mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-25 12:05:31 +00:00
33692f2759
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a "you should SIGSEGV" error, because the SIGSEGV case was generally handled by the caller - usually the architecture fault handler. That results in lots of duplication - all the architecture fault handlers end up doing very similar "look up vma, check permissions, do retries etc" - but it generally works. However, there are cases where the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV. In particular, when accessing the stack guard page, libsigsegv expects a SIGSEGV. And it usually got one, because the stack growth is handled by that duplicated architecture fault handler. However, when the generic VM layer started propagating the error return from the stack expansion in commit fee7e49d4514 ("mm: propagate error from stack expansion even for guard page"), that now exposed the existing VM_FAULT_SIGBUS result to user space. And user space really expected SIGSEGV, not SIGBUS. To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those duplicate architecture fault handlers about it. They all already have the code to handle SIGSEGV, so it's about just tying that new return value to the existing code, but it's all a bit annoying. This is the mindless minimal patch to do this. A more extensive patch would be to try to gather up the mostly shared fault handling logic into one generic helper routine, and long-term we really should do that cleanup. Just from this patch, you can generally see that most architectures just copied (directly or indirectly) the old x86 way of doing things, but in the meantime that original x86 model has been improved to hold the VM semaphore for shorter times etc and to handle VM_FAULT_RETRY and other "newer" things, so it would be a good idea to bring all those improvements to the generic case and teach other architectures about them too. Reported-and-tested-by: Takashi Iwai <tiwai@suse.de> Tested-by: Jan Engelhardt <jengelh@inai.de> Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots" Cc: linux-arch@vger.kernel.org Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
OpenRISC Linux ============== This is a port of Linux to the OpenRISC class of microprocessors; the initial target architecture, specifically, is the 32-bit OpenRISC 1000 family (or1k). For information about OpenRISC processors and ongoing development: website http://openrisc.net For more information about Linux on OpenRISC, please contact South Pole AB. email: info@southpole.se website: http://southpole.se http://southpoleconsulting.com --------------------------------------------------------------------- Build instructions for OpenRISC toolchain and Linux =================================================== In order to build and run Linux for OpenRISC, you'll need at least a basic toolchain and, perhaps, the architectural simulator. Steps to get these bits in place are outlined here. 1) The toolchain can be obtained from openrisc.net. Instructions for building a toolchain can be found at: http://openrisc.net/toolchain-build.html 2) or1ksim (optional) or1ksim is the architectural simulator which will allow you to actually run your OpenRISC Linux kernel if you don't have an OpenRISC processor at hand. git clone git://openrisc.net/jonas/or1ksim-svn cd or1ksim ./configure --prefix=$OPENRISC_PREFIX make make install 3) Linux kernel Build the kernel as usual make ARCH=openrisc defconfig make ARCH=openrisc 4) Run in architectural simulator Grab the or1ksim platform configuration file (from the or1ksim source) and together with your freshly built vmlinux, run your kernel with the following incantation: sim -f arch/openrisc/or1ksim.cfg vmlinux --------------------------------------------------------------------- Terminology =========== In the code, the following particles are used on symbols to limit the scope to more or less specific processor implementations: openrisc: the OpenRISC class of processors or1k: the OpenRISC 1000 family of processors or1200: the OpenRISC 1200 processor --------------------------------------------------------------------- History ======== 18. 11. 2003 Matjaz Breskvar (phoenix@bsemi.com) initial port of linux to OpenRISC/or32 architecture. all the core stuff is implemented and seams usable. 08. 12. 2003 Matjaz Breskvar (phoenix@bsemi.com) complete change of TLB miss handling. rewrite of exceptions handling. fully functional sash-3.6 in default initrd. a much improved version with changes all around. 10. 04. 2004 Matjaz Breskvar (phoenix@bsemi.com) alot of bugfixes all over. ethernet support, functional http and telnet servers. running many standard linux apps. 26. 06. 2004 Matjaz Breskvar (phoenix@bsemi.com) port to 2.6.x 30. 11. 2004 Matjaz Breskvar (phoenix@bsemi.com) lots of bugfixes and enhancments. added opencores framebuffer driver. 09. 10. 2010 Jonas Bonn (jonas@southpole.se) major rewrite to bring up to par with upstream Linux 2.6.36