mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 06:42:31 +00:00
3d59eebc5e
-----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.18 (GNU/Linux) iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb 72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj 3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi Ka0JKgnWvsa6ez6FSzKI =ivQa -----END PGP SIGNATURE----- Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma Pull Automatic NUMA Balancing bare-bones from Mel Gorman: "There are three implementations for NUMA balancing, this tree (balancenuma), numacore which has been developed in tip/master and autonuma which is in aa.git. In almost all respects balancenuma is the dumbest of the three because its main impact is on the VM side with no attempt to be smart about scheduling. In the interest of getting the ball rolling, it would be desirable to see this much merged for 3.8 with the view to building scheduler smarts on top and adapting the VM where required for 3.9. The most recent set of comparisons available from different people are mel: https://lkml.org/lkml/2012/12/9/108 mingo: https://lkml.org/lkml/2012/12/7/331 tglx: https://lkml.org/lkml/2012/12/10/437 srikar: https://lkml.org/lkml/2012/12/10/397 The results are a mixed bag. In my own tests, balancenuma does reasonably well. It's dumb as rocks and does not regress against mainline. On the other hand, Ingo's tests shows that balancenuma is incapable of converging for this workloads driven by perf which is bad but is potentially explained by the lack of scheduler smarts. Thomas' results show balancenuma improves on mainline but falls far short of numacore or autonuma. Srikar's results indicate we all suffer on a large machine with imbalanced node sizes. My own testing showed that recent numacore results have improved dramatically, particularly in the last week but not universally. We've butted heads heavily on system CPU usage and high levels of migration even when it shows that overall performance is better. There are also cases where it regresses. Of interest is that for specjbb in some configurations it will regress for lower numbers of warehouses and show gains for higher numbers which is not reported by the tool by default and sometimes missed in treports. Recently I reported for numacore that the JVM was crashing with NullPointerExceptions but currently it's unclear what the source of this problem is. Initially I thought it was in how numacore batch handles PTEs but I'm no longer think this is the case. It's possible numacore is just able to trigger it due to higher rates of migration. These reports were quite late in the cycle so I/we would like to start with this tree as it contains much of the code we can agree on and has not changed significantly over the last 2-3 weeks." * tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits) mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable mm/rmap: Convert the struct anon_vma::mutex to an rwsem mm: migrate: Account a transhuge page properly when rate limiting mm: numa: Account for failed allocations and isolations as migration failures mm: numa: Add THP migration for the NUMA working set scanning fault case build fix mm: numa: Add THP migration for the NUMA working set scanning fault case. mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG mm: sched: numa: Control enabling and disabling of NUMA balancing mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships mm: numa: migrate: Set last_nid on newly allocated page mm: numa: split_huge_page: Transfer last_nid on tail page mm: numa: Introduce last_nid to the page frame sched: numa: Slowly increase the scanning period as NUMA faults are handled mm: numa: Rate limit setting of pte_numa if node is saturated mm: numa: Rate limit the amount of memory that is migrated between nodes mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting mm: numa: Migrate pages handled during a pmd_numa hinting fault mm: numa: Migrate on reference policy ...
698 lines
19 KiB
C
698 lines
19 KiB
C
#ifndef _ASM_GENERIC_PGTABLE_H
|
|
#define _ASM_GENERIC_PGTABLE_H
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#ifdef CONFIG_MMU
|
|
|
|
#include <linux/mm_types.h>
|
|
#include <linux/bug.h>
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
|
extern int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
|
|
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp,
|
|
pmd_t entry, int dirty);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
int r = 1;
|
|
if (!pte_young(pte))
|
|
r = 0;
|
|
else
|
|
set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd = *pmdp;
|
|
int r = 1;
|
|
if (!pmd_young(pmd))
|
|
r = 0;
|
|
else
|
|
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
|
|
return r;
|
|
}
|
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
BUG();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
|
int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
|
|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pte_t *ptep)
|
|
{
|
|
pte_t pte = *ptep;
|
|
pte_clear(mm, address, ptep);
|
|
return pte;
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pmd_t *pmdp)
|
|
{
|
|
pmd_t pmd = *pmdp;
|
|
pmd_clear(pmdp);
|
|
return pmd;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
|
|
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
|
|
unsigned long address, pte_t *ptep,
|
|
int full)
|
|
{
|
|
pte_t pte;
|
|
pte = ptep_get_and_clear(mm, address, ptep);
|
|
return pte;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Some architectures may be able to avoid expensive synchronization
|
|
* primitives when modifications are made to PTE's which are already
|
|
* not present, or in the process of an address space destruction.
|
|
*/
|
|
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
|
|
static inline void pte_clear_not_present_full(struct mm_struct *mm,
|
|
unsigned long address,
|
|
pte_t *ptep,
|
|
int full)
|
|
{
|
|
pte_clear(mm, address, ptep);
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
|
|
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *ptep);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
|
|
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmdp);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
|
|
struct mm_struct;
|
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
|
|
{
|
|
pte_t old_pte = *ptep;
|
|
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
pmd_t old_pmd = *pmdp;
|
|
set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
|
|
}
|
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
BUG();
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
|
|
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
|
|
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
|
|
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMDP_INVALIDATE
|
|
extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp);
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTE_SAME
|
|
static inline int pte_same(pte_t pte_a, pte_t pte_b)
|
|
{
|
|
return pte_val(pte_a) == pte_val(pte_b);
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PMD_SAME
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
|
{
|
|
return pmd_val(pmd_a) == pmd_val(pmd_b);
|
|
}
|
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
|
{
|
|
BUG();
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
|
|
#define page_test_and_clear_dirty(pfn, mapped) (0)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
|
|
#define pte_maybe_dirty(pte) pte_dirty(pte)
|
|
#else
|
|
#define pte_maybe_dirty(pte) (1)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
|
|
#define page_test_and_clear_young(pfn) (0)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
|
|
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_MOVE_PTE
|
|
#define move_pte(pte, prot, old_addr, new_addr) (pte)
|
|
#endif
|
|
|
|
#ifndef pte_accessible
|
|
# define pte_accessible(pte) ((void)(pte),1)
|
|
#endif
|
|
|
|
#ifndef flush_tlb_fix_spurious_fault
|
|
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
|
|
#endif
|
|
|
|
#ifndef pgprot_noncached
|
|
#define pgprot_noncached(prot) (prot)
|
|
#endif
|
|
|
|
#ifndef pgprot_writecombine
|
|
#define pgprot_writecombine pgprot_noncached
|
|
#endif
|
|
|
|
/*
|
|
* When walking page tables, get the address of the next boundary,
|
|
* or the end address of the range if that comes earlier. Although no
|
|
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
|
|
*/
|
|
|
|
#define pgd_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
|
|
#ifndef pud_addr_end
|
|
#define pud_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
#endif
|
|
|
|
#ifndef pmd_addr_end
|
|
#define pmd_addr_end(addr, end) \
|
|
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
|
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
|
})
|
|
#endif
|
|
|
|
/*
|
|
* When walking page tables, we usually want to skip any p?d_none entries;
|
|
* and any p?d_bad entries - reporting the error before resetting to none.
|
|
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
|
|
*/
|
|
void pgd_clear_bad(pgd_t *);
|
|
void pud_clear_bad(pud_t *);
|
|
void pmd_clear_bad(pmd_t *);
|
|
|
|
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
|
|
{
|
|
if (pgd_none(*pgd))
|
|
return 1;
|
|
if (unlikely(pgd_bad(*pgd))) {
|
|
pgd_clear_bad(pgd);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int pud_none_or_clear_bad(pud_t *pud)
|
|
{
|
|
if (pud_none(*pud))
|
|
return 1;
|
|
if (unlikely(pud_bad(*pud))) {
|
|
pud_clear_bad(pud);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
|
|
{
|
|
if (pmd_none(*pmd))
|
|
return 1;
|
|
if (unlikely(pmd_bad(*pmd))) {
|
|
pmd_clear_bad(pmd);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
/*
|
|
* Get the current pte state, but zero it out to make it
|
|
* non-present, preventing the hardware from asynchronously
|
|
* updating it.
|
|
*/
|
|
return ptep_get_and_clear(mm, addr, ptep);
|
|
}
|
|
|
|
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
/*
|
|
* The pte is non-present, so there's no hardware state to
|
|
* preserve.
|
|
*/
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
|
|
/*
|
|
* Start a pte protection read-modify-write transaction, which
|
|
* protects against asynchronous hardware modifications to the pte.
|
|
* The intention is not to prevent the hardware from making pte
|
|
* updates, but to prevent any updates it may make from being lost.
|
|
*
|
|
* This does not protect against other software modifications of the
|
|
* pte; the appropriate pte lock must be held over the transation.
|
|
*
|
|
* Note that this interface is intended to be batchable, meaning that
|
|
* ptep_modify_prot_commit may not actually update the pte, but merely
|
|
* queue the update to be done at some later time. The update must be
|
|
* actually committed before the pte lock is released, however.
|
|
*/
|
|
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep)
|
|
{
|
|
return __ptep_modify_prot_start(mm, addr, ptep);
|
|
}
|
|
|
|
/*
|
|
* Commit an update to a pte, leaving any hardware-controlled bits in
|
|
* the PTE unmodified.
|
|
*/
|
|
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
|
|
unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
__ptep_modify_prot_commit(mm, addr, ptep, pte);
|
|
}
|
|
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
|
|
#endif /* CONFIG_MMU */
|
|
|
|
/*
|
|
* A facility to provide lazy MMU batching. This allows PTE updates and
|
|
* page invalidations to be delayed until a call to leave lazy MMU mode
|
|
* is issued. Some architectures may benefit from doing this, and it is
|
|
* beneficial for both shadow and direct mode hypervisors, which may batch
|
|
* the PTE updates which happen during this window. Note that using this
|
|
* interface requires that read hazards be removed from the code. A read
|
|
* hazard could result in the direct mode hypervisor case, since the actual
|
|
* write to the page tables may not yet have taken place, so reads though
|
|
* a raw PTE pointer after it has been modified are not guaranteed to be
|
|
* up to date. This mode can only be entered and left under the protection of
|
|
* the page table locks for all page tables which may be modified. In the UP
|
|
* case, this is required so that preemption is disabled, and in the SMP case,
|
|
* it must synchronize the delayed page table writes properly on other CPUs.
|
|
*/
|
|
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
|
|
#define arch_enter_lazy_mmu_mode() do {} while (0)
|
|
#define arch_leave_lazy_mmu_mode() do {} while (0)
|
|
#define arch_flush_lazy_mmu_mode() do {} while (0)
|
|
#endif
|
|
|
|
/*
|
|
* A facility to provide batching of the reload of page tables and
|
|
* other process state with the actual context switch code for
|
|
* paravirtualized guests. By convention, only one of the batched
|
|
* update (lazy) modes (CPU, MMU) should be active at any given time,
|
|
* entry should never be nested, and entry and exits should always be
|
|
* paired. This is for sanity of maintaining and reasoning about the
|
|
* kernel code. In this case, the exit (end of the context switch) is
|
|
* in architecture-specific code, and so doesn't need a generic
|
|
* definition.
|
|
*/
|
|
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
|
|
#define arch_start_context_switch(prev) do {} while (0)
|
|
#endif
|
|
|
|
#ifndef __HAVE_PFNMAP_TRACKING
|
|
/*
|
|
* Interfaces that can be used by architecture code to keep track of
|
|
* memory type of pfn mappings specified by the remap_pfn_range,
|
|
* vm_insert_pfn.
|
|
*/
|
|
|
|
/*
|
|
* track_pfn_remap is called when a _new_ pfn mapping is being established
|
|
* by remap_pfn_range() for physical range indicated by pfn and size.
|
|
*/
|
|
static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long addr,
|
|
unsigned long size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* track_pfn_insert is called when a _new_ single pfn is established
|
|
* by vm_insert_pfn().
|
|
*/
|
|
static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* track_pfn_copy is called when vma that is covering the pfnmap gets
|
|
* copied through copy_page_range().
|
|
*/
|
|
static inline int track_pfn_copy(struct vm_area_struct *vma)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
|
|
* untrack can be called for a specific region indicated by pfn and size or
|
|
* can be for the entire vma (in which case pfn, size are zero).
|
|
*/
|
|
static inline void untrack_pfn(struct vm_area_struct *vma,
|
|
unsigned long pfn, unsigned long size)
|
|
{
|
|
}
|
|
#else
|
|
extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn, unsigned long addr,
|
|
unsigned long size);
|
|
extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
|
|
unsigned long pfn);
|
|
extern int track_pfn_copy(struct vm_area_struct *vma);
|
|
extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
|
|
unsigned long size);
|
|
#endif
|
|
|
|
#ifdef __HAVE_COLOR_ZERO_PAGE
|
|
static inline int is_zero_pfn(unsigned long pfn)
|
|
{
|
|
extern unsigned long zero_pfn;
|
|
unsigned long offset_from_zero_pfn = pfn - zero_pfn;
|
|
return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
|
|
}
|
|
|
|
static inline unsigned long my_zero_pfn(unsigned long addr)
|
|
{
|
|
return page_to_pfn(ZERO_PAGE(addr));
|
|
}
|
|
#else
|
|
static inline int is_zero_pfn(unsigned long pfn)
|
|
{
|
|
extern unsigned long zero_pfn;
|
|
return pfn == zero_pfn;
|
|
}
|
|
|
|
static inline unsigned long my_zero_pfn(unsigned long addr)
|
|
{
|
|
extern unsigned long zero_pfn;
|
|
return zero_pfn;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static inline int pmd_trans_huge(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline int pmd_trans_splitting(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
#ifndef __HAVE_ARCH_PMD_WRITE
|
|
static inline int pmd_write(pmd_t pmd)
|
|
{
|
|
BUG();
|
|
return 0;
|
|
}
|
|
#endif /* __HAVE_ARCH_PMD_WRITE */
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
#ifndef pmd_read_atomic
|
|
static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
|
|
{
|
|
/*
|
|
* Depend on compiler for an atomic pmd read. NOTE: this is
|
|
* only going to work, if the pmdval_t isn't larger than
|
|
* an unsigned long.
|
|
*/
|
|
return *pmdp;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This function is meant to be used by sites walking pagetables with
|
|
* the mmap_sem hold in read mode to protect against MADV_DONTNEED and
|
|
* transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
|
|
* into a null pmd and the transhuge page fault can convert a null pmd
|
|
* into an hugepmd or into a regular pmd (if the hugepage allocation
|
|
* fails). While holding the mmap_sem in read mode the pmd becomes
|
|
* stable and stops changing under us only if it's not null and not a
|
|
* transhuge pmd. When those races occurs and this function makes a
|
|
* difference vs the standard pmd_none_or_clear_bad, the result is
|
|
* undefined so behaving like if the pmd was none is safe (because it
|
|
* can return none anyway). The compiler level barrier() is critically
|
|
* important to compute the two checks atomically on the same pmdval.
|
|
*
|
|
* For 32bit kernels with a 64bit large pmd_t this automatically takes
|
|
* care of reading the pmd atomically to avoid SMP race conditions
|
|
* against pmd_populate() when the mmap_sem is hold for reading by the
|
|
* caller (a special atomic read not done by "gcc" as in the generic
|
|
* version above, is also needed when THP is disabled because the page
|
|
* fault can populate the pmd from under us).
|
|
*/
|
|
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
|
|
{
|
|
pmd_t pmdval = pmd_read_atomic(pmd);
|
|
/*
|
|
* The barrier will stabilize the pmdval in a register or on
|
|
* the stack so that it will stop changing under the code.
|
|
*
|
|
* When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
|
|
* pmd_read_atomic is allowed to return a not atomic pmdval
|
|
* (for example pointing to an hugepage that has never been
|
|
* mapped in the pmd). The below checks will only care about
|
|
* the low part of the pmd with 32bit PAE x86 anyway, with the
|
|
* exception of pmd_none(). So the important thing is that if
|
|
* the low part of the pmd is found null, the high part will
|
|
* be also null or the pmd_none() check below would be
|
|
* confused.
|
|
*/
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
barrier();
|
|
#endif
|
|
if (pmd_none(pmdval))
|
|
return 1;
|
|
if (unlikely(pmd_bad(pmdval))) {
|
|
if (!pmd_trans_huge(pmdval))
|
|
pmd_clear_bad(pmd);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is a noop if Transparent Hugepage Support is not built into
|
|
* the kernel. Otherwise it is equivalent to
|
|
* pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
|
|
* places that already verified the pmd is not none and they want to
|
|
* walk ptes while holding the mmap sem in read mode (write mode don't
|
|
* need this). If THP is not enabled, the pmd can't go away under the
|
|
* code even if MADV_DONTNEED runs, but if THP is enabled we need to
|
|
* run a pmd_trans_unstable before walking the ptes after
|
|
* split_huge_page_pmd returns (because it may have run when the pmd
|
|
* become null, but then a page fault can map in a THP and not a
|
|
* regular page).
|
|
*/
|
|
static inline int pmd_trans_unstable(pmd_t *pmd)
|
|
{
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
return pmd_none_or_trans_huge_or_clear_bad(pmd);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
|
|
/*
|
|
* _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
|
|
* same bit too). It's set only when _PAGE_PRESET is not set and it's
|
|
* never set if _PAGE_PRESENT is set.
|
|
*
|
|
* pte/pmd_present() returns true if pte/pmd_numa returns true. Page
|
|
* fault triggers on those regions if pte/pmd_numa returns true
|
|
* (because _PAGE_PRESENT is not set).
|
|
*/
|
|
#ifndef pte_numa
|
|
static inline int pte_numa(pte_t pte)
|
|
{
|
|
return (pte_flags(pte) &
|
|
(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
|
|
}
|
|
#endif
|
|
|
|
#ifndef pmd_numa
|
|
static inline int pmd_numa(pmd_t pmd)
|
|
{
|
|
return (pmd_flags(pmd) &
|
|
(_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
|
|
* because they're called by the NUMA hinting minor page fault. If we
|
|
* wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
|
|
* would be forced to set it later while filling the TLB after we
|
|
* return to userland. That would trigger a second write to memory
|
|
* that we optimize away by setting _PAGE_ACCESSED here.
|
|
*/
|
|
#ifndef pte_mknonnuma
|
|
static inline pte_t pte_mknonnuma(pte_t pte)
|
|
{
|
|
pte = pte_clear_flags(pte, _PAGE_NUMA);
|
|
return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
|
|
}
|
|
#endif
|
|
|
|
#ifndef pmd_mknonnuma
|
|
static inline pmd_t pmd_mknonnuma(pmd_t pmd)
|
|
{
|
|
pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
|
|
return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
|
|
}
|
|
#endif
|
|
|
|
#ifndef pte_mknuma
|
|
static inline pte_t pte_mknuma(pte_t pte)
|
|
{
|
|
pte = pte_set_flags(pte, _PAGE_NUMA);
|
|
return pte_clear_flags(pte, _PAGE_PRESENT);
|
|
}
|
|
#endif
|
|
|
|
#ifndef pmd_mknuma
|
|
static inline pmd_t pmd_mknuma(pmd_t pmd)
|
|
{
|
|
pmd = pmd_set_flags(pmd, _PAGE_NUMA);
|
|
return pmd_clear_flags(pmd, _PAGE_PRESENT);
|
|
}
|
|
#endif
|
|
#else
|
|
extern int pte_numa(pte_t pte);
|
|
extern int pmd_numa(pmd_t pmd);
|
|
extern pte_t pte_mknonnuma(pte_t pte);
|
|
extern pmd_t pmd_mknonnuma(pmd_t pmd);
|
|
extern pte_t pte_mknuma(pte_t pte);
|
|
extern pmd_t pmd_mknuma(pmd_t pmd);
|
|
#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
|
|
#else
|
|
static inline int pmd_numa(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline int pte_numa(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline pte_t pte_mknonnuma(pte_t pte)
|
|
{
|
|
return pte;
|
|
}
|
|
|
|
static inline pmd_t pmd_mknonnuma(pmd_t pmd)
|
|
{
|
|
return pmd;
|
|
}
|
|
|
|
static inline pte_t pte_mknuma(pte_t pte)
|
|
{
|
|
return pte;
|
|
}
|
|
|
|
static inline pmd_t pmd_mknuma(pmd_t pmd)
|
|
{
|
|
return pmd;
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* _ASM_GENERIC_PGTABLE_H */
|