nodes) have an overflow node */
|
|
if (node->head.overflow == befs_bt_inval)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* befs_bt_keylen_index - Finds start of keylen index in a node
|
|
* @node: Pointer to the node structure to find the keylen index within
|
|
*
|
|
* Returns a pointer to the start of the key length index array
|
|
* of the B+tree node *@node
|
|
*
|
|
* "The length of all the keys in the node is added to the size of the
|
|
* header and then rounded up to a multiple of four to get the beginning
|
|
* of the key length index" (p.88, practical filesystem design).
|
|
*
|
|
* Except that rounding up to 8 works, and rounding up to 4 doesn't.
|
|
*/
|
|
static fs16 *
|
|
befs_bt_keylen_index(befs_btree_node * node)
|
|
{
|
|
const int keylen_align = 8;
|
|
unsigned long int off =
|
|
(sizeof (befs_btree_nodehead) + node->head.all_key_length);
|
|
ulong tmp = off % keylen_align;
|
|
|
|
if (tmp)
|
|
off += keylen_align - tmp;
|
|
|
|
return (fs16 *) ((void *) node->od_node + off);
|
|
}
|
|
|
|
/**
|
|
* befs_bt_valarray - Finds the start of value array in a node
|
|
* @node: Pointer to the node structure to find the value array within
|
|
*
|
|
* Returns a pointer to the start of the value array
|
|
* of the node pointed to by the node header
|
|
*/
|
|
static fs64 *
|
|
befs_bt_valarray(befs_btree_node * node)
|
|
{
|
|
void *keylen_index_start = (void *) befs_bt_keylen_index(node);
|
|
size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
|
|
|
|
return (fs64 *) (keylen_index_start + keylen_index_size);
|
|
}
|
|
|
|
/**
|
|
* befs_bt_keydata - Finds start of keydata array in a node
|
|
* @node: Pointer to the node structure to find the keydata array within
|
|
*
|
|
* Returns a pointer to the start of the keydata array
|
|
* of the node pointed to by the node header
|
|
*/
|
|
static char *
|
|
befs_bt_keydata(befs_btree_node * node)
|
|
{
|
|
return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
|
|
}
|
|
|
|
/**
|
|
* befs_bt_get_key - returns a pointer to the start of a key
|
|
* @sb: filesystem superblock
|
|
* @node: node in which to look for the key
|
|
* @index: the index of the key to get
|
|
* @keylen: modified to be the length of the key at @index
|
|
*
|
|
* Returns a valid pointer into @node on success.
|
|
* Returns NULL on failure (bad input) and sets *@keylen = 0
|
|
*/
|
|
static char *
|
|
befs_bt_get_key(struct super_block *sb, befs_btree_node * node,
|
|
int index, u16 * keylen)
|
|
{
|
|
int prev_key_end;
|
|
char *keystart;
|
|
fs16 *keylen_index;
|
|
|
|
if (index < 0 || index > node->head.all_key_count) {
|
|
*keylen = 0;
|
|
return NULL;
|
|
}
|
|
|
|
keystart = befs_bt_keydata(node);
|
|
keylen_index = befs_bt_keylen_index(node);
|
|
|
|
if (index == 0)
|
|
prev_key_end = 0;
|
|
else
|
|
prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
|
|
|
|
*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
|
|
|
|
return keystart + prev_key_end;
|
|
}
|
|
|
|
/**
|
|
* befs_compare_strings - compare two strings
|
|
* @key1: pointer to the first key to be compared
|
|
* @keylen1: length in bytes of key1
|
|
* @key2: pointer to the second key to be compared
|
|
* @kelen2: length in bytes of key2
|
|
*
|
|
* Returns 0 if @key1 and @key2 are equal.
|
|
* Returns >0 if @key1 is greater.
|
|
* Returns <0 if @key2 is greater..
|
|
*/
|
|
static int
|
|
befs_compare_strings(const void *key1, int keylen1,
|
|
const void *key2, int keylen2)
|
|
{
|
|
int len = min_t(int, keylen1, keylen2);
|
|
int result = strncmp(key1, key2, len);
|
|
if (result == 0)
|
|
result = keylen1 - keylen2;
|
|
return result;
|
|
}
|
|
|
|
/* These will be used for non-string keyed btrees */
|
|
#if 0
|
|
static int
|
|
btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
|
|
{
|
|
return *(int32_t *) key1 - *(int32_t *) key2;
|
|
}
|
|
|
|
static int
|
|
btree_compare_uint32(cont void *key1, int keylen1,
|
|
const void *key2, int keylen2)
|
|
{
|
|
if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
|
|
return 0;
|
|
else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
|
|
return 1;
|
|
|
|
return -1;
|
|
}
|
|
static int
|
|
btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
|
|
{
|
|
if (*(int64_t *) key1 == *(int64_t *) key2)
|
|
return 0;
|
|
else if (*(int64_t *) key1 > *(int64_t *) key2)
|
|
return 1;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
btree_compare_uint64(cont void *key1, int keylen1,
|
|
const void *key2, int keylen2)
|
|
{
|
|
if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
|
|
return 0;
|
|
else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
|
|
return 1;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
|
|
{
|
|
float result = *(float *) key1 - *(float *) key2;
|
|
if (result == 0.0f)
|
|
return 0;
|
|
|
|
return (result < 0.0f) ? -1 : 1;
|
|
}
|
|
|
|
static int
|
|
btree_compare_double(cont void *key1, int keylen1,
|
|
const void *key2, int keylen2)
|
|
{
|
|
double result = *(double *) key1 - *(double *) key2;
|
|
if (result == 0.0)
|
|
return 0;
|
|
|
|
return (result < 0.0) ? -1 : 1;
|
|
}
|
|
#endif //0
|