linux/drivers/mtd/chips/cfi_cmdset_0002.c
Trent Piepho 70b072550a [MTD] [NOR] Fixup for incorrect CFI data in Spansion S29GL064/32N flash chips
This is a known erratum confirmed by Spansion.  I have an errata document,
but I can't find a link to it anywhere on their site to include here.

Some of the S29GL064N chips report 64 sectors when they should report 128,
and some of S29GL032N chips report 127 sectors when they should report 63.

Note that when the chip dies are fixed by Spansion, they will still have
the same id.  The fix is done in such a way that it won't affect corrected
chips.

The fixups use the extended id made available by a previous patch.  Without
that, virtually all newer AMD/Spansion chips will have the same ID (0x227e)
and it's not possible to apply the fixup to the correct chips.

Signed-off-by: Trent Piepho <tpiepho@freescale.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
2008-04-22 21:17:27 +01:00

1914 lines
50 KiB
C

/*
* Common Flash Interface support:
* AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
*
* Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
* Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
* Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
*
* 2_by_8 routines added by Simon Munton
*
* 4_by_16 work by Carolyn J. Smith
*
* XIP support hooks by Vitaly Wool (based on code for Intel flash
* by Nicolas Pitre)
*
* Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
*
* This code is GPL
*
* $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mtd/compatmac.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/xip.h>
#define AMD_BOOTLOC_BUG
#define FORCE_WORD_WRITE 0
#define MAX_WORD_RETRIES 3
#define MANUFACTURER_AMD 0x0001
#define MANUFACTURER_ATMEL 0x001F
#define MANUFACTURER_SST 0x00BF
#define SST49LF004B 0x0060
#define SST49LF040B 0x0050
#define SST49LF008A 0x005a
#define AT49BV6416 0x00d6
static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_amdstd_sync (struct mtd_info *);
static int cfi_amdstd_suspend (struct mtd_info *);
static void cfi_amdstd_resume (struct mtd_info *);
static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static void cfi_amdstd_destroy(struct mtd_info *);
struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
#include "fwh_lock.h"
static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
static struct mtd_chip_driver cfi_amdstd_chipdrv = {
.probe = NULL, /* Not usable directly */
.destroy = cfi_amdstd_destroy,
.name = "cfi_cmdset_0002",
.module = THIS_MODULE
};
/* #define DEBUG_CFI_FEATURES */
#ifdef DEBUG_CFI_FEATURES
static void cfi_tell_features(struct cfi_pri_amdstd *extp)
{
const char* erase_suspend[3] = {
"Not supported", "Read only", "Read/write"
};
const char* top_bottom[6] = {
"No WP", "8x8KiB sectors at top & bottom, no WP",
"Bottom boot", "Top boot",
"Uniform, Bottom WP", "Uniform, Top WP"
};
printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
printk(" Address sensitive unlock: %s\n",
(extp->SiliconRevision & 1) ? "Not required" : "Required");
if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
else
printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
if (extp->BlkProt == 0)
printk(" Block protection: Not supported\n");
else
printk(" Block protection: %d sectors per group\n", extp->BlkProt);
printk(" Temporary block unprotect: %s\n",
extp->TmpBlkUnprotect ? "Supported" : "Not supported");
printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
printk(" Burst mode: %s\n",
extp->BurstMode ? "Supported" : "Not supported");
if (extp->PageMode == 0)
printk(" Page mode: Not supported\n");
else
printk(" Page mode: %d word page\n", extp->PageMode << 2);
printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
extp->VppMin >> 4, extp->VppMin & 0xf);
printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
extp->VppMax >> 4, extp->VppMax & 0xf);
if (extp->TopBottom < ARRAY_SIZE(top_bottom))
printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
else
printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
}
#endif
#ifdef AMD_BOOTLOC_BUG
/* Wheee. Bring me the head of someone at AMD. */
static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
__u8 major = extp->MajorVersion;
__u8 minor = extp->MinorVersion;
if (((major << 8) | minor) < 0x3131) {
/* CFI version 1.0 => don't trust bootloc */
if (cfi->id & 0x80) {
printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
extp->TopBottom = 3; /* top boot */
} else {
extp->TopBottom = 2; /* bottom boot */
}
}
}
#endif
static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if (cfi->cfiq->BufWriteTimeoutTyp) {
DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
mtd->write = cfi_amdstd_write_buffers;
}
}
/* Atmel chips don't use the same PRI format as AMD chips */
static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
struct cfi_pri_atmel atmel_pri;
memcpy(&atmel_pri, extp, sizeof(atmel_pri));
memset((char *)extp + 5, 0, sizeof(*extp) - 5);
if (atmel_pri.Features & 0x02)
extp->EraseSuspend = 2;
if (atmel_pri.BottomBoot)
extp->TopBottom = 2;
else
extp->TopBottom = 3;
/* burst write mode not supported */
cfi->cfiq->BufWriteTimeoutTyp = 0;
cfi->cfiq->BufWriteTimeoutMax = 0;
}
static void fixup_use_secsi(struct mtd_info *mtd, void *param)
{
/* Setup for chips with a secsi area */
mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
}
static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if ((cfi->cfiq->NumEraseRegions == 1) &&
((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
mtd->erase = cfi_amdstd_erase_chip;
}
}
/*
* Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
* locked by default.
*/
static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
{
mtd->lock = cfi_atmel_lock;
mtd->unlock = cfi_atmel_unlock;
mtd->flags |= MTD_POWERUP_LOCK;
}
static void fixup_s29gl064n_sectors(struct mtd_info *mtd, void *param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
}
}
static void fixup_s29gl032n_sectors(struct mtd_info *mtd, void *param)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
}
}
static struct cfi_fixup cfi_fixup_table[] = {
{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
#ifdef AMD_BOOTLOC_BUG
{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
#endif
{ CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors, NULL, },
{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors, NULL, },
{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors, NULL, },
{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors, NULL, },
#if !FORCE_WORD_WRITE
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
#endif
{ 0, 0, NULL, NULL }
};
static struct cfi_fixup jedec_fixup_table[] = {
{ MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
{ MANUFACTURER_SST, SST49LF040B, fixup_use_fwh_lock, NULL, },
{ MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
{ 0, 0, NULL, NULL }
};
static struct cfi_fixup fixup_table[] = {
/* The CFI vendor ids and the JEDEC vendor IDs appear
* to be common. It is like the devices id's are as
* well. This table is to pick all cases where
* we know that is the case.
*/
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
{ 0, 0, NULL, NULL }
};
struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
{
struct cfi_private *cfi = map->fldrv_priv;
struct mtd_info *mtd;
int i;
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
if (!mtd) {
printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
return NULL;
}
mtd->priv = map;
mtd->type = MTD_NORFLASH;
/* Fill in the default mtd operations */
mtd->erase = cfi_amdstd_erase_varsize;
mtd->write = cfi_amdstd_write_words;
mtd->read = cfi_amdstd_read;
mtd->sync = cfi_amdstd_sync;
mtd->suspend = cfi_amdstd_suspend;
mtd->resume = cfi_amdstd_resume;
mtd->flags = MTD_CAP_NORFLASH;
mtd->name = map->name;
mtd->writesize = 1;
if (cfi->cfi_mode==CFI_MODE_CFI){
unsigned char bootloc;
/*
* It's a real CFI chip, not one for which the probe
* routine faked a CFI structure. So we read the feature
* table from it.
*/
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
struct cfi_pri_amdstd *extp;
extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
if (!extp) {
kfree(mtd);
return NULL;
}
if (extp->MajorVersion != '1' ||
(extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
"version %c.%c.\n", extp->MajorVersion,
extp->MinorVersion);
kfree(extp);
kfree(mtd);
return NULL;
}
/* Install our own private info structure */
cfi->cmdset_priv = extp;
/* Apply cfi device specific fixups */
cfi_fixup(mtd, cfi_fixup_table);
#ifdef DEBUG_CFI_FEATURES
/* Tell the user about it in lots of lovely detail */
cfi_tell_features(extp);
#endif
bootloc = extp->TopBottom;
if ((bootloc != 2) && (bootloc != 3)) {
printk(KERN_WARNING "%s: CFI does not contain boot "
"bank location. Assuming top.\n", map->name);
bootloc = 2;
}
if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
int j = (cfi->cfiq->NumEraseRegions-1)-i;
__u32 swap;
swap = cfi->cfiq->EraseRegionInfo[i];
cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
cfi->cfiq->EraseRegionInfo[j] = swap;
}
}
/* Set the default CFI lock/unlock addresses */
cfi->addr_unlock1 = 0x555;
cfi->addr_unlock2 = 0x2aa;
/* Modify the unlock address if we are in compatibility mode */
if ( /* x16 in x8 mode */
((cfi->device_type == CFI_DEVICETYPE_X8) &&
(cfi->cfiq->InterfaceDesc ==
CFI_INTERFACE_X8_BY_X16_ASYNC)) ||
/* x32 in x16 mode */
((cfi->device_type == CFI_DEVICETYPE_X16) &&
(cfi->cfiq->InterfaceDesc ==
CFI_INTERFACE_X16_BY_X32_ASYNC)))
{
cfi->addr_unlock1 = 0xaaa;
cfi->addr_unlock2 = 0x555;
}
} /* CFI mode */
else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
/* Apply jedec specific fixups */
cfi_fixup(mtd, jedec_fixup_table);
}
/* Apply generic fixups */
cfi_fixup(mtd, fixup_table);
for (i=0; i< cfi->numchips; i++) {
cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
cfi->chips[i].ref_point_counter = 0;
init_waitqueue_head(&(cfi->chips[i].wq));
}
map->fldrv = &cfi_amdstd_chipdrv;
return cfi_amdstd_setup(mtd);
}
EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
unsigned long offset = 0;
int i,j;
printk(KERN_NOTICE "number of %s chips: %d\n",
(cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
/* Select the correct geometry setup */
mtd->size = devsize * cfi->numchips;
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
* mtd->numeraseregions, GFP_KERNEL);
if (!mtd->eraseregions) {
printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
goto setup_err;
}
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
unsigned long ernum, ersize;
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
if (mtd->erasesize < ersize) {
mtd->erasesize = ersize;
}
for (j=0; j<cfi->numchips; j++) {
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
}
offset += (ersize * ernum);
}
if (offset != devsize) {
/* Argh */
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
goto setup_err;
}
#if 0
// debug
for (i=0; i<mtd->numeraseregions;i++){
printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
i,mtd->eraseregions[i].offset,
mtd->eraseregions[i].erasesize,
mtd->eraseregions[i].numblocks);
}
#endif
/* FIXME: erase-suspend-program is broken. See
http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
__module_get(THIS_MODULE);
return mtd;
setup_err:
if(mtd) {
kfree(mtd->eraseregions);
kfree(mtd);
}
kfree(cfi->cmdset_priv);
kfree(cfi->cfiq);
return NULL;
}
/*
* Return true if the chip is ready.
*
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
* non-suspended sector) and is indicated by no toggle bits toggling.
*
* Note that anything more complicated than checking if no bits are toggling
* (including checking DQ5 for an error status) is tricky to get working
* correctly and is therefore not done (particulary with interleaved chips
* as each chip must be checked independantly of the others).
*/
static int __xipram chip_ready(struct map_info *map, unsigned long addr)
{
map_word d, t;
d = map_read(map, addr);
t = map_read(map, addr);
return map_word_equal(map, d, t);
}
/*
* Return true if the chip is ready and has the correct value.
*
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
* non-suspended sector) and it is indicated by no bits toggling.
*
* Error are indicated by toggling bits or bits held with the wrong value,
* or with bits toggling.
*
* Note that anything more complicated than checking if no bits are toggling
* (including checking DQ5 for an error status) is tricky to get working
* correctly and is therefore not done (particulary with interleaved chips
* as each chip must be checked independantly of the others).
*
*/
static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
{
map_word oldd, curd;
oldd = map_read(map, addr);
curd = map_read(map, addr);
return map_word_equal(map, oldd, curd) &&
map_word_equal(map, curd, expected);
}
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
DECLARE_WAITQUEUE(wait, current);
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo;
struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
resettime:
timeo = jiffies + HZ;
retry:
switch (chip->state) {
case FL_STATUS:
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
spin_unlock(chip->mutex);
return -EIO;
}
spin_unlock(chip->mutex);
cfi_udelay(1);
spin_lock(chip->mutex);
/* Someone else might have been playing with it. */
goto retry;
}
case FL_READY:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
return 0;
case FL_ERASING:
if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
goto sleep;
if (!( mode == FL_READY
|| mode == FL_POINT
|| !cfip
|| (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
|| (mode == FL_WRITING && (cfip->EraseSuspend & 0x1)
)))
goto sleep;
/* We could check to see if we're trying to access the sector
* that is currently being erased. However, no user will try
* anything like that so we just wait for the timeout. */
/* Erase suspend */
/* It's harmless to issue the Erase-Suspend and Erase-Resume
* commands when the erase algorithm isn't in progress. */
map_write(map, CMD(0xB0), chip->in_progress_block_addr);
chip->oldstate = FL_ERASING;
chip->state = FL_ERASE_SUSPENDING;
chip->erase_suspended = 1;
for (;;) {
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
/* Should have suspended the erase by now.
* Send an Erase-Resume command as either
* there was an error (so leave the erase
* routine to recover from it) or we trying to
* use the erase-in-progress sector. */
map_write(map, CMD(0x30), chip->in_progress_block_addr);
chip->state = FL_ERASING;
chip->oldstate = FL_READY;
printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
return -EIO;
}
spin_unlock(chip->mutex);
cfi_udelay(1);
spin_lock(chip->mutex);
/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
So we can just loop here. */
}
chip->state = FL_READY;
return 0;
case FL_XIP_WHILE_ERASING:
if (mode != FL_READY && mode != FL_POINT &&
(!cfip || !(cfip->EraseSuspend&2)))
goto sleep;
chip->oldstate = chip->state;
chip->state = FL_READY;
return 0;
case FL_POINT:
/* Only if there's no operation suspended... */
if (mode == FL_READY && chip->oldstate == FL_READY)
return 0;
default:
sleep:
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
goto resettime;
}
}
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
switch(chip->oldstate) {
case FL_ERASING:
chip->state = chip->oldstate;
map_write(map, CMD(0x30), chip->in_progress_block_addr);
chip->oldstate = FL_READY;
chip->state = FL_ERASING;
break;
case FL_XIP_WHILE_ERASING:
chip->state = chip->oldstate;
chip->oldstate = FL_READY;
break;
case FL_READY:
case FL_STATUS:
/* We should really make set_vpp() count, rather than doing this */
DISABLE_VPP(map);
break;
default:
printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
}
wake_up(&chip->wq);
}
#ifdef CONFIG_MTD_XIP
/*
* No interrupt what so ever can be serviced while the flash isn't in array
* mode. This is ensured by the xip_disable() and xip_enable() functions
* enclosing any code path where the flash is known not to be in array mode.
* And within a XIP disabled code path, only functions marked with __xipram
* may be called and nothing else (it's a good thing to inspect generated
* assembly to make sure inline functions were actually inlined and that gcc
* didn't emit calls to its own support functions). Also configuring MTD CFI
* support to a single buswidth and a single interleave is also recommended.
*/
static void xip_disable(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
/* TODO: chips with no XIP use should ignore and return */
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
local_irq_disable();
}
static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
if (chip->state != FL_POINT && chip->state != FL_READY) {
map_write(map, CMD(0xf0), adr);
chip->state = FL_READY;
}
(void) map_read(map, adr);
xip_iprefetch();
local_irq_enable();
}
/*
* When a delay is required for the flash operation to complete, the
* xip_udelay() function is polling for both the given timeout and pending
* (but still masked) hardware interrupts. Whenever there is an interrupt
* pending then the flash erase operation is suspended, array mode restored
* and interrupts unmasked. Task scheduling might also happen at that
* point. The CPU eventually returns from the interrupt or the call to
* schedule() and the suspended flash operation is resumed for the remaining
* of the delay period.
*
* Warning: this function _will_ fool interrupt latency tracing tools.
*/
static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
unsigned long adr, int usec)
{
struct cfi_private *cfi = map->fldrv_priv;
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
map_word status, OK = CMD(0x80);
unsigned long suspended, start = xip_currtime();
flstate_t oldstate;
do {
cpu_relax();
if (xip_irqpending() && extp &&
((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
(cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
/*
* Let's suspend the erase operation when supported.
* Note that we currently don't try to suspend
* interleaved chips if there is already another
* operation suspended (imagine what happens
* when one chip was already done with the current
* operation while another chip suspended it, then
* we resume the whole thing at once). Yes, it
* can happen!
*/
map_write(map, CMD(0xb0), adr);
usec -= xip_elapsed_since(start);
suspended = xip_currtime();
do {
if (xip_elapsed_since(suspended) > 100000) {
/*
* The chip doesn't want to suspend
* after waiting for 100 msecs.
* This is a critical error but there
* is not much we can do here.
*/
return;
}
status = map_read(map, adr);
} while (!map_word_andequal(map, status, OK, OK));
/* Suspend succeeded */
oldstate = chip->state;
if (!map_word_bitsset(map, status, CMD(0x40)))
break;
chip->state = FL_XIP_WHILE_ERASING;
chip->erase_suspended = 1;
map_write(map, CMD(0xf0), adr);
(void) map_read(map, adr);
xip_iprefetch();
local_irq_enable();
spin_unlock(chip->mutex);
xip_iprefetch();
cond_resched();
/*
* We're back. However someone else might have
* decided to go write to the chip if we are in
* a suspended erase state. If so let's wait
* until it's done.
*/
spin_lock(chip->mutex);
while (chip->state != FL_XIP_WHILE_ERASING) {
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
}
/* Disallow XIP again */
local_irq_disable();
/* Resume the write or erase operation */
map_write(map, CMD(0x30), adr);
chip->state = oldstate;
start = xip_currtime();
} else if (usec >= 1000000/HZ) {
/*
* Try to save on CPU power when waiting delay
* is at least a system timer tick period.
* No need to be extremely accurate here.
*/
xip_cpu_idle();
}
status = map_read(map, adr);
} while (!map_word_andequal(map, status, OK, OK)
&& xip_elapsed_since(start) < usec);
}
#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
/*
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
* the flash is actively programming or erasing since we have to poll for
* the operation to complete anyway. We can't do that in a generic way with
* a XIP setup so do it before the actual flash operation in this case
* and stub it out from INVALIDATE_CACHE_UDELAY.
*/
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
INVALIDATE_CACHED_RANGE(map, from, size)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
UDELAY(map, chip, adr, usec)
/*
* Extra notes:
*
* Activating this XIP support changes the way the code works a bit. For
* example the code to suspend the current process when concurrent access
* happens is never executed because xip_udelay() will always return with the
* same chip state as it was entered with. This is why there is no care for
* the presence of add_wait_queue() or schedule() calls from within a couple
* xip_disable()'d areas of code, like in do_erase_oneblock for example.
* The queueing and scheduling are always happening within xip_udelay().
*
* Similarly, get_chip() and put_chip() just happen to always be executed
* with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
* is in array mode, therefore never executing many cases therein and not
* causing any problem with XIP.
*/
#else
#define xip_disable(map, chip, adr)
#define xip_enable(map, chip, adr)
#define XIP_INVAL_CACHED_RANGE(x...)
#define UDELAY(map, chip, adr, usec) \
do { \
spin_unlock(chip->mutex); \
cfi_udelay(usec); \
spin_lock(chip->mutex); \
} while (0)
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
do { \
spin_unlock(chip->mutex); \
INVALIDATE_CACHED_RANGE(map, adr, len); \
cfi_udelay(usec); \
spin_lock(chip->mutex); \
} while (0)
#endif
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
unsigned long cmd_addr;
struct cfi_private *cfi = map->fldrv_priv;
int ret;
adr += chip->start;
/* Ensure cmd read/writes are aligned. */
cmd_addr = adr & ~(map_bankwidth(map)-1);
spin_lock(chip->mutex);
ret = get_chip(map, chip, cmd_addr, FL_READY);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
if (chip->state != FL_POINT && chip->state != FL_READY) {
map_write(map, CMD(0xf0), cmd_addr);
chip->state = FL_READY;
}
map_copy_from(map, buf, adr, len);
put_chip(map, chip, cmd_addr);
spin_unlock(chip->mutex);
return 0;
}
static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs;
int chipnum;
int ret = 0;
/* ofs: offset within the first chip that the first read should start */
chipnum = (from >> cfi->chipshift);
ofs = from - (chipnum << cfi->chipshift);
*retlen = 0;
while (len) {
unsigned long thislen;
if (chipnum >= cfi->numchips)
break;
if ((len + ofs -1) >> cfi->chipshift)
thislen = (1<<cfi->chipshift) - ofs;
else
thislen = len;
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
if (ret)
break;
*retlen += thislen;
len -= thislen;
buf += thislen;
ofs = 0;
chipnum++;
}
return ret;
}
static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long timeo = jiffies + HZ;
struct cfi_private *cfi = map->fldrv_priv;
retry:
spin_lock(chip->mutex);
if (chip->state != FL_READY){
#if 0
printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
#endif
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
#if 0
if(signal_pending(current))
return -EINTR;
#endif
timeo = jiffies + HZ;
goto retry;
}
adr += chip->start;
chip->state = FL_READY;
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
map_copy_from(map, buf, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
wake_up(&chip->wq);
spin_unlock(chip->mutex);
return 0;
}
static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs;
int chipnum;
int ret = 0;
/* ofs: offset within the first chip that the first read should start */
/* 8 secsi bytes per chip */
chipnum=from>>3;
ofs=from & 7;
*retlen = 0;
while (len) {
unsigned long thislen;
if (chipnum >= cfi->numchips)
break;
if ((len + ofs -1) >> 3)
thislen = (1<<3) - ofs;
else
thislen = len;
ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
if (ret)
break;
*retlen += thislen;
len -= thislen;
buf += thislen;
ofs = 0;
chipnum++;
}
return ret;
}
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
/*
* We use a 1ms + 1 jiffies generic timeout for writes (most devices
* have a max write time of a few hundreds usec). However, we should
* use the maximum timeout value given by the chip at probe time
* instead. Unfortunately, struct flchip does have a field for
* maximum timeout, only for typical which can be far too short
* depending of the conditions. The ' + 1' is to avoid having a
* timeout of 0 jiffies if HZ is smaller than 1000.
*/
unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
int ret = 0;
map_word oldd;
int retry_cnt = 0;
adr += chip->start;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
__func__, adr, datum.x[0] );
/*
* Check for a NOP for the case when the datum to write is already
* present - it saves time and works around buggy chips that corrupt
* data at other locations when 0xff is written to a location that
* already contains 0xff.
*/
oldd = map_read(map, adr);
if (map_word_equal(map, oldd, datum)) {
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
__func__);
goto op_done;
}
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
ENABLE_VPP(map);
xip_disable(map, chip, adr);
retry:
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
map_write(map, datum, adr);
chip->state = FL_WRITING;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
/* See comment above for timeout value. */
timeo = jiffies + uWriteTimeout;
for (;;) {
if (chip->state != FL_WRITING) {
/* Someone's suspended the write. Sleep */
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
timeo = jiffies + (HZ / 2); /* FIXME */
spin_lock(chip->mutex);
continue;
}
if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
xip_enable(map, chip, adr);
printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
xip_disable(map, chip, adr);
break;
}
if (chip_ready(map, adr))
break;
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1);
}
/* Did we succeed? */
if (!chip_good(map, adr, datum)) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
if (++retry_cnt <= MAX_WORD_RETRIES)
goto retry;
ret = -EIO;
}
xip_enable(map, chip, adr);
op_done:
chip->state = FL_READY;
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
return ret;
}
static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int ret = 0;
int chipnum;
unsigned long ofs, chipstart;
DECLARE_WAITQUEUE(wait, current);
*retlen = 0;
if (!len)
return 0;
chipnum = to >> cfi->chipshift;
ofs = to - (chipnum << cfi->chipshift);
chipstart = cfi->chips[chipnum].start;
/* If it's not bus-aligned, do the first byte write */
if (ofs & (map_bankwidth(map)-1)) {
unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
int i = ofs - bus_ofs;
int n = 0;
map_word tmp_buf;
retry:
spin_lock(cfi->chips[chipnum].mutex);
if (cfi->chips[chipnum].state != FL_READY) {
#if 0
printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
#endif
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
spin_unlock(cfi->chips[chipnum].mutex);
schedule();
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
#if 0
if(signal_pending(current))
return -EINTR;
#endif
goto retry;
}
/* Load 'tmp_buf' with old contents of flash */
tmp_buf = map_read(map, bus_ofs+chipstart);
spin_unlock(cfi->chips[chipnum].mutex);
/* Number of bytes to copy from buffer */
n = min_t(int, len, map_bankwidth(map)-i);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
ret = do_write_oneword(map, &cfi->chips[chipnum],
bus_ofs, tmp_buf);
if (ret)
return ret;
ofs += n;
buf += n;
(*retlen) += n;
len -= n;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
/* We are now aligned, write as much as possible */
while(len >= map_bankwidth(map)) {
map_word datum;
datum = map_word_load(map, buf);
ret = do_write_oneword(map, &cfi->chips[chipnum],
ofs, datum);
if (ret)
return ret;
ofs += map_bankwidth(map);
buf += map_bankwidth(map);
(*retlen) += map_bankwidth(map);
len -= map_bankwidth(map);
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
chipstart = cfi->chips[chipnum].start;
}
}
/* Write the trailing bytes if any */
if (len & (map_bankwidth(map)-1)) {
map_word tmp_buf;
retry1:
spin_lock(cfi->chips[chipnum].mutex);
if (cfi->chips[chipnum].state != FL_READY) {
#if 0
printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
#endif
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
spin_unlock(cfi->chips[chipnum].mutex);
schedule();
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
#if 0
if(signal_pending(current))
return -EINTR;
#endif
goto retry1;
}
tmp_buf = map_read(map, ofs + chipstart);
spin_unlock(cfi->chips[chipnum].mutex);
tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
ret = do_write_oneword(map, &cfi->chips[chipnum],
ofs, tmp_buf);
if (ret)
return ret;
(*retlen) += len;
}
return 0;
}
/*
* FIXME: interleaved mode not tested, and probably not supported!
*/
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
unsigned long adr, const u_char *buf,
int len)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
/* see comments in do_write_oneword() regarding uWriteTimeo. */
unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
int ret = -EIO;
unsigned long cmd_adr;
int z, words;
map_word datum;
adr += chip->start;
cmd_adr = adr;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
datum = map_word_load(map, buf);
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
__func__, adr, datum.x[0] );
XIP_INVAL_CACHED_RANGE(map, adr, len);
ENABLE_VPP(map);
xip_disable(map, chip, cmd_adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
//cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
/* Write Buffer Load */
map_write(map, CMD(0x25), cmd_adr);
chip->state = FL_WRITING_TO_BUFFER;
/* Write length of data to come */
words = len / map_bankwidth(map);
map_write(map, CMD(words - 1), cmd_adr);
/* Write data */
z = 0;
while(z < words * map_bankwidth(map)) {
datum = map_word_load(map, buf);
map_write(map, datum, adr + z);
z += map_bankwidth(map);
buf += map_bankwidth(map);
}
z -= map_bankwidth(map);
adr += z;
/* Write Buffer Program Confirm: GO GO GO */
map_write(map, CMD(0x29), cmd_adr);
chip->state = FL_WRITING;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map_bankwidth(map),
chip->word_write_time);
timeo = jiffies + uWriteTimeout;
for (;;) {
if (chip->state != FL_WRITING) {
/* Someone's suspended the write. Sleep */
DECLARE_WAITQUEUE(wait, current);
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
timeo = jiffies + (HZ / 2); /* FIXME */
spin_lock(chip->mutex);
continue;
}
if (time_after(jiffies, timeo) && !chip_ready(map, adr))
break;
if (chip_ready(map, adr)) {
xip_enable(map, chip, adr);
goto op_done;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1);
}
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
xip_enable(map, chip, adr);
/* FIXME - should have reset delay before continuing */
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
ret = -EIO;
op_done:
chip->state = FL_READY;
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
return ret;
}
static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
int ret = 0;
int chipnum;
unsigned long ofs;
*retlen = 0;
if (!len)
return 0;
chipnum = to >> cfi->chipshift;
ofs = to - (chipnum << cfi->chipshift);
/* If it's not bus-aligned, do the first word write */
if (ofs & (map_bankwidth(map)-1)) {
size_t local_len = (-ofs)&(map_bankwidth(map)-1);
if (local_len > len)
local_len = len;
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
local_len, retlen, buf);
if (ret)
return ret;
ofs += local_len;
buf += local_len;
len -= local_len;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
/* Write buffer is worth it only if more than one word to write... */
while (len >= map_bankwidth(map) * 2) {
/* We must not cross write block boundaries */
int size = wbufsize - (ofs & (wbufsize-1));
if (size > len)
size = len;
if (size % map_bankwidth(map))
size -= size % map_bankwidth(map);
ret = do_write_buffer(map, &cfi->chips[chipnum],
ofs, buf, size);
if (ret)
return ret;
ofs += size;
buf += size;
(*retlen) += size;
len -= size;
if (ofs >> cfi->chipshift) {
chipnum ++;
ofs = 0;
if (chipnum == cfi->numchips)
return 0;
}
}
if (len) {
size_t retlen_dregs = 0;
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
len, &retlen_dregs, buf);
*retlen += retlen_dregs;
return ret;
}
return 0;
}
/*
* Handle devices with one erase region, that only implement
* the chip erase command.
*/
static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
unsigned long int adr;
DECLARE_WAITQUEUE(wait, current);
int ret = 0;
adr = cfi->addr_unlock1;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_WRITING);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
__func__, chip->start );
XIP_INVAL_CACHED_RANGE(map, adr, map->size);
ENABLE_VPP(map);
xip_disable(map, chip, adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
chip->state = FL_ERASING;
chip->erase_suspended = 0;
chip->in_progress_block_addr = adr;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, map->size,
chip->erase_time*500);
timeo = jiffies + (HZ*20);
for (;;) {
if (chip->state != FL_ERASING) {
/* Someone's suspended the erase. Sleep */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
continue;
}
if (chip->erase_suspended) {
/* This erase was suspended and resumed.
Adjust the timeout */
timeo = jiffies + (HZ*20); /* FIXME */
chip->erase_suspended = 0;
}
if (chip_ready(map, adr))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1000000/HZ);
}
/* Did we succeed? */
if (!chip_good(map, adr, map_word_ff(map))) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
ret = -EIO;
}
chip->state = FL_READY;
xip_enable(map, chip, adr);
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
return ret;
}
static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
DECLARE_WAITQUEUE(wait, current);
int ret = 0;
adr += chip->start;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr, FL_ERASING);
if (ret) {
spin_unlock(chip->mutex);
return ret;
}
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
__func__, adr );
XIP_INVAL_CACHED_RANGE(map, adr, len);
ENABLE_VPP(map);
xip_disable(map, chip, adr);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
map_write(map, CMD(0x30), adr);
chip->state = FL_ERASING;
chip->erase_suspended = 0;
chip->in_progress_block_addr = adr;
INVALIDATE_CACHE_UDELAY(map, chip,
adr, len,
chip->erase_time*500);
timeo = jiffies + (HZ*20);
for (;;) {
if (chip->state != FL_ERASING) {
/* Someone's suspended the erase. Sleep */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
continue;
}
if (chip->erase_suspended) {
/* This erase was suspended and resumed.
Adjust the timeout */
timeo = jiffies + (HZ*20); /* FIXME */
chip->erase_suspended = 0;
}
if (chip_ready(map, adr)) {
xip_enable(map, chip, adr);
break;
}
if (time_after(jiffies, timeo)) {
xip_enable(map, chip, adr);
printk(KERN_WARNING "MTD %s(): software timeout\n",
__func__ );
break;
}
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1000000/HZ);
}
/* Did we succeed? */
if (!chip_good(map, adr, map_word_ff(map))) {
/* reset on all failures. */
map_write( map, CMD(0xF0), chip->start );
/* FIXME - should have reset delay before continuing */
ret = -EIO;
}
chip->state = FL_READY;
put_chip(map, chip, adr);
spin_unlock(chip->mutex);
return ret;
}
static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
{
unsigned long ofs, len;
int ret;
ofs = instr->addr;
len = instr->len;
ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
if (ret)
return ret;
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int ret = 0;
if (instr->addr != 0)
return -EINVAL;
if (instr->len != mtd->size)
return -EINVAL;
ret = do_erase_chip(map, &cfi->chips[0]);
if (ret)
return ret;
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
static int do_atmel_lock(struct map_info *map, struct flchip *chip,
unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
int ret;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
if (ret)
goto out_unlock;
chip->state = FL_LOCKING;
DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
__func__, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
cfi->device_type, NULL);
map_write(map, CMD(0x40), chip->start + adr);
chip->state = FL_READY;
put_chip(map, chip, adr + chip->start);
ret = 0;
out_unlock:
spin_unlock(chip->mutex);
return ret;
}
static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
unsigned long adr, int len, void *thunk)
{
struct cfi_private *cfi = map->fldrv_priv;
int ret;
spin_lock(chip->mutex);
ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
if (ret)
goto out_unlock;
chip->state = FL_UNLOCKING;
DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
__func__, adr, len);
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
cfi->device_type, NULL);
map_write(map, CMD(0x70), adr);
chip->state = FL_READY;
put_chip(map, chip, adr + chip->start);
ret = 0;
out_unlock:
spin_unlock(chip->mutex);
return ret;
}
static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
}
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
{
return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
}
static void cfi_amdstd_sync (struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
int ret = 0;
DECLARE_WAITQUEUE(wait, current);
for (i=0; !ret && i<cfi->numchips; i++) {
chip = &cfi->chips[i];
retry:
spin_lock(chip->mutex);
switch(chip->state) {
case FL_READY:
case FL_STATUS:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
chip->oldstate = chip->state;
chip->state = FL_SYNCING;
/* No need to wake_up() on this state change -
* as the whole point is that nobody can do anything
* with the chip now anyway.
*/
case FL_SYNCING:
spin_unlock(chip->mutex);
break;
default:
/* Not an idle state */
set_current_state(TASK_UNINTERRUPTIBLE);
add_wait_queue(&chip->wq, &wait);
spin_unlock(chip->mutex);
schedule();
remove_wait_queue(&chip->wq, &wait);
goto retry;
}
}
/* Unlock the chips again */
for (i--; i >=0; i--) {
chip = &cfi->chips[i];
spin_lock(chip->mutex);
if (chip->state == FL_SYNCING) {
chip->state = chip->oldstate;
wake_up(&chip->wq);
}
spin_unlock(chip->mutex);
}
}
static int cfi_amdstd_suspend(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
int ret = 0;
for (i=0; !ret && i<cfi->numchips; i++) {
chip = &cfi->chips[i];
spin_lock(chip->mutex);
switch(chip->state) {
case FL_READY:
case FL_STATUS:
case FL_CFI_QUERY:
case FL_JEDEC_QUERY:
chip->oldstate = chip->state;
chip->state = FL_PM_SUSPENDED;
/* No need to wake_up() on this state change -
* as the whole point is that nobody can do anything
* with the chip now anyway.
*/
case FL_PM_SUSPENDED:
break;
default:
ret = -EAGAIN;
break;
}
spin_unlock(chip->mutex);
}
/* Unlock the chips again */
if (ret) {
for (i--; i >=0; i--) {
chip = &cfi->chips[i];
spin_lock(chip->mutex);
if (chip->state == FL_PM_SUSPENDED) {
chip->state = chip->oldstate;
wake_up(&chip->wq);
}
spin_unlock(chip->mutex);
}
}
return ret;
}
static void cfi_amdstd_resume(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int i;
struct flchip *chip;
for (i=0; i<cfi->numchips; i++) {
chip = &cfi->chips[i];
spin_lock(chip->mutex);
if (chip->state == FL_PM_SUSPENDED) {
chip->state = FL_READY;
map_write(map, CMD(0xF0), chip->start);
wake_up(&chip->wq);
}
else
printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
spin_unlock(chip->mutex);
}
}
static void cfi_amdstd_destroy(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
kfree(cfi->cmdset_priv);
kfree(cfi->cfiq);
kfree(cfi);
kfree(mtd->eraseregions);
}
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");