mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 06:42:31 +00:00
25985edced
Fixes generated by 'codespell' and manually reviewed. Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
7974 lines
211 KiB
C
7974 lines
211 KiB
C
/*
|
|
* Core routines and tables shareable across OS platforms.
|
|
*
|
|
* Copyright (c) 1994-2002 Justin T. Gibbs.
|
|
* Copyright (c) 2000-2002 Adaptec Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* substantially similar to the "NO WARRANTY" disclaimer below
|
|
* ("Disclaimer") and any redistribution must be conditioned upon
|
|
* including a substantially similar Disclaimer requirement for further
|
|
* binary redistribution.
|
|
* 3. Neither the names of the above-listed copyright holders nor the names
|
|
* of any contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* Alternatively, this software may be distributed under the terms of the
|
|
* GNU General Public License ("GPL") version 2 as published by the Free
|
|
* Software Foundation.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGES.
|
|
*
|
|
* $Id: //depot/aic7xxx/aic7xxx/aic7xxx.c#155 $
|
|
*/
|
|
|
|
#ifdef __linux__
|
|
#include "aic7xxx_osm.h"
|
|
#include "aic7xxx_inline.h"
|
|
#include "aicasm/aicasm_insformat.h"
|
|
#else
|
|
#include <dev/aic7xxx/aic7xxx_osm.h>
|
|
#include <dev/aic7xxx/aic7xxx_inline.h>
|
|
#include <dev/aic7xxx/aicasm/aicasm_insformat.h>
|
|
#endif
|
|
|
|
/***************************** Lookup Tables **********************************/
|
|
static const char *const ahc_chip_names[] = {
|
|
"NONE",
|
|
"aic7770",
|
|
"aic7850",
|
|
"aic7855",
|
|
"aic7859",
|
|
"aic7860",
|
|
"aic7870",
|
|
"aic7880",
|
|
"aic7895",
|
|
"aic7895C",
|
|
"aic7890/91",
|
|
"aic7896/97",
|
|
"aic7892",
|
|
"aic7899"
|
|
};
|
|
static const u_int num_chip_names = ARRAY_SIZE(ahc_chip_names);
|
|
|
|
/*
|
|
* Hardware error codes.
|
|
*/
|
|
struct ahc_hard_error_entry {
|
|
uint8_t errno;
|
|
const char *errmesg;
|
|
};
|
|
|
|
static const struct ahc_hard_error_entry ahc_hard_errors[] = {
|
|
{ ILLHADDR, "Illegal Host Access" },
|
|
{ ILLSADDR, "Illegal Sequencer Address referrenced" },
|
|
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
|
|
{ SQPARERR, "Sequencer Parity Error" },
|
|
{ DPARERR, "Data-path Parity Error" },
|
|
{ MPARERR, "Scratch or SCB Memory Parity Error" },
|
|
{ PCIERRSTAT, "PCI Error detected" },
|
|
{ CIOPARERR, "CIOBUS Parity Error" },
|
|
};
|
|
static const u_int num_errors = ARRAY_SIZE(ahc_hard_errors);
|
|
|
|
static const struct ahc_phase_table_entry ahc_phase_table[] =
|
|
{
|
|
{ P_DATAOUT, MSG_NOOP, "in Data-out phase" },
|
|
{ P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
|
|
{ P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
|
|
{ P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
|
|
{ P_COMMAND, MSG_NOOP, "in Command phase" },
|
|
{ P_MESGOUT, MSG_NOOP, "in Message-out phase" },
|
|
{ P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
|
|
{ P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
|
|
{ P_BUSFREE, MSG_NOOP, "while idle" },
|
|
{ 0, MSG_NOOP, "in unknown phase" }
|
|
};
|
|
|
|
/*
|
|
* In most cases we only wish to itterate over real phases, so
|
|
* exclude the last element from the count.
|
|
*/
|
|
static const u_int num_phases = ARRAY_SIZE(ahc_phase_table) - 1;
|
|
|
|
/*
|
|
* Valid SCSIRATE values. (p. 3-17)
|
|
* Provides a mapping of tranfer periods in ns to the proper value to
|
|
* stick in the scsixfer reg.
|
|
*/
|
|
static const struct ahc_syncrate ahc_syncrates[] =
|
|
{
|
|
/* ultra2 fast/ultra period rate */
|
|
{ 0x42, 0x000, 9, "80.0" },
|
|
{ 0x03, 0x000, 10, "40.0" },
|
|
{ 0x04, 0x000, 11, "33.0" },
|
|
{ 0x05, 0x100, 12, "20.0" },
|
|
{ 0x06, 0x110, 15, "16.0" },
|
|
{ 0x07, 0x120, 18, "13.4" },
|
|
{ 0x08, 0x000, 25, "10.0" },
|
|
{ 0x19, 0x010, 31, "8.0" },
|
|
{ 0x1a, 0x020, 37, "6.67" },
|
|
{ 0x1b, 0x030, 43, "5.7" },
|
|
{ 0x1c, 0x040, 50, "5.0" },
|
|
{ 0x00, 0x050, 56, "4.4" },
|
|
{ 0x00, 0x060, 62, "4.0" },
|
|
{ 0x00, 0x070, 68, "3.6" },
|
|
{ 0x00, 0x000, 0, NULL }
|
|
};
|
|
|
|
/* Our Sequencer Program */
|
|
#include "aic7xxx_seq.h"
|
|
|
|
/**************************** Function Declarations ***************************/
|
|
static void ahc_force_renegotiation(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static struct ahc_tmode_tstate*
|
|
ahc_alloc_tstate(struct ahc_softc *ahc,
|
|
u_int scsi_id, char channel);
|
|
#ifdef AHC_TARGET_MODE
|
|
static void ahc_free_tstate(struct ahc_softc *ahc,
|
|
u_int scsi_id, char channel, int force);
|
|
#endif
|
|
static const struct ahc_syncrate*
|
|
ahc_devlimited_syncrate(struct ahc_softc *ahc,
|
|
struct ahc_initiator_tinfo *,
|
|
u_int *period,
|
|
u_int *ppr_options,
|
|
role_t role);
|
|
static void ahc_update_pending_scbs(struct ahc_softc *ahc);
|
|
static void ahc_fetch_devinfo(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static void ahc_scb_devinfo(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
struct scb *scb);
|
|
static void ahc_assert_atn(struct ahc_softc *ahc);
|
|
static void ahc_setup_initiator_msgout(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
struct scb *scb);
|
|
static void ahc_build_transfer_msg(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static void ahc_construct_sdtr(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
u_int period, u_int offset);
|
|
static void ahc_construct_wdtr(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
u_int bus_width);
|
|
static void ahc_construct_ppr(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
u_int period, u_int offset,
|
|
u_int bus_width, u_int ppr_options);
|
|
static void ahc_clear_msg_state(struct ahc_softc *ahc);
|
|
static void ahc_handle_proto_violation(struct ahc_softc *ahc);
|
|
static void ahc_handle_message_phase(struct ahc_softc *ahc);
|
|
typedef enum {
|
|
AHCMSG_1B,
|
|
AHCMSG_2B,
|
|
AHCMSG_EXT
|
|
} ahc_msgtype;
|
|
static int ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type,
|
|
u_int msgval, int full);
|
|
static int ahc_parse_msg(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static int ahc_handle_msg_reject(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static void ahc_handle_ign_wide_residue(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo);
|
|
static void ahc_reinitialize_dataptrs(struct ahc_softc *ahc);
|
|
static void ahc_handle_devreset(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
cam_status status, char *message,
|
|
int verbose_level);
|
|
#ifdef AHC_TARGET_MODE
|
|
static void ahc_setup_target_msgin(struct ahc_softc *ahc,
|
|
struct ahc_devinfo *devinfo,
|
|
struct scb *scb);
|
|
#endif
|
|
|
|
static bus_dmamap_callback_t ahc_dmamap_cb;
|
|
static void ahc_build_free_scb_list(struct ahc_softc *ahc);
|
|
static int ahc_init_scbdata(struct ahc_softc *ahc);
|
|
static void ahc_fini_scbdata(struct ahc_softc *ahc);
|
|
static void ahc_qinfifo_requeue(struct ahc_softc *ahc,
|
|
struct scb *prev_scb,
|
|
struct scb *scb);
|
|
static int ahc_qinfifo_count(struct ahc_softc *ahc);
|
|
static u_int ahc_rem_scb_from_disc_list(struct ahc_softc *ahc,
|
|
u_int prev, u_int scbptr);
|
|
static void ahc_add_curscb_to_free_list(struct ahc_softc *ahc);
|
|
static u_int ahc_rem_wscb(struct ahc_softc *ahc,
|
|
u_int scbpos, u_int prev);
|
|
static void ahc_reset_current_bus(struct ahc_softc *ahc);
|
|
#ifdef AHC_DUMP_SEQ
|
|
static void ahc_dumpseq(struct ahc_softc *ahc);
|
|
#endif
|
|
static int ahc_loadseq(struct ahc_softc *ahc);
|
|
static int ahc_check_patch(struct ahc_softc *ahc,
|
|
const struct patch **start_patch,
|
|
u_int start_instr, u_int *skip_addr);
|
|
static void ahc_download_instr(struct ahc_softc *ahc,
|
|
u_int instrptr, uint8_t *dconsts);
|
|
#ifdef AHC_TARGET_MODE
|
|
static void ahc_queue_lstate_event(struct ahc_softc *ahc,
|
|
struct ahc_tmode_lstate *lstate,
|
|
u_int initiator_id,
|
|
u_int event_type,
|
|
u_int event_arg);
|
|
static void ahc_update_scsiid(struct ahc_softc *ahc,
|
|
u_int targid_mask);
|
|
static int ahc_handle_target_cmd(struct ahc_softc *ahc,
|
|
struct target_cmd *cmd);
|
|
#endif
|
|
|
|
static u_int ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl);
|
|
static void ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl);
|
|
static void ahc_busy_tcl(struct ahc_softc *ahc,
|
|
u_int tcl, u_int busyid);
|
|
|
|
/************************** SCB and SCB queue management **********************/
|
|
static void ahc_run_untagged_queues(struct ahc_softc *ahc);
|
|
static void ahc_run_untagged_queue(struct ahc_softc *ahc,
|
|
struct scb_tailq *queue);
|
|
|
|
/****************************** Initialization ********************************/
|
|
static void ahc_alloc_scbs(struct ahc_softc *ahc);
|
|
static void ahc_shutdown(void *arg);
|
|
|
|
/*************************** Interrupt Services *******************************/
|
|
static void ahc_clear_intstat(struct ahc_softc *ahc);
|
|
static void ahc_run_qoutfifo(struct ahc_softc *ahc);
|
|
#ifdef AHC_TARGET_MODE
|
|
static void ahc_run_tqinfifo(struct ahc_softc *ahc, int paused);
|
|
#endif
|
|
static void ahc_handle_brkadrint(struct ahc_softc *ahc);
|
|
static void ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat);
|
|
static void ahc_handle_scsiint(struct ahc_softc *ahc,
|
|
u_int intstat);
|
|
static void ahc_clear_critical_section(struct ahc_softc *ahc);
|
|
|
|
/***************************** Error Recovery *********************************/
|
|
static void ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb);
|
|
static int ahc_abort_scbs(struct ahc_softc *ahc, int target,
|
|
char channel, int lun, u_int tag,
|
|
role_t role, uint32_t status);
|
|
static void ahc_calc_residual(struct ahc_softc *ahc,
|
|
struct scb *scb);
|
|
|
|
/*********************** Untagged Transaction Routines ************************/
|
|
static inline void ahc_freeze_untagged_queues(struct ahc_softc *ahc);
|
|
static inline void ahc_release_untagged_queues(struct ahc_softc *ahc);
|
|
|
|
/*
|
|
* Block our completion routine from starting the next untagged
|
|
* transaction for this target or target lun.
|
|
*/
|
|
static inline void
|
|
ahc_freeze_untagged_queues(struct ahc_softc *ahc)
|
|
{
|
|
if ((ahc->flags & AHC_SCB_BTT) == 0)
|
|
ahc->untagged_queue_lock++;
|
|
}
|
|
|
|
/*
|
|
* Allow the next untagged transaction for this target or target lun
|
|
* to be executed. We use a counting semaphore to allow the lock
|
|
* to be acquired recursively. Once the count drops to zero, the
|
|
* transaction queues will be run.
|
|
*/
|
|
static inline void
|
|
ahc_release_untagged_queues(struct ahc_softc *ahc)
|
|
{
|
|
if ((ahc->flags & AHC_SCB_BTT) == 0) {
|
|
ahc->untagged_queue_lock--;
|
|
if (ahc->untagged_queue_lock == 0)
|
|
ahc_run_untagged_queues(ahc);
|
|
}
|
|
}
|
|
|
|
/************************* Sequencer Execution Control ************************/
|
|
/*
|
|
* Work around any chip bugs related to halting sequencer execution.
|
|
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
|
|
* reading a register that will set this signal and deassert it.
|
|
* Without this workaround, if the chip is paused, by an interrupt or
|
|
* manual pause while accessing scb ram, accesses to certain registers
|
|
* will hang the system (infinite pci retries).
|
|
*/
|
|
static void
|
|
ahc_pause_bug_fix(struct ahc_softc *ahc)
|
|
{
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
(void)ahc_inb(ahc, CCSCBCTL);
|
|
}
|
|
|
|
/*
|
|
* Determine whether the sequencer has halted code execution.
|
|
* Returns non-zero status if the sequencer is stopped.
|
|
*/
|
|
int
|
|
ahc_is_paused(struct ahc_softc *ahc)
|
|
{
|
|
return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
|
|
}
|
|
|
|
/*
|
|
* Request that the sequencer stop and wait, indefinitely, for it
|
|
* to stop. The sequencer will only acknowledge that it is paused
|
|
* once it has reached an instruction boundary and PAUSEDIS is
|
|
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
|
|
* for critical sections.
|
|
*/
|
|
void
|
|
ahc_pause(struct ahc_softc *ahc)
|
|
{
|
|
ahc_outb(ahc, HCNTRL, ahc->pause);
|
|
|
|
/*
|
|
* Since the sequencer can disable pausing in a critical section, we
|
|
* must loop until it actually stops.
|
|
*/
|
|
while (ahc_is_paused(ahc) == 0)
|
|
;
|
|
|
|
ahc_pause_bug_fix(ahc);
|
|
}
|
|
|
|
/*
|
|
* Allow the sequencer to continue program execution.
|
|
* We check here to ensure that no additional interrupt
|
|
* sources that would cause the sequencer to halt have been
|
|
* asserted. If, for example, a SCSI bus reset is detected
|
|
* while we are fielding a different, pausing, interrupt type,
|
|
* we don't want to release the sequencer before going back
|
|
* into our interrupt handler and dealing with this new
|
|
* condition.
|
|
*/
|
|
void
|
|
ahc_unpause(struct ahc_softc *ahc)
|
|
{
|
|
if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
|
|
ahc_outb(ahc, HCNTRL, ahc->unpause);
|
|
}
|
|
|
|
/************************** Memory mapping routines ***************************/
|
|
static struct ahc_dma_seg *
|
|
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
|
|
{
|
|
int sg_index;
|
|
|
|
sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
|
|
/* sg_list_phys points to entry 1, not 0 */
|
|
sg_index++;
|
|
|
|
return (&scb->sg_list[sg_index]);
|
|
}
|
|
|
|
static uint32_t
|
|
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
|
|
{
|
|
int sg_index;
|
|
|
|
/* sg_list_phys points to entry 1, not 0 */
|
|
sg_index = sg - &scb->sg_list[1];
|
|
|
|
return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
|
|
}
|
|
|
|
static uint32_t
|
|
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
|
|
{
|
|
return (ahc->scb_data->hscb_busaddr
|
|
+ (sizeof(struct hardware_scb) * index));
|
|
}
|
|
|
|
static void
|
|
ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
|
|
{
|
|
ahc_dmamap_sync(ahc, ahc->scb_data->hscb_dmat,
|
|
ahc->scb_data->hscb_dmamap,
|
|
/*offset*/(scb->hscb - ahc->hscbs) * sizeof(*scb->hscb),
|
|
/*len*/sizeof(*scb->hscb), op);
|
|
}
|
|
|
|
void
|
|
ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
|
|
{
|
|
if (scb->sg_count == 0)
|
|
return;
|
|
|
|
ahc_dmamap_sync(ahc, ahc->scb_data->sg_dmat, scb->sg_map->sg_dmamap,
|
|
/*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
|
|
* sizeof(struct ahc_dma_seg),
|
|
/*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
|
|
}
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
static uint32_t
|
|
ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
|
|
{
|
|
return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
|
|
}
|
|
#endif
|
|
|
|
/*********************** Miscellaneous Support Functions ***********************/
|
|
/*
|
|
* Determine whether the sequencer reported a residual
|
|
* for this SCB/transaction.
|
|
*/
|
|
static void
|
|
ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
uint32_t sgptr;
|
|
|
|
sgptr = ahc_le32toh(scb->hscb->sgptr);
|
|
if ((sgptr & SG_RESID_VALID) != 0)
|
|
ahc_calc_residual(ahc, scb);
|
|
}
|
|
|
|
/*
|
|
* Return pointers to the transfer negotiation information
|
|
* for the specified our_id/remote_id pair.
|
|
*/
|
|
struct ahc_initiator_tinfo *
|
|
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
|
|
u_int remote_id, struct ahc_tmode_tstate **tstate)
|
|
{
|
|
/*
|
|
* Transfer data structures are stored from the perspective
|
|
* of the target role. Since the parameters for a connection
|
|
* in the initiator role to a given target are the same as
|
|
* when the roles are reversed, we pretend we are the target.
|
|
*/
|
|
if (channel == 'B')
|
|
our_id += 8;
|
|
*tstate = ahc->enabled_targets[our_id];
|
|
return (&(*tstate)->transinfo[remote_id]);
|
|
}
|
|
|
|
uint16_t
|
|
ahc_inw(struct ahc_softc *ahc, u_int port)
|
|
{
|
|
uint16_t r = ahc_inb(ahc, port+1) << 8;
|
|
return r | ahc_inb(ahc, port);
|
|
}
|
|
|
|
void
|
|
ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
|
|
{
|
|
ahc_outb(ahc, port, value & 0xFF);
|
|
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
|
|
}
|
|
|
|
uint32_t
|
|
ahc_inl(struct ahc_softc *ahc, u_int port)
|
|
{
|
|
return ((ahc_inb(ahc, port))
|
|
| (ahc_inb(ahc, port+1) << 8)
|
|
| (ahc_inb(ahc, port+2) << 16)
|
|
| (ahc_inb(ahc, port+3) << 24));
|
|
}
|
|
|
|
void
|
|
ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
|
|
{
|
|
ahc_outb(ahc, port, (value) & 0xFF);
|
|
ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
|
|
ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
|
|
ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
|
|
}
|
|
|
|
uint64_t
|
|
ahc_inq(struct ahc_softc *ahc, u_int port)
|
|
{
|
|
return ((ahc_inb(ahc, port))
|
|
| (ahc_inb(ahc, port+1) << 8)
|
|
| (ahc_inb(ahc, port+2) << 16)
|
|
| (ahc_inb(ahc, port+3) << 24)
|
|
| (((uint64_t)ahc_inb(ahc, port+4)) << 32)
|
|
| (((uint64_t)ahc_inb(ahc, port+5)) << 40)
|
|
| (((uint64_t)ahc_inb(ahc, port+6)) << 48)
|
|
| (((uint64_t)ahc_inb(ahc, port+7)) << 56));
|
|
}
|
|
|
|
void
|
|
ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
|
|
{
|
|
ahc_outb(ahc, port, value & 0xFF);
|
|
ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
|
|
ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
|
|
ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
|
|
ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
|
|
ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
|
|
ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
|
|
ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
|
|
}
|
|
|
|
/*
|
|
* Get a free scb. If there are none, see if we can allocate a new SCB.
|
|
*/
|
|
struct scb *
|
|
ahc_get_scb(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *scb;
|
|
|
|
if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL) {
|
|
ahc_alloc_scbs(ahc);
|
|
scb = SLIST_FIRST(&ahc->scb_data->free_scbs);
|
|
if (scb == NULL)
|
|
return (NULL);
|
|
}
|
|
SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
|
|
return (scb);
|
|
}
|
|
|
|
/*
|
|
* Return an SCB resource to the free list.
|
|
*/
|
|
void
|
|
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
struct hardware_scb *hscb;
|
|
|
|
hscb = scb->hscb;
|
|
/* Clean up for the next user */
|
|
ahc->scb_data->scbindex[hscb->tag] = NULL;
|
|
scb->flags = SCB_FREE;
|
|
hscb->control = 0;
|
|
|
|
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);
|
|
|
|
/* Notify the OSM that a resource is now available. */
|
|
ahc_platform_scb_free(ahc, scb);
|
|
}
|
|
|
|
struct scb *
|
|
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
|
|
{
|
|
struct scb* scb;
|
|
|
|
scb = ahc->scb_data->scbindex[tag];
|
|
if (scb != NULL)
|
|
ahc_sync_scb(ahc, scb,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
return (scb);
|
|
}
|
|
|
|
static void
|
|
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
struct hardware_scb *q_hscb;
|
|
u_int saved_tag;
|
|
|
|
/*
|
|
* Our queuing method is a bit tricky. The card
|
|
* knows in advance which HSCB to download, and we
|
|
* can't disappoint it. To achieve this, the next
|
|
* SCB to download is saved off in ahc->next_queued_scb.
|
|
* When we are called to queue "an arbitrary scb",
|
|
* we copy the contents of the incoming HSCB to the one
|
|
* the sequencer knows about, swap HSCB pointers and
|
|
* finally assign the SCB to the tag indexed location
|
|
* in the scb_array. This makes sure that we can still
|
|
* locate the correct SCB by SCB_TAG.
|
|
*/
|
|
q_hscb = ahc->next_queued_scb->hscb;
|
|
saved_tag = q_hscb->tag;
|
|
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
|
|
if ((scb->flags & SCB_CDB32_PTR) != 0) {
|
|
q_hscb->shared_data.cdb_ptr =
|
|
ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
|
|
+ offsetof(struct hardware_scb, cdb32));
|
|
}
|
|
q_hscb->tag = saved_tag;
|
|
q_hscb->next = scb->hscb->tag;
|
|
|
|
/* Now swap HSCB pointers. */
|
|
ahc->next_queued_scb->hscb = scb->hscb;
|
|
scb->hscb = q_hscb;
|
|
|
|
/* Now define the mapping from tag to SCB in the scbindex */
|
|
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
|
|
}
|
|
|
|
/*
|
|
* Tell the sequencer about a new transaction to execute.
|
|
*/
|
|
void
|
|
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
ahc_swap_with_next_hscb(ahc, scb);
|
|
|
|
if (scb->hscb->tag == SCB_LIST_NULL
|
|
|| scb->hscb->next == SCB_LIST_NULL)
|
|
panic("Attempt to queue invalid SCB tag %x:%x\n",
|
|
scb->hscb->tag, scb->hscb->next);
|
|
|
|
/*
|
|
* Setup data "oddness".
|
|
*/
|
|
scb->hscb->lun &= LID;
|
|
if (ahc_get_transfer_length(scb) & 0x1)
|
|
scb->hscb->lun |= SCB_XFERLEN_ODD;
|
|
|
|
/*
|
|
* Keep a history of SCBs we've downloaded in the qinfifo.
|
|
*/
|
|
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
|
|
|
|
/*
|
|
* Make sure our data is consistent from the
|
|
* perspective of the adapter.
|
|
*/
|
|
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Tell the adapter about the newly queued SCB */
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
|
|
} else {
|
|
if ((ahc->features & AHC_AUTOPAUSE) == 0)
|
|
ahc_pause(ahc);
|
|
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
|
|
if ((ahc->features & AHC_AUTOPAUSE) == 0)
|
|
ahc_unpause(ahc);
|
|
}
|
|
}
|
|
|
|
struct scsi_sense_data *
|
|
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
int offset;
|
|
|
|
offset = scb - ahc->scb_data->scbarray;
|
|
return (&ahc->scb_data->sense[offset]);
|
|
}
|
|
|
|
static uint32_t
|
|
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
int offset;
|
|
|
|
offset = scb - ahc->scb_data->scbarray;
|
|
return (ahc->scb_data->sense_busaddr
|
|
+ (offset * sizeof(struct scsi_sense_data)));
|
|
}
|
|
|
|
/************************** Interrupt Processing ******************************/
|
|
static void
|
|
ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
|
|
{
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
|
|
/*offset*/0, /*len*/256, op);
|
|
}
|
|
|
|
static void
|
|
ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
|
|
{
|
|
#ifdef AHC_TARGET_MODE
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0) {
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap,
|
|
ahc_targetcmd_offset(ahc, 0),
|
|
sizeof(struct target_cmd) * AHC_TMODE_CMDS,
|
|
op);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* See if the firmware has posted any completed commands
|
|
* into our in-core command complete fifos.
|
|
*/
|
|
#define AHC_RUN_QOUTFIFO 0x1
|
|
#define AHC_RUN_TQINFIFO 0x2
|
|
static u_int
|
|
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
|
|
{
|
|
u_int retval;
|
|
|
|
retval = 0;
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
|
|
/*offset*/ahc->qoutfifonext, /*len*/1,
|
|
BUS_DMASYNC_POSTREAD);
|
|
if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
|
|
retval |= AHC_RUN_QOUTFIFO;
|
|
#ifdef AHC_TARGET_MODE
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0
|
|
&& (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap,
|
|
ahc_targetcmd_offset(ahc, ahc->tqinfifofnext),
|
|
/*len*/sizeof(struct target_cmd),
|
|
BUS_DMASYNC_POSTREAD);
|
|
if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
|
|
retval |= AHC_RUN_TQINFIFO;
|
|
}
|
|
#endif
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Catch an interrupt from the adapter
|
|
*/
|
|
int
|
|
ahc_intr(struct ahc_softc *ahc)
|
|
{
|
|
u_int intstat;
|
|
|
|
if ((ahc->pause & INTEN) == 0) {
|
|
/*
|
|
* Our interrupt is not enabled on the chip
|
|
* and may be disabled for re-entrancy reasons,
|
|
* so just return. This is likely just a shared
|
|
* interrupt.
|
|
*/
|
|
return (0);
|
|
}
|
|
/*
|
|
* Instead of directly reading the interrupt status register,
|
|
* infer the cause of the interrupt by checking our in-core
|
|
* completion queues. This avoids a costly PCI bus read in
|
|
* most cases.
|
|
*/
|
|
if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
|
|
&& (ahc_check_cmdcmpltqueues(ahc) != 0))
|
|
intstat = CMDCMPLT;
|
|
else {
|
|
intstat = ahc_inb(ahc, INTSTAT);
|
|
}
|
|
|
|
if ((intstat & INT_PEND) == 0) {
|
|
#if AHC_PCI_CONFIG > 0
|
|
if (ahc->unsolicited_ints > 500) {
|
|
ahc->unsolicited_ints = 0;
|
|
if ((ahc->chip & AHC_PCI) != 0
|
|
&& (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
|
|
ahc->bus_intr(ahc);
|
|
}
|
|
#endif
|
|
ahc->unsolicited_ints++;
|
|
return (0);
|
|
}
|
|
ahc->unsolicited_ints = 0;
|
|
|
|
if (intstat & CMDCMPLT) {
|
|
ahc_outb(ahc, CLRINT, CLRCMDINT);
|
|
|
|
/*
|
|
* Ensure that the chip sees that we've cleared
|
|
* this interrupt before we walk the output fifo.
|
|
* Otherwise, we may, due to posted bus writes,
|
|
* clear the interrupt after we finish the scan,
|
|
* and after the sequencer has added new entries
|
|
* and asserted the interrupt again.
|
|
*/
|
|
ahc_flush_device_writes(ahc);
|
|
ahc_run_qoutfifo(ahc);
|
|
#ifdef AHC_TARGET_MODE
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0)
|
|
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Handle statuses that may invalidate our cached
|
|
* copy of INTSTAT separately.
|
|
*/
|
|
if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0) {
|
|
/* Hot eject. Do nothing */
|
|
} else if (intstat & BRKADRINT) {
|
|
ahc_handle_brkadrint(ahc);
|
|
} else if ((intstat & (SEQINT|SCSIINT)) != 0) {
|
|
|
|
ahc_pause_bug_fix(ahc);
|
|
|
|
if ((intstat & SEQINT) != 0)
|
|
ahc_handle_seqint(ahc, intstat);
|
|
|
|
if ((intstat & SCSIINT) != 0)
|
|
ahc_handle_scsiint(ahc, intstat);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/************************* Sequencer Execution Control ************************/
|
|
/*
|
|
* Restart the sequencer program from address zero
|
|
*/
|
|
static void
|
|
ahc_restart(struct ahc_softc *ahc)
|
|
{
|
|
uint8_t sblkctl;
|
|
|
|
ahc_pause(ahc);
|
|
|
|
/* No more pending messages. */
|
|
ahc_clear_msg_state(ahc);
|
|
|
|
ahc_outb(ahc, SCSISIGO, 0); /* De-assert BSY */
|
|
ahc_outb(ahc, MSG_OUT, MSG_NOOP); /* No message to send */
|
|
ahc_outb(ahc, SXFRCTL1, ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET);
|
|
ahc_outb(ahc, LASTPHASE, P_BUSFREE);
|
|
ahc_outb(ahc, SAVED_SCSIID, 0xFF);
|
|
ahc_outb(ahc, SAVED_LUN, 0xFF);
|
|
|
|
/*
|
|
* Ensure that the sequencer's idea of TQINPOS
|
|
* matches our own. The sequencer increments TQINPOS
|
|
* only after it sees a DMA complete and a reset could
|
|
* occur before the increment leaving the kernel to believe
|
|
* the command arrived but the sequencer to not.
|
|
*/
|
|
ahc_outb(ahc, TQINPOS, ahc->tqinfifonext);
|
|
|
|
/* Always allow reselection */
|
|
ahc_outb(ahc, SCSISEQ,
|
|
ahc_inb(ahc, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
if ((ahc->features & AHC_CMD_CHAN) != 0) {
|
|
/* Ensure that no DMA operations are in progress */
|
|
ahc_outb(ahc, CCSCBCNT, 0);
|
|
ahc_outb(ahc, CCSGCTL, 0);
|
|
ahc_outb(ahc, CCSCBCTL, 0);
|
|
}
|
|
/*
|
|
* If we were in the process of DMA'ing SCB data into
|
|
* an SCB, replace that SCB on the free list. This prevents
|
|
* an SCB leak.
|
|
*/
|
|
if ((ahc_inb(ahc, SEQ_FLAGS2) & SCB_DMA) != 0) {
|
|
ahc_add_curscb_to_free_list(ahc);
|
|
ahc_outb(ahc, SEQ_FLAGS2,
|
|
ahc_inb(ahc, SEQ_FLAGS2) & ~SCB_DMA);
|
|
}
|
|
|
|
/*
|
|
* Clear any pending sequencer interrupt. It is no
|
|
* longer relevant since we're resetting the Program
|
|
* Counter.
|
|
*/
|
|
ahc_outb(ahc, CLRINT, CLRSEQINT);
|
|
|
|
ahc_outb(ahc, MWI_RESIDUAL, 0);
|
|
ahc_outb(ahc, SEQCTL, ahc->seqctl);
|
|
ahc_outb(ahc, SEQADDR0, 0);
|
|
ahc_outb(ahc, SEQADDR1, 0);
|
|
|
|
/*
|
|
* Take the LED out of diagnostic mode on PM resume, too
|
|
*/
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
ahc_outb(ahc, SBLKCTL, (sblkctl & ~(DIAGLEDEN|DIAGLEDON)));
|
|
|
|
ahc_unpause(ahc);
|
|
}
|
|
|
|
/************************* Input/Output Queues ********************************/
|
|
static void
|
|
ahc_run_qoutfifo(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
|
|
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD);
|
|
while (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL) {
|
|
|
|
scb_index = ahc->qoutfifo[ahc->qoutfifonext];
|
|
if ((ahc->qoutfifonext & 0x03) == 0x03) {
|
|
u_int modnext;
|
|
|
|
/*
|
|
* Clear 32bits of QOUTFIFO at a time
|
|
* so that we don't clobber an incoming
|
|
* byte DMA to the array on architectures
|
|
* that only support 32bit load and store
|
|
* operations.
|
|
*/
|
|
modnext = ahc->qoutfifonext & ~0x3;
|
|
*((uint32_t *)(&ahc->qoutfifo[modnext])) = 0xFFFFFFFFUL;
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap,
|
|
/*offset*/modnext, /*len*/4,
|
|
BUS_DMASYNC_PREREAD);
|
|
}
|
|
ahc->qoutfifonext++;
|
|
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb == NULL) {
|
|
printk("%s: WARNING no command for scb %d "
|
|
"(cmdcmplt)\nQOUTPOS = %d\n",
|
|
ahc_name(ahc), scb_index,
|
|
(ahc->qoutfifonext - 1) & 0xFF);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Save off the residual
|
|
* if there is one.
|
|
*/
|
|
ahc_update_residual(ahc, scb);
|
|
ahc_done(ahc, scb);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahc_run_untagged_queues(struct ahc_softc *ahc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
ahc_run_untagged_queue(ahc, &ahc->untagged_queues[i]);
|
|
}
|
|
|
|
static void
|
|
ahc_run_untagged_queue(struct ahc_softc *ahc, struct scb_tailq *queue)
|
|
{
|
|
struct scb *scb;
|
|
|
|
if (ahc->untagged_queue_lock != 0)
|
|
return;
|
|
|
|
if ((scb = TAILQ_FIRST(queue)) != NULL
|
|
&& (scb->flags & SCB_ACTIVE) == 0) {
|
|
scb->flags |= SCB_ACTIVE;
|
|
ahc_queue_scb(ahc, scb);
|
|
}
|
|
}
|
|
|
|
/************************* Interrupt Handling *********************************/
|
|
static void
|
|
ahc_handle_brkadrint(struct ahc_softc *ahc)
|
|
{
|
|
/*
|
|
* We upset the sequencer :-(
|
|
* Lookup the error message
|
|
*/
|
|
int i;
|
|
int error;
|
|
|
|
error = ahc_inb(ahc, ERROR);
|
|
for (i = 0; error != 1 && i < num_errors; i++)
|
|
error >>= 1;
|
|
printk("%s: brkadrint, %s at seqaddr = 0x%x\n",
|
|
ahc_name(ahc), ahc_hard_errors[i].errmesg,
|
|
ahc_inb(ahc, SEQADDR0) |
|
|
(ahc_inb(ahc, SEQADDR1) << 8));
|
|
|
|
ahc_dump_card_state(ahc);
|
|
|
|
/* Tell everyone that this HBA is no longer available */
|
|
ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
|
|
CAM_NO_HBA);
|
|
|
|
/* Disable all interrupt sources by resetting the controller */
|
|
ahc_shutdown(ahc);
|
|
}
|
|
|
|
static void
|
|
ahc_handle_seqint(struct ahc_softc *ahc, u_int intstat)
|
|
{
|
|
struct scb *scb;
|
|
struct ahc_devinfo devinfo;
|
|
|
|
ahc_fetch_devinfo(ahc, &devinfo);
|
|
|
|
/*
|
|
* Clear the upper byte that holds SEQINT status
|
|
* codes and clear the SEQINT bit. We will unpause
|
|
* the sequencer, if appropriate, after servicing
|
|
* the request.
|
|
*/
|
|
ahc_outb(ahc, CLRINT, CLRSEQINT);
|
|
switch (intstat & SEQINT_MASK) {
|
|
case BAD_STATUS:
|
|
{
|
|
u_int scb_index;
|
|
struct hardware_scb *hscb;
|
|
|
|
/*
|
|
* Set the default return value to 0 (don't
|
|
* send sense). The sense code will change
|
|
* this if needed.
|
|
*/
|
|
ahc_outb(ahc, RETURN_1, 0);
|
|
|
|
/*
|
|
* The sequencer will notify us when a command
|
|
* has an error that would be of interest to
|
|
* the kernel. This allows us to leave the sequencer
|
|
* running in the common case of command completes
|
|
* without error. The sequencer will already have
|
|
* dma'd the SCB back up to us, so we can reference
|
|
* the in kernel copy directly.
|
|
*/
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb == NULL) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("ahc_intr - referenced scb "
|
|
"not valid during seqint 0x%x scb(%d)\n",
|
|
intstat, scb_index);
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
goto unpause;
|
|
}
|
|
|
|
hscb = scb->hscb;
|
|
|
|
/* Don't want to clobber the original sense code */
|
|
if ((scb->flags & SCB_SENSE) != 0) {
|
|
/*
|
|
* Clear the SCB_SENSE Flag and have
|
|
* the sequencer do a normal command
|
|
* complete.
|
|
*/
|
|
scb->flags &= ~SCB_SENSE;
|
|
ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
|
|
break;
|
|
}
|
|
ahc_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
|
|
/* Freeze the queue until the client sees the error. */
|
|
ahc_freeze_devq(ahc, scb);
|
|
ahc_freeze_scb(scb);
|
|
ahc_set_scsi_status(scb, hscb->shared_data.status.scsi_status);
|
|
switch (hscb->shared_data.status.scsi_status) {
|
|
case SCSI_STATUS_OK:
|
|
printk("%s: Interrupted for staus of 0???\n",
|
|
ahc_name(ahc));
|
|
break;
|
|
case SCSI_STATUS_CMD_TERMINATED:
|
|
case SCSI_STATUS_CHECK_COND:
|
|
{
|
|
struct ahc_dma_seg *sg;
|
|
struct scsi_sense *sc;
|
|
struct ahc_initiator_tinfo *targ_info;
|
|
struct ahc_tmode_tstate *tstate;
|
|
struct ahc_transinfo *tinfo;
|
|
#ifdef AHC_DEBUG
|
|
if (ahc_debug & AHC_SHOW_SENSE) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("SCB %d: requests Check Status\n",
|
|
scb->hscb->tag);
|
|
}
|
|
#endif
|
|
|
|
if (ahc_perform_autosense(scb) == 0)
|
|
break;
|
|
|
|
targ_info = ahc_fetch_transinfo(ahc,
|
|
devinfo.channel,
|
|
devinfo.our_scsiid,
|
|
devinfo.target,
|
|
&tstate);
|
|
tinfo = &targ_info->curr;
|
|
sg = scb->sg_list;
|
|
sc = (struct scsi_sense *)(&hscb->shared_data.cdb);
|
|
/*
|
|
* Save off the residual if there is one.
|
|
*/
|
|
ahc_update_residual(ahc, scb);
|
|
#ifdef AHC_DEBUG
|
|
if (ahc_debug & AHC_SHOW_SENSE) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("Sending Sense\n");
|
|
}
|
|
#endif
|
|
sg->addr = ahc_get_sense_bufaddr(ahc, scb);
|
|
sg->len = ahc_get_sense_bufsize(ahc, scb);
|
|
sg->len |= AHC_DMA_LAST_SEG;
|
|
|
|
/* Fixup byte order */
|
|
sg->addr = ahc_htole32(sg->addr);
|
|
sg->len = ahc_htole32(sg->len);
|
|
|
|
sc->opcode = REQUEST_SENSE;
|
|
sc->byte2 = 0;
|
|
if (tinfo->protocol_version <= SCSI_REV_2
|
|
&& SCB_GET_LUN(scb) < 8)
|
|
sc->byte2 = SCB_GET_LUN(scb) << 5;
|
|
sc->unused[0] = 0;
|
|
sc->unused[1] = 0;
|
|
sc->length = sg->len;
|
|
sc->control = 0;
|
|
|
|
/*
|
|
* We can't allow the target to disconnect.
|
|
* This will be an untagged transaction and
|
|
* having the target disconnect will make this
|
|
* transaction indestinguishable from outstanding
|
|
* tagged transactions.
|
|
*/
|
|
hscb->control = 0;
|
|
|
|
/*
|
|
* This request sense could be because the
|
|
* the device lost power or in some other
|
|
* way has lost our transfer negotiations.
|
|
* Renegotiate if appropriate. Unit attention
|
|
* errors will be reported before any data
|
|
* phases occur.
|
|
*/
|
|
if (ahc_get_residual(scb)
|
|
== ahc_get_transfer_length(scb)) {
|
|
ahc_update_neg_request(ahc, &devinfo,
|
|
tstate, targ_info,
|
|
AHC_NEG_IF_NON_ASYNC);
|
|
}
|
|
if (tstate->auto_negotiate & devinfo.target_mask) {
|
|
hscb->control |= MK_MESSAGE;
|
|
scb->flags &= ~SCB_NEGOTIATE;
|
|
scb->flags |= SCB_AUTO_NEGOTIATE;
|
|
}
|
|
hscb->cdb_len = sizeof(*sc);
|
|
hscb->dataptr = sg->addr;
|
|
hscb->datacnt = sg->len;
|
|
hscb->sgptr = scb->sg_list_phys | SG_FULL_RESID;
|
|
hscb->sgptr = ahc_htole32(hscb->sgptr);
|
|
scb->sg_count = 1;
|
|
scb->flags |= SCB_SENSE;
|
|
ahc_qinfifo_requeue_tail(ahc, scb);
|
|
ahc_outb(ahc, RETURN_1, SEND_SENSE);
|
|
/*
|
|
* Ensure we have enough time to actually
|
|
* retrieve the sense.
|
|
*/
|
|
ahc_scb_timer_reset(scb, 5 * 1000000);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case NO_MATCH:
|
|
{
|
|
/* Ensure we don't leave the selection hardware on */
|
|
ahc_outb(ahc, SCSISEQ,
|
|
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
|
|
printk("%s:%c:%d: no active SCB for reconnecting "
|
|
"target - issuing BUS DEVICE RESET\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target);
|
|
printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
|
|
"ARG_1 == 0x%x ACCUM = 0x%x\n",
|
|
ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN),
|
|
ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM));
|
|
printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
|
|
"SINDEX == 0x%x\n",
|
|
ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR),
|
|
ahc_index_busy_tcl(ahc,
|
|
BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID),
|
|
ahc_inb(ahc, SAVED_LUN))),
|
|
ahc_inb(ahc, SINDEX));
|
|
printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
|
|
"SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n",
|
|
ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID),
|
|
ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG),
|
|
ahc_inb(ahc, SCB_CONTROL));
|
|
printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n",
|
|
ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI));
|
|
printk("SXFRCTL0 == 0x%x\n", ahc_inb(ahc, SXFRCTL0));
|
|
printk("SEQCTL == 0x%x\n", ahc_inb(ahc, SEQCTL));
|
|
ahc_dump_card_state(ahc);
|
|
ahc->msgout_buf[0] = MSG_BUS_DEV_RESET;
|
|
ahc->msgout_len = 1;
|
|
ahc->msgout_index = 0;
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
ahc_outb(ahc, MSG_OUT, HOST_MSG);
|
|
ahc_assert_atn(ahc);
|
|
break;
|
|
}
|
|
case SEND_REJECT:
|
|
{
|
|
u_int rejbyte = ahc_inb(ahc, ACCUM);
|
|
printk("%s:%c:%d: Warning - unknown message received from "
|
|
"target (0x%x). Rejecting\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target, rejbyte);
|
|
break;
|
|
}
|
|
case PROTO_VIOLATION:
|
|
{
|
|
ahc_handle_proto_violation(ahc);
|
|
break;
|
|
}
|
|
case IGN_WIDE_RES:
|
|
ahc_handle_ign_wide_residue(ahc, &devinfo);
|
|
break;
|
|
case PDATA_REINIT:
|
|
ahc_reinitialize_dataptrs(ahc);
|
|
break;
|
|
case BAD_PHASE:
|
|
{
|
|
u_int lastphase;
|
|
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
printk("%s:%c:%d: unknown scsi bus phase %x, "
|
|
"lastphase = 0x%x. Attempting to continue\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target,
|
|
lastphase, ahc_inb(ahc, SCSISIGI));
|
|
break;
|
|
}
|
|
case MISSED_BUSFREE:
|
|
{
|
|
u_int lastphase;
|
|
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
printk("%s:%c:%d: Missed busfree. "
|
|
"Lastphase = 0x%x, Curphase = 0x%x\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target,
|
|
lastphase, ahc_inb(ahc, SCSISIGI));
|
|
ahc_restart(ahc);
|
|
return;
|
|
}
|
|
case HOST_MSG_LOOP:
|
|
{
|
|
/*
|
|
* The sequencer has encountered a message phase
|
|
* that requires host assistance for completion.
|
|
* While handling the message phase(s), we will be
|
|
* notified by the sequencer after each byte is
|
|
* transferred so we can track bus phase changes.
|
|
*
|
|
* If this is the first time we've seen a HOST_MSG_LOOP
|
|
* interrupt, initialize the state of the host message
|
|
* loop.
|
|
*/
|
|
if (ahc->msg_type == MSG_TYPE_NONE) {
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
u_int bus_phase;
|
|
|
|
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
if (bus_phase != P_MESGIN
|
|
&& bus_phase != P_MESGOUT) {
|
|
printk("ahc_intr: HOST_MSG_LOOP bad "
|
|
"phase 0x%x\n",
|
|
bus_phase);
|
|
/*
|
|
* Probably transitioned to bus free before
|
|
* we got here. Just punt the message.
|
|
*/
|
|
ahc_clear_intstat(ahc);
|
|
ahc_restart(ahc);
|
|
return;
|
|
}
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (devinfo.role == ROLE_INITIATOR) {
|
|
if (bus_phase == P_MESGOUT) {
|
|
if (scb == NULL)
|
|
panic("HOST_MSG_LOOP with "
|
|
"invalid SCB %x\n",
|
|
scb_index);
|
|
|
|
ahc_setup_initiator_msgout(ahc,
|
|
&devinfo,
|
|
scb);
|
|
} else {
|
|
ahc->msg_type =
|
|
MSG_TYPE_INITIATOR_MSGIN;
|
|
ahc->msgin_index = 0;
|
|
}
|
|
}
|
|
#ifdef AHC_TARGET_MODE
|
|
else {
|
|
if (bus_phase == P_MESGOUT) {
|
|
ahc->msg_type =
|
|
MSG_TYPE_TARGET_MSGOUT;
|
|
ahc->msgin_index = 0;
|
|
}
|
|
else
|
|
ahc_setup_target_msgin(ahc,
|
|
&devinfo,
|
|
scb);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ahc_handle_message_phase(ahc);
|
|
break;
|
|
}
|
|
case PERR_DETECTED:
|
|
{
|
|
/*
|
|
* If we've cleared the parity error interrupt
|
|
* but the sequencer still believes that SCSIPERR
|
|
* is true, it must be that the parity error is
|
|
* for the currently presented byte on the bus,
|
|
* and we are not in a phase (data-in) where we will
|
|
* eventually ack this byte. Ack the byte and
|
|
* throw it away in the hope that the target will
|
|
* take us to message out to deliver the appropriate
|
|
* error message.
|
|
*/
|
|
if ((intstat & SCSIINT) == 0
|
|
&& (ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0) {
|
|
|
|
if ((ahc->features & AHC_DT) == 0) {
|
|
u_int curphase;
|
|
|
|
/*
|
|
* The hardware will only let you ack bytes
|
|
* if the expected phase in SCSISIGO matches
|
|
* the current phase. Make sure this is
|
|
* currently the case.
|
|
*/
|
|
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
ahc_outb(ahc, LASTPHASE, curphase);
|
|
ahc_outb(ahc, SCSISIGO, curphase);
|
|
}
|
|
if ((ahc_inb(ahc, SCSISIGI) & (CDI|MSGI)) == 0) {
|
|
int wait;
|
|
|
|
/*
|
|
* In a data phase. Faster to bitbucket
|
|
* the data than to individually ack each
|
|
* byte. This is also the only strategy
|
|
* that will work with AUTOACK enabled.
|
|
*/
|
|
ahc_outb(ahc, SXFRCTL1,
|
|
ahc_inb(ahc, SXFRCTL1) | BITBUCKET);
|
|
wait = 5000;
|
|
while (--wait != 0) {
|
|
if ((ahc_inb(ahc, SCSISIGI)
|
|
& (CDI|MSGI)) != 0)
|
|
break;
|
|
ahc_delay(100);
|
|
}
|
|
ahc_outb(ahc, SXFRCTL1,
|
|
ahc_inb(ahc, SXFRCTL1) & ~BITBUCKET);
|
|
if (wait == 0) {
|
|
struct scb *scb;
|
|
u_int scb_index;
|
|
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("Unable to clear parity error. "
|
|
"Resetting bus.\n");
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb != NULL)
|
|
ahc_set_transaction_status(scb,
|
|
CAM_UNCOR_PARITY);
|
|
ahc_reset_channel(ahc, devinfo.channel,
|
|
/*init reset*/TRUE);
|
|
}
|
|
} else {
|
|
ahc_inb(ahc, SCSIDATL);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DATA_OVERRUN:
|
|
{
|
|
/*
|
|
* When the sequencer detects an overrun, it
|
|
* places the controller in "BITBUCKET" mode
|
|
* and allows the target to complete its transfer.
|
|
* Unfortunately, none of the counters get updated
|
|
* when the controller is in this mode, so we have
|
|
* no way of knowing how large the overrun was.
|
|
*/
|
|
u_int scbindex = ahc_inb(ahc, SCB_TAG);
|
|
u_int lastphase = ahc_inb(ahc, LASTPHASE);
|
|
u_int i;
|
|
|
|
scb = ahc_lookup_scb(ahc, scbindex);
|
|
for (i = 0; i < num_phases; i++) {
|
|
if (lastphase == ahc_phase_table[i].phase)
|
|
break;
|
|
}
|
|
ahc_print_path(ahc, scb);
|
|
printk("data overrun detected %s."
|
|
" Tag == 0x%x.\n",
|
|
ahc_phase_table[i].phasemsg,
|
|
scb->hscb->tag);
|
|
ahc_print_path(ahc, scb);
|
|
printk("%s seen Data Phase. Length = %ld. NumSGs = %d.\n",
|
|
ahc_inb(ahc, SEQ_FLAGS) & DPHASE ? "Have" : "Haven't",
|
|
ahc_get_transfer_length(scb), scb->sg_count);
|
|
if (scb->sg_count > 0) {
|
|
for (i = 0; i < scb->sg_count; i++) {
|
|
|
|
printk("sg[%d] - Addr 0x%x%x : Length %d\n",
|
|
i,
|
|
(ahc_le32toh(scb->sg_list[i].len) >> 24
|
|
& SG_HIGH_ADDR_BITS),
|
|
ahc_le32toh(scb->sg_list[i].addr),
|
|
ahc_le32toh(scb->sg_list[i].len)
|
|
& AHC_SG_LEN_MASK);
|
|
}
|
|
}
|
|
/*
|
|
* Set this and it will take effect when the
|
|
* target does a command complete.
|
|
*/
|
|
ahc_freeze_devq(ahc, scb);
|
|
if ((scb->flags & SCB_SENSE) == 0) {
|
|
ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
|
|
} else {
|
|
scb->flags &= ~SCB_SENSE;
|
|
ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
|
|
}
|
|
ahc_freeze_scb(scb);
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
/*
|
|
* Clear the channel in case we return
|
|
* to data phase later.
|
|
*/
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN);
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | CLRSTCNT|CLRCHN);
|
|
}
|
|
if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) {
|
|
u_int dscommand1;
|
|
|
|
/* Ensure HHADDR is 0 for future DMA operations. */
|
|
dscommand1 = ahc_inb(ahc, DSCOMMAND1);
|
|
ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0);
|
|
ahc_outb(ahc, HADDR, 0);
|
|
ahc_outb(ahc, DSCOMMAND1, dscommand1);
|
|
}
|
|
break;
|
|
}
|
|
case MKMSG_FAILED:
|
|
{
|
|
u_int scbindex;
|
|
|
|
printk("%s:%c:%d:%d: Attempt to issue message failed\n",
|
|
ahc_name(ahc), devinfo.channel, devinfo.target,
|
|
devinfo.lun);
|
|
scbindex = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scbindex);
|
|
if (scb != NULL
|
|
&& (scb->flags & SCB_RECOVERY_SCB) != 0)
|
|
/*
|
|
* Ensure that we didn't put a second instance of this
|
|
* SCB into the QINFIFO.
|
|
*/
|
|
ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb),
|
|
SCB_GET_CHANNEL(ahc, scb),
|
|
SCB_GET_LUN(scb), scb->hscb->tag,
|
|
ROLE_INITIATOR, /*status*/0,
|
|
SEARCH_REMOVE);
|
|
break;
|
|
}
|
|
case NO_FREE_SCB:
|
|
{
|
|
printk("%s: No free or disconnected SCBs\n", ahc_name(ahc));
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
break;
|
|
}
|
|
case SCB_MISMATCH:
|
|
{
|
|
u_int scbptr;
|
|
|
|
scbptr = ahc_inb(ahc, SCBPTR);
|
|
printk("Bogus TAG after DMA. SCBPTR %d, tag %d, our tag %d\n",
|
|
scbptr, ahc_inb(ahc, ARG_1),
|
|
ahc->scb_data->hscbs[scbptr].tag);
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
break;
|
|
}
|
|
case OUT_OF_RANGE:
|
|
{
|
|
printk("%s: BTT calculation out of range\n", ahc_name(ahc));
|
|
printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
|
|
"ARG_1 == 0x%x ACCUM = 0x%x\n",
|
|
ahc_inb(ahc, SAVED_SCSIID), ahc_inb(ahc, SAVED_LUN),
|
|
ahc_inb(ahc, ARG_1), ahc_inb(ahc, ACCUM));
|
|
printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
|
|
"SINDEX == 0x%x\n, A == 0x%x\n",
|
|
ahc_inb(ahc, SEQ_FLAGS), ahc_inb(ahc, SCBPTR),
|
|
ahc_index_busy_tcl(ahc,
|
|
BUILD_TCL(ahc_inb(ahc, SAVED_SCSIID),
|
|
ahc_inb(ahc, SAVED_LUN))),
|
|
ahc_inb(ahc, SINDEX),
|
|
ahc_inb(ahc, ACCUM));
|
|
printk("SCSIID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
|
|
"SCB_TAG == 0x%x, SCB_CONTROL == 0x%x\n",
|
|
ahc_inb(ahc, SCSIID), ahc_inb(ahc, SCB_SCSIID),
|
|
ahc_inb(ahc, SCB_LUN), ahc_inb(ahc, SCB_TAG),
|
|
ahc_inb(ahc, SCB_CONTROL));
|
|
printk("SCSIBUSL == 0x%x, SCSISIGI == 0x%x\n",
|
|
ahc_inb(ahc, SCSIBUSL), ahc_inb(ahc, SCSISIGI));
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
break;
|
|
}
|
|
default:
|
|
printk("ahc_intr: seqint, "
|
|
"intstat == 0x%x, scsisigi = 0x%x\n",
|
|
intstat, ahc_inb(ahc, SCSISIGI));
|
|
break;
|
|
}
|
|
unpause:
|
|
/*
|
|
* The sequencer is paused immediately on
|
|
* a SEQINT, so we should restart it when
|
|
* we're done.
|
|
*/
|
|
ahc_unpause(ahc);
|
|
}
|
|
|
|
static void
|
|
ahc_handle_scsiint(struct ahc_softc *ahc, u_int intstat)
|
|
{
|
|
u_int scb_index;
|
|
u_int status0;
|
|
u_int status;
|
|
struct scb *scb;
|
|
char cur_channel;
|
|
char intr_channel;
|
|
|
|
if ((ahc->features & AHC_TWIN) != 0
|
|
&& ((ahc_inb(ahc, SBLKCTL) & SELBUSB) != 0))
|
|
cur_channel = 'B';
|
|
else
|
|
cur_channel = 'A';
|
|
intr_channel = cur_channel;
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
status0 = ahc_inb(ahc, SSTAT0) & IOERR;
|
|
else
|
|
status0 = 0;
|
|
status = ahc_inb(ahc, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
|
|
if (status == 0 && status0 == 0) {
|
|
if ((ahc->features & AHC_TWIN) != 0) {
|
|
/* Try the other channel */
|
|
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
|
|
status = ahc_inb(ahc, SSTAT1)
|
|
& (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
|
|
intr_channel = (cur_channel == 'A') ? 'B' : 'A';
|
|
}
|
|
if (status == 0) {
|
|
printk("%s: Spurious SCSI interrupt\n", ahc_name(ahc));
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_unpause(ahc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahc_clear_critical_section(ahc);
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb != NULL
|
|
&& (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
|
|
scb = NULL;
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0
|
|
&& (status0 & IOERR) != 0) {
|
|
int now_lvd;
|
|
|
|
now_lvd = ahc_inb(ahc, SBLKCTL) & ENAB40;
|
|
printk("%s: Transceiver State Has Changed to %s mode\n",
|
|
ahc_name(ahc), now_lvd ? "LVD" : "SE");
|
|
ahc_outb(ahc, CLRSINT0, CLRIOERR);
|
|
/*
|
|
* When transitioning to SE mode, the reset line
|
|
* glitches, triggering an arbitration bug in some
|
|
* Ultra2 controllers. This bug is cleared when we
|
|
* assert the reset line. Since a reset glitch has
|
|
* already occurred with this transition and a
|
|
* transceiver state change is handled just like
|
|
* a bus reset anyway, asserting the reset line
|
|
* ourselves is safe.
|
|
*/
|
|
ahc_reset_channel(ahc, intr_channel,
|
|
/*Initiate Reset*/now_lvd == 0);
|
|
} else if ((status & SCSIRSTI) != 0) {
|
|
printk("%s: Someone reset channel %c\n",
|
|
ahc_name(ahc), intr_channel);
|
|
if (intr_channel != cur_channel)
|
|
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) ^ SELBUSB);
|
|
ahc_reset_channel(ahc, intr_channel, /*Initiate Reset*/FALSE);
|
|
} else if ((status & SCSIPERR) != 0) {
|
|
/*
|
|
* Determine the bus phase and queue an appropriate message.
|
|
* SCSIPERR is latched true as soon as a parity error
|
|
* occurs. If the sequencer acked the transfer that
|
|
* caused the parity error and the currently presented
|
|
* transfer on the bus has correct parity, SCSIPERR will
|
|
* be cleared by CLRSCSIPERR. Use this to determine if
|
|
* we should look at the last phase the sequencer recorded,
|
|
* or the current phase presented on the bus.
|
|
*/
|
|
struct ahc_devinfo devinfo;
|
|
u_int mesg_out;
|
|
u_int curphase;
|
|
u_int errorphase;
|
|
u_int lastphase;
|
|
u_int scsirate;
|
|
u_int i;
|
|
u_int sstat2;
|
|
int silent;
|
|
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
sstat2 = ahc_inb(ahc, SSTAT2);
|
|
ahc_outb(ahc, CLRSINT1, CLRSCSIPERR);
|
|
/*
|
|
* For all phases save DATA, the sequencer won't
|
|
* automatically ack a byte that has a parity error
|
|
* in it. So the only way that the current phase
|
|
* could be 'data-in' is if the parity error is for
|
|
* an already acked byte in the data phase. During
|
|
* synchronous data-in transfers, we may actually
|
|
* ack bytes before latching the current phase in
|
|
* LASTPHASE, leading to the discrepancy between
|
|
* curphase and lastphase.
|
|
*/
|
|
if ((ahc_inb(ahc, SSTAT1) & SCSIPERR) != 0
|
|
|| curphase == P_DATAIN || curphase == P_DATAIN_DT)
|
|
errorphase = curphase;
|
|
else
|
|
errorphase = lastphase;
|
|
|
|
for (i = 0; i < num_phases; i++) {
|
|
if (errorphase == ahc_phase_table[i].phase)
|
|
break;
|
|
}
|
|
mesg_out = ahc_phase_table[i].mesg_out;
|
|
silent = FALSE;
|
|
if (scb != NULL) {
|
|
if (SCB_IS_SILENT(scb))
|
|
silent = TRUE;
|
|
else
|
|
ahc_print_path(ahc, scb);
|
|
scb->flags |= SCB_TRANSMISSION_ERROR;
|
|
} else
|
|
printk("%s:%c:%d: ", ahc_name(ahc), intr_channel,
|
|
SCSIID_TARGET(ahc, ahc_inb(ahc, SAVED_SCSIID)));
|
|
scsirate = ahc_inb(ahc, SCSIRATE);
|
|
if (silent == FALSE) {
|
|
printk("parity error detected %s. "
|
|
"SEQADDR(0x%x) SCSIRATE(0x%x)\n",
|
|
ahc_phase_table[i].phasemsg,
|
|
ahc_inw(ahc, SEQADDR0),
|
|
scsirate);
|
|
if ((ahc->features & AHC_DT) != 0) {
|
|
if ((sstat2 & CRCVALERR) != 0)
|
|
printk("\tCRC Value Mismatch\n");
|
|
if ((sstat2 & CRCENDERR) != 0)
|
|
printk("\tNo terminal CRC packet "
|
|
"recevied\n");
|
|
if ((sstat2 & CRCREQERR) != 0)
|
|
printk("\tIllegal CRC packet "
|
|
"request\n");
|
|
if ((sstat2 & DUAL_EDGE_ERR) != 0)
|
|
printk("\tUnexpected %sDT Data Phase\n",
|
|
(scsirate & SINGLE_EDGE)
|
|
? "" : "non-");
|
|
}
|
|
}
|
|
|
|
if ((ahc->features & AHC_DT) != 0
|
|
&& (sstat2 & DUAL_EDGE_ERR) != 0) {
|
|
/*
|
|
* This error applies regardless of
|
|
* data direction, so ignore the value
|
|
* in the phase table.
|
|
*/
|
|
mesg_out = MSG_INITIATOR_DET_ERR;
|
|
}
|
|
|
|
/*
|
|
* We've set the hardware to assert ATN if we
|
|
* get a parity error on "in" phases, so all we
|
|
* need to do is stuff the message buffer with
|
|
* the appropriate message. "In" phases have set
|
|
* mesg_out to something other than MSG_NOP.
|
|
*/
|
|
if (mesg_out != MSG_NOOP) {
|
|
if (ahc->msg_type != MSG_TYPE_NONE)
|
|
ahc->send_msg_perror = TRUE;
|
|
else
|
|
ahc_outb(ahc, MSG_OUT, mesg_out);
|
|
}
|
|
/*
|
|
* Force a renegotiation with this target just in
|
|
* case we are out of sync for some external reason
|
|
* unknown (or unreported) by the target.
|
|
*/
|
|
ahc_fetch_devinfo(ahc, &devinfo);
|
|
ahc_force_renegotiation(ahc, &devinfo);
|
|
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_unpause(ahc);
|
|
} else if ((status & SELTO) != 0) {
|
|
u_int scbptr;
|
|
|
|
/* Stop the selection */
|
|
ahc_outb(ahc, SCSISEQ, 0);
|
|
|
|
/* No more pending messages */
|
|
ahc_clear_msg_state(ahc);
|
|
|
|
/* Clear interrupt state */
|
|
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
|
|
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
|
|
|
|
/*
|
|
* Although the driver does not care about the
|
|
* 'Selection in Progress' status bit, the busy
|
|
* LED does. SELINGO is only cleared by a successful
|
|
* selection, so we must manually clear it to insure
|
|
* the LED turns off just incase no future successful
|
|
* selections occur (e.g. no devices on the bus).
|
|
*/
|
|
ahc_outb(ahc, CLRSINT0, CLRSELINGO);
|
|
|
|
scbptr = ahc_inb(ahc, WAITING_SCBH);
|
|
ahc_outb(ahc, SCBPTR, scbptr);
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb == NULL) {
|
|
printk("%s: ahc_intr - referenced scb not "
|
|
"valid during SELTO scb(%d, %d)\n",
|
|
ahc_name(ahc), scbptr, scb_index);
|
|
ahc_dump_card_state(ahc);
|
|
} else {
|
|
struct ahc_devinfo devinfo;
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_SELTO) != 0) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("Saw Selection Timeout for SCB 0x%x\n",
|
|
scb_index);
|
|
}
|
|
#endif
|
|
ahc_scb_devinfo(ahc, &devinfo, scb);
|
|
ahc_set_transaction_status(scb, CAM_SEL_TIMEOUT);
|
|
ahc_freeze_devq(ahc, scb);
|
|
|
|
/*
|
|
* Cancel any pending transactions on the device
|
|
* now that it seems to be missing. This will
|
|
* also revert us to async/narrow transfers until
|
|
* we can renegotiate with the device.
|
|
*/
|
|
ahc_handle_devreset(ahc, &devinfo,
|
|
CAM_SEL_TIMEOUT,
|
|
"Selection Timeout",
|
|
/*verbose_level*/1);
|
|
}
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_restart(ahc);
|
|
} else if ((status & BUSFREE) != 0
|
|
&& (ahc_inb(ahc, SIMODE1) & ENBUSFREE) != 0) {
|
|
struct ahc_devinfo devinfo;
|
|
u_int lastphase;
|
|
u_int saved_scsiid;
|
|
u_int saved_lun;
|
|
u_int target;
|
|
u_int initiator_role_id;
|
|
char channel;
|
|
int printerror;
|
|
|
|
/*
|
|
* Clear our selection hardware as soon as possible.
|
|
* We may have an entry in the waiting Q for this target,
|
|
* that is affected by this busfree and we don't want to
|
|
* go about selecting the target while we handle the event.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ,
|
|
ahc_inb(ahc, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
|
|
/*
|
|
* Disable busfree interrupts and clear the busfree
|
|
* interrupt status. We do this here so that several
|
|
* bus transactions occur prior to clearing the SCSIINT
|
|
* latch. It can take a bit for the clearing to take effect.
|
|
*/
|
|
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENBUSFREE);
|
|
ahc_outb(ahc, CLRSINT1, CLRBUSFREE|CLRSCSIPERR);
|
|
|
|
/*
|
|
* Look at what phase we were last in.
|
|
* If its message out, chances are pretty good
|
|
* that the busfree was in response to one of
|
|
* our abort requests.
|
|
*/
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
|
|
saved_lun = ahc_inb(ahc, SAVED_LUN);
|
|
target = SCSIID_TARGET(ahc, saved_scsiid);
|
|
initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
|
|
channel = SCSIID_CHANNEL(ahc, saved_scsiid);
|
|
ahc_compile_devinfo(&devinfo, initiator_role_id,
|
|
target, saved_lun, channel, ROLE_INITIATOR);
|
|
printerror = 1;
|
|
|
|
if (lastphase == P_MESGOUT) {
|
|
u_int tag;
|
|
|
|
tag = SCB_LIST_NULL;
|
|
if (ahc_sent_msg(ahc, AHCMSG_1B, MSG_ABORT_TAG, TRUE)
|
|
|| ahc_sent_msg(ahc, AHCMSG_1B, MSG_ABORT, TRUE)) {
|
|
if (ahc->msgout_buf[ahc->msgout_index - 1]
|
|
== MSG_ABORT_TAG)
|
|
tag = scb->hscb->tag;
|
|
ahc_print_path(ahc, scb);
|
|
printk("SCB %d - Abort%s Completed.\n",
|
|
scb->hscb->tag, tag == SCB_LIST_NULL ?
|
|
"" : " Tag");
|
|
ahc_abort_scbs(ahc, target, channel,
|
|
saved_lun, tag,
|
|
ROLE_INITIATOR,
|
|
CAM_REQ_ABORTED);
|
|
printerror = 0;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_1B,
|
|
MSG_BUS_DEV_RESET, TRUE)) {
|
|
#ifdef __FreeBSD__
|
|
/*
|
|
* Don't mark the user's request for this BDR
|
|
* as completing with CAM_BDR_SENT. CAM3
|
|
* specifies CAM_REQ_CMP.
|
|
*/
|
|
if (scb != NULL
|
|
&& scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
|
|
&& ahc_match_scb(ahc, scb, target, channel,
|
|
CAM_LUN_WILDCARD,
|
|
SCB_LIST_NULL,
|
|
ROLE_INITIATOR)) {
|
|
ahc_set_transaction_status(scb, CAM_REQ_CMP);
|
|
}
|
|
#endif
|
|
ahc_compile_devinfo(&devinfo,
|
|
initiator_role_id,
|
|
target,
|
|
CAM_LUN_WILDCARD,
|
|
channel,
|
|
ROLE_INITIATOR);
|
|
ahc_handle_devreset(ahc, &devinfo,
|
|
CAM_BDR_SENT,
|
|
"Bus Device Reset",
|
|
/*verbose_level*/0);
|
|
printerror = 0;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
|
|
MSG_EXT_PPR, FALSE)) {
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
/*
|
|
* PPR Rejected. Try non-ppr negotiation
|
|
* and retry command.
|
|
*/
|
|
tinfo = ahc_fetch_transinfo(ahc,
|
|
devinfo.channel,
|
|
devinfo.our_scsiid,
|
|
devinfo.target,
|
|
&tstate);
|
|
tinfo->curr.transport_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
tinfo->goal.ppr_options = 0;
|
|
ahc_qinfifo_requeue_tail(ahc, scb);
|
|
printerror = 0;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
|
|
MSG_EXT_WDTR, FALSE)) {
|
|
/*
|
|
* Negotiation Rejected. Go-narrow and
|
|
* retry command.
|
|
*/
|
|
ahc_set_width(ahc, &devinfo,
|
|
MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHC_TRANS_CUR|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
ahc_qinfifo_requeue_tail(ahc, scb);
|
|
printerror = 0;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT,
|
|
MSG_EXT_SDTR, FALSE)) {
|
|
/*
|
|
* Negotiation Rejected. Go-async and
|
|
* retry command.
|
|
*/
|
|
ahc_set_syncrate(ahc, &devinfo,
|
|
/*syncrate*/NULL,
|
|
/*period*/0, /*offset*/0,
|
|
/*ppr_options*/0,
|
|
AHC_TRANS_CUR|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
ahc_qinfifo_requeue_tail(ahc, scb);
|
|
printerror = 0;
|
|
}
|
|
}
|
|
if (printerror != 0) {
|
|
u_int i;
|
|
|
|
if (scb != NULL) {
|
|
u_int tag;
|
|
|
|
if ((scb->hscb->control & TAG_ENB) != 0)
|
|
tag = scb->hscb->tag;
|
|
else
|
|
tag = SCB_LIST_NULL;
|
|
ahc_print_path(ahc, scb);
|
|
ahc_abort_scbs(ahc, target, channel,
|
|
SCB_GET_LUN(scb), tag,
|
|
ROLE_INITIATOR,
|
|
CAM_UNEXP_BUSFREE);
|
|
} else {
|
|
/*
|
|
* We had not fully identified this connection,
|
|
* so we cannot abort anything.
|
|
*/
|
|
printk("%s: ", ahc_name(ahc));
|
|
}
|
|
for (i = 0; i < num_phases; i++) {
|
|
if (lastphase == ahc_phase_table[i].phase)
|
|
break;
|
|
}
|
|
if (lastphase != P_BUSFREE) {
|
|
/*
|
|
* Renegotiate with this device at the
|
|
* next opportunity just in case this busfree
|
|
* is due to a negotiation mismatch with the
|
|
* device.
|
|
*/
|
|
ahc_force_renegotiation(ahc, &devinfo);
|
|
}
|
|
printk("Unexpected busfree %s\n"
|
|
"SEQADDR == 0x%x\n",
|
|
ahc_phase_table[i].phasemsg,
|
|
ahc_inb(ahc, SEQADDR0)
|
|
| (ahc_inb(ahc, SEQADDR1) << 8));
|
|
}
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_restart(ahc);
|
|
} else {
|
|
printk("%s: Missing case in ahc_handle_scsiint. status = %x\n",
|
|
ahc_name(ahc), status);
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force renegotiation to occur the next time we initiate
|
|
* a command to the current device.
|
|
*/
|
|
static void
|
|
ahc_force_renegotiation(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
struct ahc_initiator_tinfo *targ_info;
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
targ_info = ahc_fetch_transinfo(ahc,
|
|
devinfo->channel,
|
|
devinfo->our_scsiid,
|
|
devinfo->target,
|
|
&tstate);
|
|
ahc_update_neg_request(ahc, devinfo, tstate,
|
|
targ_info, AHC_NEG_IF_NON_ASYNC);
|
|
}
|
|
|
|
#define AHC_MAX_STEPS 2000
|
|
static void
|
|
ahc_clear_critical_section(struct ahc_softc *ahc)
|
|
{
|
|
int stepping;
|
|
int steps;
|
|
u_int simode0;
|
|
u_int simode1;
|
|
|
|
if (ahc->num_critical_sections == 0)
|
|
return;
|
|
|
|
stepping = FALSE;
|
|
steps = 0;
|
|
simode0 = 0;
|
|
simode1 = 0;
|
|
for (;;) {
|
|
struct cs *cs;
|
|
u_int seqaddr;
|
|
u_int i;
|
|
|
|
seqaddr = ahc_inb(ahc, SEQADDR0)
|
|
| (ahc_inb(ahc, SEQADDR1) << 8);
|
|
|
|
/*
|
|
* Seqaddr represents the next instruction to execute,
|
|
* so we are really executing the instruction just
|
|
* before it.
|
|
*/
|
|
if (seqaddr != 0)
|
|
seqaddr -= 1;
|
|
cs = ahc->critical_sections;
|
|
for (i = 0; i < ahc->num_critical_sections; i++, cs++) {
|
|
|
|
if (cs->begin < seqaddr && cs->end >= seqaddr)
|
|
break;
|
|
}
|
|
|
|
if (i == ahc->num_critical_sections)
|
|
break;
|
|
|
|
if (steps > AHC_MAX_STEPS) {
|
|
printk("%s: Infinite loop in critical section\n",
|
|
ahc_name(ahc));
|
|
ahc_dump_card_state(ahc);
|
|
panic("critical section loop");
|
|
}
|
|
|
|
steps++;
|
|
if (stepping == FALSE) {
|
|
|
|
/*
|
|
* Disable all interrupt sources so that the
|
|
* sequencer will not be stuck by a pausing
|
|
* interrupt condition while we attempt to
|
|
* leave a critical section.
|
|
*/
|
|
simode0 = ahc_inb(ahc, SIMODE0);
|
|
ahc_outb(ahc, SIMODE0, 0);
|
|
simode1 = ahc_inb(ahc, SIMODE1);
|
|
if ((ahc->features & AHC_DT) != 0)
|
|
/*
|
|
* On DT class controllers, we
|
|
* use the enhanced busfree logic.
|
|
* Unfortunately we cannot re-enable
|
|
* busfree detection within the
|
|
* current connection, so we must
|
|
* leave it on while single stepping.
|
|
*/
|
|
ahc_outb(ahc, SIMODE1, simode1 & ENBUSFREE);
|
|
else
|
|
ahc_outb(ahc, SIMODE1, 0);
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_outb(ahc, SEQCTL, ahc->seqctl | STEP);
|
|
stepping = TRUE;
|
|
}
|
|
if ((ahc->features & AHC_DT) != 0) {
|
|
ahc_outb(ahc, CLRSINT1, CLRBUSFREE);
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
}
|
|
ahc_outb(ahc, HCNTRL, ahc->unpause);
|
|
while (!ahc_is_paused(ahc))
|
|
ahc_delay(200);
|
|
}
|
|
if (stepping) {
|
|
ahc_outb(ahc, SIMODE0, simode0);
|
|
ahc_outb(ahc, SIMODE1, simode1);
|
|
ahc_outb(ahc, SEQCTL, ahc->seqctl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any pending interrupt status.
|
|
*/
|
|
static void
|
|
ahc_clear_intstat(struct ahc_softc *ahc)
|
|
{
|
|
/* Clear any interrupt conditions this may have caused */
|
|
ahc_outb(ahc, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|
|
|CLRBUSFREE|CLRSCSIPERR|CLRPHASECHG|
|
|
CLRREQINIT);
|
|
ahc_flush_device_writes(ahc);
|
|
ahc_outb(ahc, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO);
|
|
ahc_flush_device_writes(ahc);
|
|
ahc_outb(ahc, CLRINT, CLRSCSIINT);
|
|
ahc_flush_device_writes(ahc);
|
|
}
|
|
|
|
/**************************** Debugging Routines ******************************/
|
|
#ifdef AHC_DEBUG
|
|
uint32_t ahc_debug = AHC_DEBUG_OPTS;
|
|
#endif
|
|
|
|
#if 0 /* unused */
|
|
static void
|
|
ahc_print_scb(struct scb *scb)
|
|
{
|
|
int i;
|
|
|
|
struct hardware_scb *hscb = scb->hscb;
|
|
|
|
printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
|
|
(void *)scb,
|
|
hscb->control,
|
|
hscb->scsiid,
|
|
hscb->lun,
|
|
hscb->cdb_len);
|
|
printk("Shared Data: ");
|
|
for (i = 0; i < sizeof(hscb->shared_data.cdb); i++)
|
|
printk("%#02x", hscb->shared_data.cdb[i]);
|
|
printk(" dataptr:%#x datacnt:%#x sgptr:%#x tag:%#x\n",
|
|
ahc_le32toh(hscb->dataptr),
|
|
ahc_le32toh(hscb->datacnt),
|
|
ahc_le32toh(hscb->sgptr),
|
|
hscb->tag);
|
|
if (scb->sg_count > 0) {
|
|
for (i = 0; i < scb->sg_count; i++) {
|
|
printk("sg[%d] - Addr 0x%x%x : Length %d\n",
|
|
i,
|
|
(ahc_le32toh(scb->sg_list[i].len) >> 24
|
|
& SG_HIGH_ADDR_BITS),
|
|
ahc_le32toh(scb->sg_list[i].addr),
|
|
ahc_le32toh(scb->sg_list[i].len));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/************************* Transfer Negotiation *******************************/
|
|
/*
|
|
* Allocate per target mode instance (ID we respond to as a target)
|
|
* transfer negotiation data structures.
|
|
*/
|
|
static struct ahc_tmode_tstate *
|
|
ahc_alloc_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel)
|
|
{
|
|
struct ahc_tmode_tstate *master_tstate;
|
|
struct ahc_tmode_tstate *tstate;
|
|
int i;
|
|
|
|
master_tstate = ahc->enabled_targets[ahc->our_id];
|
|
if (channel == 'B') {
|
|
scsi_id += 8;
|
|
master_tstate = ahc->enabled_targets[ahc->our_id_b + 8];
|
|
}
|
|
if (ahc->enabled_targets[scsi_id] != NULL
|
|
&& ahc->enabled_targets[scsi_id] != master_tstate)
|
|
panic("%s: ahc_alloc_tstate - Target already allocated",
|
|
ahc_name(ahc));
|
|
tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
|
|
if (tstate == NULL)
|
|
return (NULL);
|
|
|
|
/*
|
|
* If we have allocated a master tstate, copy user settings from
|
|
* the master tstate (taken from SRAM or the EEPROM) for this
|
|
* channel, but reset our current and goal settings to async/narrow
|
|
* until an initiator talks to us.
|
|
*/
|
|
if (master_tstate != NULL) {
|
|
memcpy(tstate, master_tstate, sizeof(*tstate));
|
|
memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
|
|
tstate->ultraenb = 0;
|
|
for (i = 0; i < AHC_NUM_TARGETS; i++) {
|
|
memset(&tstate->transinfo[i].curr, 0,
|
|
sizeof(tstate->transinfo[i].curr));
|
|
memset(&tstate->transinfo[i].goal, 0,
|
|
sizeof(tstate->transinfo[i].goal));
|
|
}
|
|
} else
|
|
memset(tstate, 0, sizeof(*tstate));
|
|
ahc->enabled_targets[scsi_id] = tstate;
|
|
return (tstate);
|
|
}
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Free per target mode instance (ID we respond to as a target)
|
|
* transfer negotiation data structures.
|
|
*/
|
|
static void
|
|
ahc_free_tstate(struct ahc_softc *ahc, u_int scsi_id, char channel, int force)
|
|
{
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
/*
|
|
* Don't clean up our "master" tstate.
|
|
* It has our default user settings.
|
|
*/
|
|
if (((channel == 'B' && scsi_id == ahc->our_id_b)
|
|
|| (channel == 'A' && scsi_id == ahc->our_id))
|
|
&& force == FALSE)
|
|
return;
|
|
|
|
if (channel == 'B')
|
|
scsi_id += 8;
|
|
tstate = ahc->enabled_targets[scsi_id];
|
|
if (tstate != NULL)
|
|
kfree(tstate);
|
|
ahc->enabled_targets[scsi_id] = NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called when we have an active connection to a target on the bus,
|
|
* this function finds the nearest syncrate to the input period limited
|
|
* by the capabilities of the bus connectivity of and sync settings for
|
|
* the target.
|
|
*/
|
|
const struct ahc_syncrate *
|
|
ahc_devlimited_syncrate(struct ahc_softc *ahc,
|
|
struct ahc_initiator_tinfo *tinfo,
|
|
u_int *period, u_int *ppr_options, role_t role)
|
|
{
|
|
struct ahc_transinfo *transinfo;
|
|
u_int maxsync;
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
if ((ahc_inb(ahc, SBLKCTL) & ENAB40) != 0
|
|
&& (ahc_inb(ahc, SSTAT2) & EXP_ACTIVE) == 0) {
|
|
maxsync = AHC_SYNCRATE_DT;
|
|
} else {
|
|
maxsync = AHC_SYNCRATE_ULTRA;
|
|
/* Can't do DT on an SE bus */
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
}
|
|
} else if ((ahc->features & AHC_ULTRA) != 0) {
|
|
maxsync = AHC_SYNCRATE_ULTRA;
|
|
} else {
|
|
maxsync = AHC_SYNCRATE_FAST;
|
|
}
|
|
/*
|
|
* Never allow a value higher than our current goal
|
|
* period otherwise we may allow a target initiated
|
|
* negotiation to go above the limit as set by the
|
|
* user. In the case of an initiator initiated
|
|
* sync negotiation, we limit based on the user
|
|
* setting. This allows the system to still accept
|
|
* incoming negotiations even if target initiated
|
|
* negotiation is not performed.
|
|
*/
|
|
if (role == ROLE_TARGET)
|
|
transinfo = &tinfo->user;
|
|
else
|
|
transinfo = &tinfo->goal;
|
|
*ppr_options &= transinfo->ppr_options;
|
|
if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
|
|
maxsync = max(maxsync, (u_int)AHC_SYNCRATE_ULTRA2);
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
}
|
|
if (transinfo->period == 0) {
|
|
*period = 0;
|
|
*ppr_options = 0;
|
|
return (NULL);
|
|
}
|
|
*period = max(*period, (u_int)transinfo->period);
|
|
return (ahc_find_syncrate(ahc, period, ppr_options, maxsync));
|
|
}
|
|
|
|
/*
|
|
* Look up the valid period to SCSIRATE conversion in our table.
|
|
* Return the period and offset that should be sent to the target
|
|
* if this was the beginning of an SDTR.
|
|
*/
|
|
const struct ahc_syncrate *
|
|
ahc_find_syncrate(struct ahc_softc *ahc, u_int *period,
|
|
u_int *ppr_options, u_int maxsync)
|
|
{
|
|
const struct ahc_syncrate *syncrate;
|
|
|
|
if ((ahc->features & AHC_DT) == 0)
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
|
|
/* Skip all DT only entries if DT is not available */
|
|
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
|
|
&& maxsync < AHC_SYNCRATE_ULTRA2)
|
|
maxsync = AHC_SYNCRATE_ULTRA2;
|
|
|
|
/* Now set the maxsync based on the card capabilities
|
|
* DT is already done above */
|
|
if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0
|
|
&& maxsync < AHC_SYNCRATE_ULTRA)
|
|
maxsync = AHC_SYNCRATE_ULTRA;
|
|
if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0
|
|
&& maxsync < AHC_SYNCRATE_FAST)
|
|
maxsync = AHC_SYNCRATE_FAST;
|
|
|
|
for (syncrate = &ahc_syncrates[maxsync];
|
|
syncrate->rate != NULL;
|
|
syncrate++) {
|
|
|
|
/*
|
|
* The Ultra2 table doesn't go as low
|
|
* as for the Fast/Ultra cards.
|
|
*/
|
|
if ((ahc->features & AHC_ULTRA2) != 0
|
|
&& (syncrate->sxfr_u2 == 0))
|
|
break;
|
|
|
|
if (*period <= syncrate->period) {
|
|
/*
|
|
* When responding to a target that requests
|
|
* sync, the requested rate may fall between
|
|
* two rates that we can output, but still be
|
|
* a rate that we can receive. Because of this,
|
|
* we want to respond to the target with
|
|
* the same rate that it sent to us even
|
|
* if the period we use to send data to it
|
|
* is lower. Only lower the response period
|
|
* if we must.
|
|
*/
|
|
if (syncrate == &ahc_syncrates[maxsync])
|
|
*period = syncrate->period;
|
|
|
|
/*
|
|
* At some speeds, we only support
|
|
* ST transfers.
|
|
*/
|
|
if ((syncrate->sxfr_u2 & ST_SXFR) != 0)
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((*period == 0)
|
|
|| (syncrate->rate == NULL)
|
|
|| ((ahc->features & AHC_ULTRA2) != 0
|
|
&& (syncrate->sxfr_u2 == 0))) {
|
|
/* Use asynchronous transfers. */
|
|
*period = 0;
|
|
syncrate = NULL;
|
|
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
|
|
}
|
|
return (syncrate);
|
|
}
|
|
|
|
/*
|
|
* Convert from an entry in our syncrate table to the SCSI equivalent
|
|
* sync "period" factor.
|
|
*/
|
|
u_int
|
|
ahc_find_period(struct ahc_softc *ahc, u_int scsirate, u_int maxsync)
|
|
{
|
|
const struct ahc_syncrate *syncrate;
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
scsirate &= SXFR_ULTRA2;
|
|
else
|
|
scsirate &= SXFR;
|
|
|
|
/* now set maxsync based on card capabilities */
|
|
if ((ahc->features & AHC_DT) == 0 && maxsync < AHC_SYNCRATE_ULTRA2)
|
|
maxsync = AHC_SYNCRATE_ULTRA2;
|
|
if ((ahc->features & (AHC_DT | AHC_ULTRA2)) == 0
|
|
&& maxsync < AHC_SYNCRATE_ULTRA)
|
|
maxsync = AHC_SYNCRATE_ULTRA;
|
|
if ((ahc->features & (AHC_DT | AHC_ULTRA2 | AHC_ULTRA)) == 0
|
|
&& maxsync < AHC_SYNCRATE_FAST)
|
|
maxsync = AHC_SYNCRATE_FAST;
|
|
|
|
|
|
syncrate = &ahc_syncrates[maxsync];
|
|
while (syncrate->rate != NULL) {
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
if (syncrate->sxfr_u2 == 0)
|
|
break;
|
|
else if (scsirate == (syncrate->sxfr_u2 & SXFR_ULTRA2))
|
|
return (syncrate->period);
|
|
} else if (scsirate == (syncrate->sxfr & SXFR)) {
|
|
return (syncrate->period);
|
|
}
|
|
syncrate++;
|
|
}
|
|
return (0); /* async */
|
|
}
|
|
|
|
/*
|
|
* Truncate the given synchronous offset to a value the
|
|
* current adapter type and syncrate are capable of.
|
|
*/
|
|
static void
|
|
ahc_validate_offset(struct ahc_softc *ahc,
|
|
struct ahc_initiator_tinfo *tinfo,
|
|
const struct ahc_syncrate *syncrate,
|
|
u_int *offset, int wide, role_t role)
|
|
{
|
|
u_int maxoffset;
|
|
|
|
/* Limit offset to what we can do */
|
|
if (syncrate == NULL) {
|
|
maxoffset = 0;
|
|
} else if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
maxoffset = MAX_OFFSET_ULTRA2;
|
|
} else {
|
|
if (wide)
|
|
maxoffset = MAX_OFFSET_16BIT;
|
|
else
|
|
maxoffset = MAX_OFFSET_8BIT;
|
|
}
|
|
*offset = min(*offset, maxoffset);
|
|
if (tinfo != NULL) {
|
|
if (role == ROLE_TARGET)
|
|
*offset = min(*offset, (u_int)tinfo->user.offset);
|
|
else
|
|
*offset = min(*offset, (u_int)tinfo->goal.offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Truncate the given transfer width parameter to a value the
|
|
* current adapter type is capable of.
|
|
*/
|
|
static void
|
|
ahc_validate_width(struct ahc_softc *ahc, struct ahc_initiator_tinfo *tinfo,
|
|
u_int *bus_width, role_t role)
|
|
{
|
|
switch (*bus_width) {
|
|
default:
|
|
if (ahc->features & AHC_WIDE) {
|
|
/* Respond Wide */
|
|
*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case MSG_EXT_WDTR_BUS_8_BIT:
|
|
*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
|
|
break;
|
|
}
|
|
if (tinfo != NULL) {
|
|
if (role == ROLE_TARGET)
|
|
*bus_width = min((u_int)tinfo->user.width, *bus_width);
|
|
else
|
|
*bus_width = min((u_int)tinfo->goal.width, *bus_width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the bitmask of targets for which the controller should
|
|
* negotiate with at the next convenient opportunity. This currently
|
|
* means the next time we send the initial identify messages for
|
|
* a new transaction.
|
|
*/
|
|
int
|
|
ahc_update_neg_request(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
struct ahc_tmode_tstate *tstate,
|
|
struct ahc_initiator_tinfo *tinfo, ahc_neg_type neg_type)
|
|
{
|
|
u_int auto_negotiate_orig;
|
|
|
|
auto_negotiate_orig = tstate->auto_negotiate;
|
|
if (neg_type == AHC_NEG_ALWAYS) {
|
|
/*
|
|
* Force our "current" settings to be
|
|
* unknown so that unless a bus reset
|
|
* occurs the need to renegotiate is
|
|
* recorded persistently.
|
|
*/
|
|
if ((ahc->features & AHC_WIDE) != 0)
|
|
tinfo->curr.width = AHC_WIDTH_UNKNOWN;
|
|
tinfo->curr.period = AHC_PERIOD_UNKNOWN;
|
|
tinfo->curr.offset = AHC_OFFSET_UNKNOWN;
|
|
}
|
|
if (tinfo->curr.period != tinfo->goal.period
|
|
|| tinfo->curr.width != tinfo->goal.width
|
|
|| tinfo->curr.offset != tinfo->goal.offset
|
|
|| tinfo->curr.ppr_options != tinfo->goal.ppr_options
|
|
|| (neg_type == AHC_NEG_IF_NON_ASYNC
|
|
&& (tinfo->goal.offset != 0
|
|
|| tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
|
|
|| tinfo->goal.ppr_options != 0)))
|
|
tstate->auto_negotiate |= devinfo->target_mask;
|
|
else
|
|
tstate->auto_negotiate &= ~devinfo->target_mask;
|
|
|
|
return (auto_negotiate_orig != tstate->auto_negotiate);
|
|
}
|
|
|
|
/*
|
|
* Update the user/goal/curr tables of synchronous negotiation
|
|
* parameters as well as, in the case of a current or active update,
|
|
* any data structures on the host controller. In the case of an
|
|
* active update, the specified target is currently talking to us on
|
|
* the bus, so the transfer parameter update must take effect
|
|
* immediately.
|
|
*/
|
|
void
|
|
ahc_set_syncrate(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
const struct ahc_syncrate *syncrate, u_int period,
|
|
u_int offset, u_int ppr_options, u_int type, int paused)
|
|
{
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
u_int old_period;
|
|
u_int old_offset;
|
|
u_int old_ppr;
|
|
int active;
|
|
int update_needed;
|
|
|
|
active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE;
|
|
update_needed = 0;
|
|
|
|
if (syncrate == NULL) {
|
|
period = 0;
|
|
offset = 0;
|
|
}
|
|
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
|
|
if ((type & AHC_TRANS_USER) != 0) {
|
|
tinfo->user.period = period;
|
|
tinfo->user.offset = offset;
|
|
tinfo->user.ppr_options = ppr_options;
|
|
}
|
|
|
|
if ((type & AHC_TRANS_GOAL) != 0) {
|
|
tinfo->goal.period = period;
|
|
tinfo->goal.offset = offset;
|
|
tinfo->goal.ppr_options = ppr_options;
|
|
}
|
|
|
|
old_period = tinfo->curr.period;
|
|
old_offset = tinfo->curr.offset;
|
|
old_ppr = tinfo->curr.ppr_options;
|
|
|
|
if ((type & AHC_TRANS_CUR) != 0
|
|
&& (old_period != period
|
|
|| old_offset != offset
|
|
|| old_ppr != ppr_options)) {
|
|
u_int scsirate;
|
|
|
|
update_needed++;
|
|
scsirate = tinfo->scsirate;
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
|
|
scsirate &= ~(SXFR_ULTRA2|SINGLE_EDGE|ENABLE_CRC);
|
|
if (syncrate != NULL) {
|
|
scsirate |= syncrate->sxfr_u2;
|
|
if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0)
|
|
scsirate |= ENABLE_CRC;
|
|
else
|
|
scsirate |= SINGLE_EDGE;
|
|
}
|
|
} else {
|
|
|
|
scsirate &= ~(SXFR|SOFS);
|
|
/*
|
|
* Ensure Ultra mode is set properly for
|
|
* this target.
|
|
*/
|
|
tstate->ultraenb &= ~devinfo->target_mask;
|
|
if (syncrate != NULL) {
|
|
if (syncrate->sxfr & ULTRA_SXFR) {
|
|
tstate->ultraenb |=
|
|
devinfo->target_mask;
|
|
}
|
|
scsirate |= syncrate->sxfr & SXFR;
|
|
scsirate |= offset & SOFS;
|
|
}
|
|
if (active) {
|
|
u_int sxfrctl0;
|
|
|
|
sxfrctl0 = ahc_inb(ahc, SXFRCTL0);
|
|
sxfrctl0 &= ~FAST20;
|
|
if (tstate->ultraenb & devinfo->target_mask)
|
|
sxfrctl0 |= FAST20;
|
|
ahc_outb(ahc, SXFRCTL0, sxfrctl0);
|
|
}
|
|
}
|
|
if (active) {
|
|
ahc_outb(ahc, SCSIRATE, scsirate);
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SCSIOFFSET, offset);
|
|
}
|
|
|
|
tinfo->scsirate = scsirate;
|
|
tinfo->curr.period = period;
|
|
tinfo->curr.offset = offset;
|
|
tinfo->curr.ppr_options = ppr_options;
|
|
|
|
ahc_send_async(ahc, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
|
|
if (bootverbose) {
|
|
if (offset != 0) {
|
|
printk("%s: target %d synchronous at %sMHz%s, "
|
|
"offset = 0x%x\n", ahc_name(ahc),
|
|
devinfo->target, syncrate->rate,
|
|
(ppr_options & MSG_EXT_PPR_DT_REQ)
|
|
? " DT" : "", offset);
|
|
} else {
|
|
printk("%s: target %d using "
|
|
"asynchronous transfers\n",
|
|
ahc_name(ahc), devinfo->target);
|
|
}
|
|
}
|
|
}
|
|
|
|
update_needed += ahc_update_neg_request(ahc, devinfo, tstate,
|
|
tinfo, AHC_NEG_TO_GOAL);
|
|
|
|
if (update_needed)
|
|
ahc_update_pending_scbs(ahc);
|
|
}
|
|
|
|
/*
|
|
* Update the user/goal/curr tables of wide negotiation
|
|
* parameters as well as, in the case of a current or active update,
|
|
* any data structures on the host controller. In the case of an
|
|
* active update, the specified target is currently talking to us on
|
|
* the bus, so the transfer parameter update must take effect
|
|
* immediately.
|
|
*/
|
|
void
|
|
ahc_set_width(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
u_int width, u_int type, int paused)
|
|
{
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
u_int oldwidth;
|
|
int active;
|
|
int update_needed;
|
|
|
|
active = (type & AHC_TRANS_ACTIVE) == AHC_TRANS_ACTIVE;
|
|
update_needed = 0;
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
|
|
if ((type & AHC_TRANS_USER) != 0)
|
|
tinfo->user.width = width;
|
|
|
|
if ((type & AHC_TRANS_GOAL) != 0)
|
|
tinfo->goal.width = width;
|
|
|
|
oldwidth = tinfo->curr.width;
|
|
if ((type & AHC_TRANS_CUR) != 0 && oldwidth != width) {
|
|
u_int scsirate;
|
|
|
|
update_needed++;
|
|
scsirate = tinfo->scsirate;
|
|
scsirate &= ~WIDEXFER;
|
|
if (width == MSG_EXT_WDTR_BUS_16_BIT)
|
|
scsirate |= WIDEXFER;
|
|
|
|
tinfo->scsirate = scsirate;
|
|
|
|
if (active)
|
|
ahc_outb(ahc, SCSIRATE, scsirate);
|
|
|
|
tinfo->curr.width = width;
|
|
|
|
ahc_send_async(ahc, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
|
|
if (bootverbose) {
|
|
printk("%s: target %d using %dbit transfers\n",
|
|
ahc_name(ahc), devinfo->target,
|
|
8 * (0x01 << width));
|
|
}
|
|
}
|
|
|
|
update_needed += ahc_update_neg_request(ahc, devinfo, tstate,
|
|
tinfo, AHC_NEG_TO_GOAL);
|
|
if (update_needed)
|
|
ahc_update_pending_scbs(ahc);
|
|
}
|
|
|
|
/*
|
|
* Update the current state of tagged queuing for a given target.
|
|
*/
|
|
static void
|
|
ahc_set_tags(struct ahc_softc *ahc, struct scsi_cmnd *cmd,
|
|
struct ahc_devinfo *devinfo, ahc_queue_alg alg)
|
|
{
|
|
struct scsi_device *sdev = cmd->device;
|
|
|
|
ahc_platform_set_tags(ahc, sdev, devinfo, alg);
|
|
ahc_send_async(ahc, devinfo->channel, devinfo->target,
|
|
devinfo->lun, AC_TRANSFER_NEG);
|
|
}
|
|
|
|
/*
|
|
* When the transfer settings for a connection change, update any
|
|
* in-transit SCBs to contain the new data so the hardware will
|
|
* be set correctly during future (re)selections.
|
|
*/
|
|
static void
|
|
ahc_update_pending_scbs(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *pending_scb;
|
|
int pending_scb_count;
|
|
int i;
|
|
int paused;
|
|
u_int saved_scbptr;
|
|
|
|
/*
|
|
* Traverse the pending SCB list and ensure that all of the
|
|
* SCBs there have the proper settings.
|
|
*/
|
|
pending_scb_count = 0;
|
|
LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
|
|
struct ahc_devinfo devinfo;
|
|
struct hardware_scb *pending_hscb;
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
ahc_scb_devinfo(ahc, &devinfo, pending_scb);
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo.channel,
|
|
devinfo.our_scsiid,
|
|
devinfo.target, &tstate);
|
|
pending_hscb = pending_scb->hscb;
|
|
pending_hscb->control &= ~ULTRAENB;
|
|
if ((tstate->ultraenb & devinfo.target_mask) != 0)
|
|
pending_hscb->control |= ULTRAENB;
|
|
pending_hscb->scsirate = tinfo->scsirate;
|
|
pending_hscb->scsioffset = tinfo->curr.offset;
|
|
if ((tstate->auto_negotiate & devinfo.target_mask) == 0
|
|
&& (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
|
|
pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
|
|
pending_hscb->control &= ~MK_MESSAGE;
|
|
}
|
|
ahc_sync_scb(ahc, pending_scb,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
pending_scb_count++;
|
|
}
|
|
|
|
if (pending_scb_count == 0)
|
|
return;
|
|
|
|
if (ahc_is_paused(ahc)) {
|
|
paused = 1;
|
|
} else {
|
|
paused = 0;
|
|
ahc_pause(ahc);
|
|
}
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
/* Ensure that the hscbs down on the card match the new information */
|
|
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
|
|
struct hardware_scb *pending_hscb;
|
|
u_int control;
|
|
u_int scb_tag;
|
|
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
scb_tag = ahc_inb(ahc, SCB_TAG);
|
|
pending_scb = ahc_lookup_scb(ahc, scb_tag);
|
|
if (pending_scb == NULL)
|
|
continue;
|
|
|
|
pending_hscb = pending_scb->hscb;
|
|
control = ahc_inb(ahc, SCB_CONTROL);
|
|
control &= ~(ULTRAENB|MK_MESSAGE);
|
|
control |= pending_hscb->control & (ULTRAENB|MK_MESSAGE);
|
|
ahc_outb(ahc, SCB_CONTROL, control);
|
|
ahc_outb(ahc, SCB_SCSIRATE, pending_hscb->scsirate);
|
|
ahc_outb(ahc, SCB_SCSIOFFSET, pending_hscb->scsioffset);
|
|
}
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
|
|
if (paused == 0)
|
|
ahc_unpause(ahc);
|
|
}
|
|
|
|
/**************************** Pathing Information *****************************/
|
|
static void
|
|
ahc_fetch_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
u_int saved_scsiid;
|
|
role_t role;
|
|
int our_id;
|
|
|
|
if (ahc_inb(ahc, SSTAT0) & TARGET)
|
|
role = ROLE_TARGET;
|
|
else
|
|
role = ROLE_INITIATOR;
|
|
|
|
if (role == ROLE_TARGET
|
|
&& (ahc->features & AHC_MULTI_TID) != 0
|
|
&& (ahc_inb(ahc, SEQ_FLAGS)
|
|
& (CMDPHASE_PENDING|TARG_CMD_PENDING|NO_DISCONNECT)) != 0) {
|
|
/* We were selected, so pull our id from TARGIDIN */
|
|
our_id = ahc_inb(ahc, TARGIDIN) & OID;
|
|
} else if ((ahc->features & AHC_ULTRA2) != 0)
|
|
our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID;
|
|
else
|
|
our_id = ahc_inb(ahc, SCSIID) & OID;
|
|
|
|
saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
|
|
ahc_compile_devinfo(devinfo,
|
|
our_id,
|
|
SCSIID_TARGET(ahc, saved_scsiid),
|
|
ahc_inb(ahc, SAVED_LUN),
|
|
SCSIID_CHANNEL(ahc, saved_scsiid),
|
|
role);
|
|
}
|
|
|
|
static const struct ahc_phase_table_entry*
|
|
ahc_lookup_phase_entry(int phase)
|
|
{
|
|
const struct ahc_phase_table_entry *entry;
|
|
const struct ahc_phase_table_entry *last_entry;
|
|
|
|
/*
|
|
* num_phases doesn't include the default entry which
|
|
* will be returned if the phase doesn't match.
|
|
*/
|
|
last_entry = &ahc_phase_table[num_phases];
|
|
for (entry = ahc_phase_table; entry < last_entry; entry++) {
|
|
if (phase == entry->phase)
|
|
break;
|
|
}
|
|
return (entry);
|
|
}
|
|
|
|
void
|
|
ahc_compile_devinfo(struct ahc_devinfo *devinfo, u_int our_id, u_int target,
|
|
u_int lun, char channel, role_t role)
|
|
{
|
|
devinfo->our_scsiid = our_id;
|
|
devinfo->target = target;
|
|
devinfo->lun = lun;
|
|
devinfo->target_offset = target;
|
|
devinfo->channel = channel;
|
|
devinfo->role = role;
|
|
if (channel == 'B')
|
|
devinfo->target_offset += 8;
|
|
devinfo->target_mask = (0x01 << devinfo->target_offset);
|
|
}
|
|
|
|
void
|
|
ahc_print_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
printk("%s:%c:%d:%d: ", ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
|
|
static void
|
|
ahc_scb_devinfo(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
role_t role;
|
|
int our_id;
|
|
|
|
our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
|
|
role = ROLE_INITIATOR;
|
|
if ((scb->flags & SCB_TARGET_SCB) != 0)
|
|
role = ROLE_TARGET;
|
|
ahc_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahc, scb),
|
|
SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahc, scb), role);
|
|
}
|
|
|
|
|
|
/************************ Message Phase Processing ****************************/
|
|
static void
|
|
ahc_assert_atn(struct ahc_softc *ahc)
|
|
{
|
|
u_int scsisigo;
|
|
|
|
scsisigo = ATNO;
|
|
if ((ahc->features & AHC_DT) == 0)
|
|
scsisigo |= ahc_inb(ahc, SCSISIGI);
|
|
ahc_outb(ahc, SCSISIGO, scsisigo);
|
|
}
|
|
|
|
/*
|
|
* When an initiator transaction with the MK_MESSAGE flag either reconnects
|
|
* or enters the initial message out phase, we are interrupted. Fill our
|
|
* outgoing message buffer with the appropriate message and beging handing
|
|
* the message phase(s) manually.
|
|
*/
|
|
static void
|
|
ahc_setup_initiator_msgout(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
/*
|
|
* To facilitate adding multiple messages together,
|
|
* each routine should increment the index and len
|
|
* variables instead of setting them explicitly.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
|
|
if ((scb->flags & SCB_DEVICE_RESET) == 0
|
|
&& ahc_inb(ahc, MSG_OUT) == MSG_IDENTIFYFLAG) {
|
|
u_int identify_msg;
|
|
|
|
identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
|
|
if ((scb->hscb->control & DISCENB) != 0)
|
|
identify_msg |= MSG_IDENTIFY_DISCFLAG;
|
|
ahc->msgout_buf[ahc->msgout_index++] = identify_msg;
|
|
ahc->msgout_len++;
|
|
|
|
if ((scb->hscb->control & TAG_ENB) != 0) {
|
|
ahc->msgout_buf[ahc->msgout_index++] =
|
|
scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
|
|
ahc->msgout_buf[ahc->msgout_index++] = scb->hscb->tag;
|
|
ahc->msgout_len += 2;
|
|
}
|
|
}
|
|
|
|
if (scb->flags & SCB_DEVICE_RESET) {
|
|
ahc->msgout_buf[ahc->msgout_index++] = MSG_BUS_DEV_RESET;
|
|
ahc->msgout_len++;
|
|
ahc_print_path(ahc, scb);
|
|
printk("Bus Device Reset Message Sent\n");
|
|
/*
|
|
* Clear our selection hardware in advance of
|
|
* the busfree. We may have an entry in the waiting
|
|
* Q for this target, and we don't want to go about
|
|
* selecting while we handle the busfree and blow it
|
|
* away.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
|
|
} else if ((scb->flags & SCB_ABORT) != 0) {
|
|
if ((scb->hscb->control & TAG_ENB) != 0)
|
|
ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT_TAG;
|
|
else
|
|
ahc->msgout_buf[ahc->msgout_index++] = MSG_ABORT;
|
|
ahc->msgout_len++;
|
|
ahc_print_path(ahc, scb);
|
|
printk("Abort%s Message Sent\n",
|
|
(scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
|
|
/*
|
|
* Clear our selection hardware in advance of
|
|
* the busfree. We may have an entry in the waiting
|
|
* Q for this target, and we don't want to go about
|
|
* selecting while we handle the busfree and blow it
|
|
* away.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
|
|
} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
} else {
|
|
printk("ahc_intr: AWAITING_MSG for an SCB that "
|
|
"does not have a waiting message\n");
|
|
printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
|
|
devinfo->target_mask);
|
|
panic("SCB = %d, SCB Control = %x, MSG_OUT = %x "
|
|
"SCB flags = %x", scb->hscb->tag, scb->hscb->control,
|
|
ahc_inb(ahc, MSG_OUT), scb->flags);
|
|
}
|
|
|
|
/*
|
|
* Clear the MK_MESSAGE flag from the SCB so we aren't
|
|
* asked to send this message again.
|
|
*/
|
|
ahc_outb(ahc, SCB_CONTROL, ahc_inb(ahc, SCB_CONTROL) & ~MK_MESSAGE);
|
|
scb->hscb->control &= ~MK_MESSAGE;
|
|
ahc->msgout_index = 0;
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
}
|
|
|
|
/*
|
|
* Build an appropriate transfer negotiation message for the
|
|
* currently active target.
|
|
*/
|
|
static void
|
|
ahc_build_transfer_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
/*
|
|
* We need to initiate transfer negotiations.
|
|
* If our current and goal settings are identical,
|
|
* we want to renegotiate due to a check condition.
|
|
*/
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
const struct ahc_syncrate *rate;
|
|
int dowide;
|
|
int dosync;
|
|
int doppr;
|
|
u_int period;
|
|
u_int ppr_options;
|
|
u_int offset;
|
|
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
/*
|
|
* Filter our period based on the current connection.
|
|
* If we can't perform DT transfers on this segment (not in LVD
|
|
* mode for instance), then our decision to issue a PPR message
|
|
* may change.
|
|
*/
|
|
period = tinfo->goal.period;
|
|
offset = tinfo->goal.offset;
|
|
ppr_options = tinfo->goal.ppr_options;
|
|
/* Target initiated PPR is not allowed in the SCSI spec */
|
|
if (devinfo->role == ROLE_TARGET)
|
|
ppr_options = 0;
|
|
rate = ahc_devlimited_syncrate(ahc, tinfo, &period,
|
|
&ppr_options, devinfo->role);
|
|
dowide = tinfo->curr.width != tinfo->goal.width;
|
|
dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
|
|
/*
|
|
* Only use PPR if we have options that need it, even if the device
|
|
* claims to support it. There might be an expander in the way
|
|
* that doesn't.
|
|
*/
|
|
doppr = ppr_options != 0;
|
|
|
|
if (!dowide && !dosync && !doppr) {
|
|
dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
|
|
dosync = tinfo->goal.offset != 0;
|
|
}
|
|
|
|
if (!dowide && !dosync && !doppr) {
|
|
/*
|
|
* Force async with a WDTR message if we have a wide bus,
|
|
* or just issue an SDTR with a 0 offset.
|
|
*/
|
|
if ((ahc->features & AHC_WIDE) != 0)
|
|
dowide = 1;
|
|
else
|
|
dosync = 1;
|
|
|
|
if (bootverbose) {
|
|
ahc_print_devinfo(ahc, devinfo);
|
|
printk("Ensuring async\n");
|
|
}
|
|
}
|
|
|
|
/* Target initiated PPR is not allowed in the SCSI spec */
|
|
if (devinfo->role == ROLE_TARGET)
|
|
doppr = 0;
|
|
|
|
/*
|
|
* Both the PPR message and SDTR message require the
|
|
* goal syncrate to be limited to what the target device
|
|
* is capable of handling (based on whether an LVD->SE
|
|
* expander is on the bus), so combine these two cases.
|
|
* Regardless, guarantee that if we are using WDTR and SDTR
|
|
* messages that WDTR comes first.
|
|
*/
|
|
if (doppr || (dosync && !dowide)) {
|
|
|
|
offset = tinfo->goal.offset;
|
|
ahc_validate_offset(ahc, tinfo, rate, &offset,
|
|
doppr ? tinfo->goal.width
|
|
: tinfo->curr.width,
|
|
devinfo->role);
|
|
if (doppr) {
|
|
ahc_construct_ppr(ahc, devinfo, period, offset,
|
|
tinfo->goal.width, ppr_options);
|
|
} else {
|
|
ahc_construct_sdtr(ahc, devinfo, period, offset);
|
|
}
|
|
} else {
|
|
ahc_construct_wdtr(ahc, devinfo, tinfo->goal.width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a synchronous negotiation message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahc_construct_sdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
u_int period, u_int offset)
|
|
{
|
|
if (offset == 0)
|
|
period = AHC_ASYNC_XFER_PERIOD;
|
|
ahc->msgout_index += spi_populate_sync_msg(
|
|
ahc->msgout_buf + ahc->msgout_index, period, offset);
|
|
ahc->msgout_len += 5;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
|
|
ahc_name(ahc), devinfo->channel, devinfo->target,
|
|
devinfo->lun, period, offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a wide negotiation message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahc_construct_wdtr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
u_int bus_width)
|
|
{
|
|
ahc->msgout_index += spi_populate_width_msg(
|
|
ahc->msgout_buf + ahc->msgout_index, bus_width);
|
|
ahc->msgout_len += 4;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending WDTR %x\n",
|
|
ahc_name(ahc), devinfo->channel, devinfo->target,
|
|
devinfo->lun, bus_width);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Build a parallel protocol request message in our message
|
|
* buffer based on the input parameters.
|
|
*/
|
|
static void
|
|
ahc_construct_ppr(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
u_int period, u_int offset, u_int bus_width,
|
|
u_int ppr_options)
|
|
{
|
|
if (offset == 0)
|
|
period = AHC_ASYNC_XFER_PERIOD;
|
|
ahc->msgout_index += spi_populate_ppr_msg(
|
|
ahc->msgout_buf + ahc->msgout_index, period, offset,
|
|
bus_width, ppr_options);
|
|
ahc->msgout_len += 8;
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
|
|
"offset %x, ppr_options %x\n", ahc_name(ahc),
|
|
devinfo->channel, devinfo->target, devinfo->lun,
|
|
bus_width, period, offset, ppr_options);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any active message state.
|
|
*/
|
|
static void
|
|
ahc_clear_msg_state(struct ahc_softc *ahc)
|
|
{
|
|
ahc->msgout_len = 0;
|
|
ahc->msgin_index = 0;
|
|
ahc->msg_type = MSG_TYPE_NONE;
|
|
if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0) {
|
|
/*
|
|
* The target didn't care to respond to our
|
|
* message request, so clear ATN.
|
|
*/
|
|
ahc_outb(ahc, CLRSINT1, CLRATNO);
|
|
}
|
|
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
|
|
ahc_outb(ahc, SEQ_FLAGS2,
|
|
ahc_inb(ahc, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
|
|
}
|
|
|
|
static void
|
|
ahc_handle_proto_violation(struct ahc_softc *ahc)
|
|
{
|
|
struct ahc_devinfo devinfo;
|
|
struct scb *scb;
|
|
u_int scbid;
|
|
u_int seq_flags;
|
|
u_int curphase;
|
|
u_int lastphase;
|
|
int found;
|
|
|
|
ahc_fetch_devinfo(ahc, &devinfo);
|
|
scbid = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scbid);
|
|
seq_flags = ahc_inb(ahc, SEQ_FLAGS);
|
|
curphase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
lastphase = ahc_inb(ahc, LASTPHASE);
|
|
if ((seq_flags & NOT_IDENTIFIED) != 0) {
|
|
|
|
/*
|
|
* The reconnecting target either did not send an
|
|
* identify message, or did, but we didn't find an SCB
|
|
* to match.
|
|
*/
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("Target did not send an IDENTIFY message. "
|
|
"LASTPHASE = 0x%x.\n", lastphase);
|
|
scb = NULL;
|
|
} else if (scb == NULL) {
|
|
/*
|
|
* We don't seem to have an SCB active for this
|
|
* transaction. Print an error and reset the bus.
|
|
*/
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("No SCB found during protocol violation\n");
|
|
goto proto_violation_reset;
|
|
} else {
|
|
ahc_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
|
|
if ((seq_flags & NO_CDB_SENT) != 0) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("No or incomplete CDB sent to device.\n");
|
|
} else if ((ahc_inb(ahc, SCB_CONTROL) & STATUS_RCVD) == 0) {
|
|
/*
|
|
* The target never bothered to provide status to
|
|
* us prior to completing the command. Since we don't
|
|
* know the disposition of this command, we must attempt
|
|
* to abort it. Assert ATN and prepare to send an abort
|
|
* message.
|
|
*/
|
|
ahc_print_path(ahc, scb);
|
|
printk("Completed command without status.\n");
|
|
} else {
|
|
ahc_print_path(ahc, scb);
|
|
printk("Unknown protocol violation.\n");
|
|
ahc_dump_card_state(ahc);
|
|
}
|
|
}
|
|
if ((lastphase & ~P_DATAIN_DT) == 0
|
|
|| lastphase == P_COMMAND) {
|
|
proto_violation_reset:
|
|
/*
|
|
* Target either went directly to data/command
|
|
* phase or didn't respond to our ATN.
|
|
* The only safe thing to do is to blow
|
|
* it away with a bus reset.
|
|
*/
|
|
found = ahc_reset_channel(ahc, 'A', TRUE);
|
|
printk("%s: Issued Channel %c Bus Reset. "
|
|
"%d SCBs aborted\n", ahc_name(ahc), 'A', found);
|
|
} else {
|
|
/*
|
|
* Leave the selection hardware off in case
|
|
* this abort attempt will affect yet to
|
|
* be sent commands.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ,
|
|
ahc_inb(ahc, SCSISEQ) & ~ENSELO);
|
|
ahc_assert_atn(ahc);
|
|
ahc_outb(ahc, MSG_OUT, HOST_MSG);
|
|
if (scb == NULL) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
ahc->msgout_buf[0] = MSG_ABORT_TASK;
|
|
ahc->msgout_len = 1;
|
|
ahc->msgout_index = 0;
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
} else {
|
|
ahc_print_path(ahc, scb);
|
|
scb->flags |= SCB_ABORT;
|
|
}
|
|
printk("Protocol violation %s. Attempting to abort.\n",
|
|
ahc_lookup_phase_entry(curphase)->phasemsg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manual message loop handler.
|
|
*/
|
|
static void
|
|
ahc_handle_message_phase(struct ahc_softc *ahc)
|
|
{
|
|
struct ahc_devinfo devinfo;
|
|
u_int bus_phase;
|
|
int end_session;
|
|
|
|
ahc_fetch_devinfo(ahc, &devinfo);
|
|
end_session = FALSE;
|
|
bus_phase = ahc_inb(ahc, SCSISIGI) & PHASE_MASK;
|
|
|
|
reswitch:
|
|
switch (ahc->msg_type) {
|
|
case MSG_TYPE_INITIATOR_MSGOUT:
|
|
{
|
|
int lastbyte;
|
|
int phasemis;
|
|
int msgdone;
|
|
|
|
if (ahc->msgout_len == 0)
|
|
panic("HOST_MSG_LOOP interrupt with no active message");
|
|
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("INITIATOR_MSG_OUT");
|
|
}
|
|
#endif
|
|
phasemis = bus_phase != P_MESGOUT;
|
|
if (phasemis) {
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
printk(" PHASEMIS %s\n",
|
|
ahc_lookup_phase_entry(bus_phase)
|
|
->phasemsg);
|
|
}
|
|
#endif
|
|
if (bus_phase == P_MESGIN) {
|
|
/*
|
|
* Change gears and see if
|
|
* this messages is of interest to
|
|
* us or should be passed back to
|
|
* the sequencer.
|
|
*/
|
|
ahc_outb(ahc, CLRSINT1, CLRATNO);
|
|
ahc->send_msg_perror = FALSE;
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGIN;
|
|
ahc->msgin_index = 0;
|
|
goto reswitch;
|
|
}
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
if (ahc->send_msg_perror) {
|
|
ahc_outb(ahc, CLRSINT1, CLRATNO);
|
|
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n", ahc->send_msg_perror);
|
|
#endif
|
|
ahc_outb(ahc, SCSIDATL, MSG_PARITY_ERROR);
|
|
break;
|
|
}
|
|
|
|
msgdone = ahc->msgout_index == ahc->msgout_len;
|
|
if (msgdone) {
|
|
/*
|
|
* The target has requested a retry.
|
|
* Re-assert ATN, reset our message index to
|
|
* 0, and try again.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc_assert_atn(ahc);
|
|
}
|
|
|
|
lastbyte = ahc->msgout_index == (ahc->msgout_len - 1);
|
|
if (lastbyte) {
|
|
/* Last byte is signified by dropping ATN */
|
|
ahc_outb(ahc, CLRSINT1, CLRATNO);
|
|
}
|
|
|
|
/*
|
|
* Clear our interrupt status and present
|
|
* the next byte on the bus.
|
|
*/
|
|
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n",
|
|
ahc->msgout_buf[ahc->msgout_index]);
|
|
#endif
|
|
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
|
|
break;
|
|
}
|
|
case MSG_TYPE_INITIATOR_MSGIN:
|
|
{
|
|
int phasemis;
|
|
int message_done;
|
|
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("INITIATOR_MSG_IN");
|
|
}
|
|
#endif
|
|
phasemis = bus_phase != P_MESGIN;
|
|
if (phasemis) {
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
printk(" PHASEMIS %s\n",
|
|
ahc_lookup_phase_entry(bus_phase)
|
|
->phasemsg);
|
|
}
|
|
#endif
|
|
ahc->msgin_index = 0;
|
|
if (bus_phase == P_MESGOUT
|
|
&& (ahc->send_msg_perror == TRUE
|
|
|| (ahc->msgout_len != 0
|
|
&& ahc->msgout_index == 0))) {
|
|
ahc->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
|
|
goto reswitch;
|
|
}
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
/* Pull the byte in without acking it */
|
|
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIBUSL);
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0)
|
|
printk(" byte 0x%x\n",
|
|
ahc->msgin_buf[ahc->msgin_index]);
|
|
#endif
|
|
|
|
message_done = ahc_parse_msg(ahc, &devinfo);
|
|
|
|
if (message_done) {
|
|
/*
|
|
* Clear our incoming message buffer in case there
|
|
* is another message following this one.
|
|
*/
|
|
ahc->msgin_index = 0;
|
|
|
|
/*
|
|
* If this message illicited a response,
|
|
* assert ATN so the target takes us to the
|
|
* message out phase.
|
|
*/
|
|
if (ahc->msgout_len != 0) {
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) {
|
|
ahc_print_devinfo(ahc, &devinfo);
|
|
printk("Asserting ATN for response\n");
|
|
}
|
|
#endif
|
|
ahc_assert_atn(ahc);
|
|
}
|
|
} else
|
|
ahc->msgin_index++;
|
|
|
|
if (message_done == MSGLOOP_TERMINATED) {
|
|
end_session = TRUE;
|
|
} else {
|
|
/* Ack the byte */
|
|
ahc_outb(ahc, CLRSINT1, CLRREQINIT);
|
|
ahc_inb(ahc, SCSIDATL);
|
|
}
|
|
break;
|
|
}
|
|
case MSG_TYPE_TARGET_MSGIN:
|
|
{
|
|
int msgdone;
|
|
int msgout_request;
|
|
|
|
if (ahc->msgout_len == 0)
|
|
panic("Target MSGIN with no active message");
|
|
|
|
/*
|
|
* If we interrupted a mesgout session, the initiator
|
|
* will not know this until our first REQ. So, we
|
|
* only honor mesgout requests after we've sent our
|
|
* first byte.
|
|
*/
|
|
if ((ahc_inb(ahc, SCSISIGI) & ATNI) != 0
|
|
&& ahc->msgout_index > 0)
|
|
msgout_request = TRUE;
|
|
else
|
|
msgout_request = FALSE;
|
|
|
|
if (msgout_request) {
|
|
|
|
/*
|
|
* Change gears and see if
|
|
* this messages is of interest to
|
|
* us or should be passed back to
|
|
* the sequencer.
|
|
*/
|
|
ahc->msg_type = MSG_TYPE_TARGET_MSGOUT;
|
|
ahc_outb(ahc, SCSISIGO, P_MESGOUT | BSYO);
|
|
ahc->msgin_index = 0;
|
|
/* Dummy read to REQ for first byte */
|
|
ahc_inb(ahc, SCSIDATL);
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
|
|
break;
|
|
}
|
|
|
|
msgdone = ahc->msgout_index == ahc->msgout_len;
|
|
if (msgdone) {
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
|
|
end_session = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Present the next byte on the bus.
|
|
*/
|
|
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) | SPIOEN);
|
|
ahc_outb(ahc, SCSIDATL, ahc->msgout_buf[ahc->msgout_index++]);
|
|
break;
|
|
}
|
|
case MSG_TYPE_TARGET_MSGOUT:
|
|
{
|
|
int lastbyte;
|
|
int msgdone;
|
|
|
|
/*
|
|
* The initiator signals that this is
|
|
* the last byte by dropping ATN.
|
|
*/
|
|
lastbyte = (ahc_inb(ahc, SCSISIGI) & ATNI) == 0;
|
|
|
|
/*
|
|
* Read the latched byte, but turn off SPIOEN first
|
|
* so that we don't inadvertently cause a REQ for the
|
|
* next byte.
|
|
*/
|
|
ahc_outb(ahc, SXFRCTL0, ahc_inb(ahc, SXFRCTL0) & ~SPIOEN);
|
|
ahc->msgin_buf[ahc->msgin_index] = ahc_inb(ahc, SCSIDATL);
|
|
msgdone = ahc_parse_msg(ahc, &devinfo);
|
|
if (msgdone == MSGLOOP_TERMINATED) {
|
|
/*
|
|
* The message is *really* done in that it caused
|
|
* us to go to bus free. The sequencer has already
|
|
* been reset at this point, so pull the ejection
|
|
* handle.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
ahc->msgin_index++;
|
|
|
|
/*
|
|
* XXX Read spec about initiator dropping ATN too soon
|
|
* and use msgdone to detect it.
|
|
*/
|
|
if (msgdone == MSGLOOP_MSGCOMPLETE) {
|
|
ahc->msgin_index = 0;
|
|
|
|
/*
|
|
* If this message illicited a response, transition
|
|
* to the Message in phase and send it.
|
|
*/
|
|
if (ahc->msgout_len != 0) {
|
|
ahc_outb(ahc, SCSISIGO, P_MESGIN | BSYO);
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
|
|
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
|
|
ahc->msgin_index = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (lastbyte)
|
|
end_session = TRUE;
|
|
else {
|
|
/* Ask for the next byte. */
|
|
ahc_outb(ahc, SXFRCTL0,
|
|
ahc_inb(ahc, SXFRCTL0) | SPIOEN);
|
|
}
|
|
|
|
break;
|
|
}
|
|
default:
|
|
panic("Unknown REQINIT message type");
|
|
}
|
|
|
|
if (end_session) {
|
|
ahc_clear_msg_state(ahc);
|
|
ahc_outb(ahc, RETURN_1, EXIT_MSG_LOOP);
|
|
} else
|
|
ahc_outb(ahc, RETURN_1, CONT_MSG_LOOP);
|
|
}
|
|
|
|
/*
|
|
* See if we sent a particular extended message to the target.
|
|
* If "full" is true, return true only if the target saw the full
|
|
* message. If "full" is false, return true if the target saw at
|
|
* least the first byte of the message.
|
|
*/
|
|
static int
|
|
ahc_sent_msg(struct ahc_softc *ahc, ahc_msgtype type, u_int msgval, int full)
|
|
{
|
|
int found;
|
|
u_int index;
|
|
|
|
found = FALSE;
|
|
index = 0;
|
|
|
|
while (index < ahc->msgout_len) {
|
|
if (ahc->msgout_buf[index] == MSG_EXTENDED) {
|
|
u_int end_index;
|
|
|
|
end_index = index + 1 + ahc->msgout_buf[index + 1];
|
|
if (ahc->msgout_buf[index+2] == msgval
|
|
&& type == AHCMSG_EXT) {
|
|
|
|
if (full) {
|
|
if (ahc->msgout_index > end_index)
|
|
found = TRUE;
|
|
} else if (ahc->msgout_index > index)
|
|
found = TRUE;
|
|
}
|
|
index = end_index;
|
|
} else if (ahc->msgout_buf[index] >= MSG_SIMPLE_TASK
|
|
&& ahc->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
|
|
|
|
/* Skip tag type and tag id or residue param*/
|
|
index += 2;
|
|
} else {
|
|
/* Single byte message */
|
|
if (type == AHCMSG_1B
|
|
&& ahc->msgout_buf[index] == msgval
|
|
&& ahc->msgout_index > index)
|
|
found = TRUE;
|
|
index++;
|
|
}
|
|
|
|
if (found)
|
|
break;
|
|
}
|
|
return (found);
|
|
}
|
|
|
|
/*
|
|
* Wait for a complete incoming message, parse it, and respond accordingly.
|
|
*/
|
|
static int
|
|
ahc_parse_msg(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
int reject;
|
|
int done;
|
|
int response;
|
|
u_int targ_scsirate;
|
|
|
|
done = MSGLOOP_IN_PROG;
|
|
response = FALSE;
|
|
reject = FALSE;
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
targ_scsirate = tinfo->scsirate;
|
|
|
|
/*
|
|
* Parse as much of the message as is available,
|
|
* rejecting it if we don't support it. When
|
|
* the entire message is available and has been
|
|
* handled, return MSGLOOP_MSGCOMPLETE, indicating
|
|
* that we have parsed an entire message.
|
|
*
|
|
* In the case of extended messages, we accept the length
|
|
* byte outright and perform more checking once we know the
|
|
* extended message type.
|
|
*/
|
|
switch (ahc->msgin_buf[0]) {
|
|
case MSG_DISCONNECT:
|
|
case MSG_SAVEDATAPOINTER:
|
|
case MSG_CMDCOMPLETE:
|
|
case MSG_RESTOREPOINTERS:
|
|
case MSG_IGN_WIDE_RESIDUE:
|
|
/*
|
|
* End our message loop as these are messages
|
|
* the sequencer handles on its own.
|
|
*/
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
case MSG_MESSAGE_REJECT:
|
|
response = ahc_handle_msg_reject(ahc, devinfo);
|
|
/* FALLTHROUGH */
|
|
case MSG_NOOP:
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
case MSG_EXTENDED:
|
|
{
|
|
/* Wait for enough of the message to begin validation */
|
|
if (ahc->msgin_index < 2)
|
|
break;
|
|
switch (ahc->msgin_buf[2]) {
|
|
case MSG_EXT_SDTR:
|
|
{
|
|
const struct ahc_syncrate *syncrate;
|
|
u_int period;
|
|
u_int ppr_options;
|
|
u_int offset;
|
|
u_int saved_offset;
|
|
|
|
if (ahc->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have both args before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_SDTR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahc->msgin_index < (MSG_EXT_SDTR_LEN + 1))
|
|
break;
|
|
|
|
period = ahc->msgin_buf[3];
|
|
ppr_options = 0;
|
|
saved_offset = offset = ahc->msgin_buf[4];
|
|
syncrate = ahc_devlimited_syncrate(ahc, tinfo, &period,
|
|
&ppr_options,
|
|
devinfo->role);
|
|
ahc_validate_offset(ahc, tinfo, syncrate, &offset,
|
|
targ_scsirate & WIDEXFER,
|
|
devinfo->role);
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received "
|
|
"SDTR period %x, offset %x\n\t"
|
|
"Filtered to period %x, offset %x\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
ahc->msgin_buf[3], saved_offset,
|
|
period, offset);
|
|
}
|
|
ahc_set_syncrate(ahc, devinfo,
|
|
syncrate, period,
|
|
offset, ppr_options,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
|
|
/*
|
|
* See if we initiated Sync Negotiation
|
|
* and didn't have to fall down to async
|
|
* transfers.
|
|
*/
|
|
if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_SDTR, TRUE)) {
|
|
/* We started it */
|
|
if (saved_offset != offset) {
|
|
/* Went too low - force async */
|
|
reject = TRUE;
|
|
}
|
|
} else {
|
|
/*
|
|
* Send our own SDTR in reply
|
|
*/
|
|
if (bootverbose
|
|
&& devinfo->role == ROLE_INITIATOR) {
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated SDTR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_construct_sdtr(ahc, devinfo,
|
|
period, offset);
|
|
ahc->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
case MSG_EXT_WDTR:
|
|
{
|
|
u_int bus_width;
|
|
u_int saved_width;
|
|
u_int sending_reply;
|
|
|
|
sending_reply = FALSE;
|
|
if (ahc->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have our arg before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_WDTR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahc->msgin_index < (MSG_EXT_WDTR_LEN + 1))
|
|
break;
|
|
|
|
bus_width = ahc->msgin_buf[3];
|
|
saved_width = bus_width;
|
|
ahc_validate_width(ahc, tinfo, &bus_width,
|
|
devinfo->role);
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received WDTR "
|
|
"%x filtered to %x\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
saved_width, bus_width);
|
|
}
|
|
|
|
if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_WDTR, TRUE)) {
|
|
/*
|
|
* Don't send a WDTR back to the
|
|
* target, since we asked first.
|
|
* If the width went higher than our
|
|
* request, reject it.
|
|
*/
|
|
if (saved_width > bus_width) {
|
|
reject = TRUE;
|
|
printk("(%s:%c:%d:%d): requested %dBit "
|
|
"transfers. Rejecting...\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
8 * (0x01 << bus_width));
|
|
bus_width = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* Send our own WDTR in reply
|
|
*/
|
|
if (bootverbose
|
|
&& devinfo->role == ROLE_INITIATOR) {
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated WDTR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_construct_wdtr(ahc, devinfo, bus_width);
|
|
ahc->msgout_index = 0;
|
|
response = TRUE;
|
|
sending_reply = TRUE;
|
|
}
|
|
/*
|
|
* After a wide message, we are async, but
|
|
* some devices don't seem to honor this portion
|
|
* of the spec. Force a renegotiation of the
|
|
* sync component of our transfer agreement even
|
|
* if our goal is async. By updating our width
|
|
* after forcing the negotiation, we avoid
|
|
* renegotiating for width.
|
|
*/
|
|
ahc_update_neg_request(ahc, devinfo, tstate,
|
|
tinfo, AHC_NEG_ALWAYS);
|
|
ahc_set_width(ahc, devinfo, bus_width,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
if (sending_reply == FALSE && reject == FALSE) {
|
|
|
|
/*
|
|
* We will always have an SDTR to send.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
ahc->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
case MSG_EXT_PPR:
|
|
{
|
|
const struct ahc_syncrate *syncrate;
|
|
u_int period;
|
|
u_int offset;
|
|
u_int bus_width;
|
|
u_int ppr_options;
|
|
u_int saved_width;
|
|
u_int saved_offset;
|
|
u_int saved_ppr_options;
|
|
|
|
if (ahc->msgin_buf[1] != MSG_EXT_PPR_LEN) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Wait until we have all args before validating
|
|
* and acting on this message.
|
|
*
|
|
* Add one to MSG_EXT_PPR_LEN to account for
|
|
* the extended message preamble.
|
|
*/
|
|
if (ahc->msgin_index < (MSG_EXT_PPR_LEN + 1))
|
|
break;
|
|
|
|
period = ahc->msgin_buf[3];
|
|
offset = ahc->msgin_buf[5];
|
|
bus_width = ahc->msgin_buf[6];
|
|
saved_width = bus_width;
|
|
ppr_options = ahc->msgin_buf[7];
|
|
/*
|
|
* According to the spec, a DT only
|
|
* period factor with no DT option
|
|
* set implies async.
|
|
*/
|
|
if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
|
|
&& period == 9)
|
|
offset = 0;
|
|
saved_ppr_options = ppr_options;
|
|
saved_offset = offset;
|
|
|
|
/*
|
|
* Mask out any options we don't support
|
|
* on any controller. Transfer options are
|
|
* only available if we are negotiating wide.
|
|
*/
|
|
ppr_options &= MSG_EXT_PPR_DT_REQ;
|
|
if (bus_width == 0)
|
|
ppr_options = 0;
|
|
|
|
ahc_validate_width(ahc, tinfo, &bus_width,
|
|
devinfo->role);
|
|
syncrate = ahc_devlimited_syncrate(ahc, tinfo, &period,
|
|
&ppr_options,
|
|
devinfo->role);
|
|
ahc_validate_offset(ahc, tinfo, syncrate,
|
|
&offset, bus_width,
|
|
devinfo->role);
|
|
|
|
if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_PPR, TRUE)) {
|
|
/*
|
|
* If we are unable to do any of the
|
|
* requested options (we went too low),
|
|
* then we'll have to reject the message.
|
|
*/
|
|
if (saved_width > bus_width
|
|
|| saved_offset != offset
|
|
|| saved_ppr_options != ppr_options) {
|
|
reject = TRUE;
|
|
period = 0;
|
|
offset = 0;
|
|
bus_width = 0;
|
|
ppr_options = 0;
|
|
syncrate = NULL;
|
|
}
|
|
} else {
|
|
if (devinfo->role != ROLE_TARGET)
|
|
printk("(%s:%c:%d:%d): Target "
|
|
"Initiated PPR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
else
|
|
printk("(%s:%c:%d:%d): Initiator "
|
|
"Initiated PPR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_construct_ppr(ahc, devinfo, period, offset,
|
|
bus_width, ppr_options);
|
|
ahc->msgout_index = 0;
|
|
response = TRUE;
|
|
}
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): Received PPR width %x, "
|
|
"period %x, offset %x,options %x\n"
|
|
"\tFiltered to width %x, period %x, "
|
|
"offset %x, options %x\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun,
|
|
saved_width, ahc->msgin_buf[3],
|
|
saved_offset, saved_ppr_options,
|
|
bus_width, period, offset, ppr_options);
|
|
}
|
|
ahc_set_width(ahc, devinfo, bus_width,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
ahc_set_syncrate(ahc, devinfo,
|
|
syncrate, period,
|
|
offset, ppr_options,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
break;
|
|
}
|
|
default:
|
|
/* Unknown extended message. Reject it. */
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#ifdef AHC_TARGET_MODE
|
|
case MSG_BUS_DEV_RESET:
|
|
ahc_handle_devreset(ahc, devinfo,
|
|
CAM_BDR_SENT,
|
|
"Bus Device Reset Received",
|
|
/*verbose_level*/0);
|
|
ahc_restart(ahc);
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
case MSG_ABORT_TAG:
|
|
case MSG_ABORT:
|
|
case MSG_CLEAR_QUEUE:
|
|
{
|
|
int tag;
|
|
|
|
/* Target mode messages */
|
|
if (devinfo->role != ROLE_TARGET) {
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
tag = SCB_LIST_NULL;
|
|
if (ahc->msgin_buf[0] == MSG_ABORT_TAG)
|
|
tag = ahc_inb(ahc, INITIATOR_TAG);
|
|
ahc_abort_scbs(ahc, devinfo->target, devinfo->channel,
|
|
devinfo->lun, tag, ROLE_TARGET,
|
|
CAM_REQ_ABORTED);
|
|
|
|
tstate = ahc->enabled_targets[devinfo->our_scsiid];
|
|
if (tstate != NULL) {
|
|
struct ahc_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[devinfo->lun];
|
|
if (lstate != NULL) {
|
|
ahc_queue_lstate_event(ahc, lstate,
|
|
devinfo->our_scsiid,
|
|
ahc->msgin_buf[0],
|
|
/*arg*/tag);
|
|
ahc_send_lstate_events(ahc, lstate);
|
|
}
|
|
}
|
|
ahc_restart(ahc);
|
|
done = MSGLOOP_TERMINATED;
|
|
break;
|
|
}
|
|
#endif
|
|
case MSG_TERM_IO_PROC:
|
|
default:
|
|
reject = TRUE;
|
|
break;
|
|
}
|
|
|
|
if (reject) {
|
|
/*
|
|
* Setup to reject the message.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 1;
|
|
ahc->msgout_buf[0] = MSG_MESSAGE_REJECT;
|
|
done = MSGLOOP_MSGCOMPLETE;
|
|
response = TRUE;
|
|
}
|
|
|
|
if (done != MSGLOOP_IN_PROG && !response)
|
|
/* Clear the outgoing message buffer */
|
|
ahc->msgout_len = 0;
|
|
|
|
return (done);
|
|
}
|
|
|
|
/*
|
|
* Process a message reject message.
|
|
*/
|
|
static int
|
|
ahc_handle_msg_reject(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
/*
|
|
* What we care about here is if we had an
|
|
* outstanding SDTR or WDTR message for this
|
|
* target. If we did, this is a signal that
|
|
* the target is refusing negotiation.
|
|
*/
|
|
struct scb *scb;
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
u_int scb_index;
|
|
u_int last_msg;
|
|
int response = 0;
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
tinfo = ahc_fetch_transinfo(ahc, devinfo->channel,
|
|
devinfo->our_scsiid,
|
|
devinfo->target, &tstate);
|
|
/* Might be necessary */
|
|
last_msg = ahc_inb(ahc, LAST_MSG);
|
|
|
|
if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
|
|
/*
|
|
* Target does not support the PPR message.
|
|
* Attempt to negotiate SPI-2 style.
|
|
*/
|
|
if (bootverbose) {
|
|
printk("(%s:%c:%d:%d): PPR Rejected. "
|
|
"Trying WDTR/SDTR\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
}
|
|
tinfo->goal.ppr_options = 0;
|
|
tinfo->curr.transport_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
ahc->msgout_index = 0;
|
|
response = 1;
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
|
|
|
|
/* note 8bit xfers */
|
|
printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
|
|
"8bit transfers\n", ahc_name(ahc),
|
|
devinfo->channel, devinfo->target, devinfo->lun);
|
|
ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
/*
|
|
* No need to clear the sync rate. If the target
|
|
* did not accept the command, our syncrate is
|
|
* unaffected. If the target started the negotiation,
|
|
* but rejected our response, we already cleared the
|
|
* sync rate before sending our WDTR.
|
|
*/
|
|
if (tinfo->goal.offset != tinfo->curr.offset) {
|
|
|
|
/* Start the sync negotiation */
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
ahc->msgout_index = 0;
|
|
response = 1;
|
|
}
|
|
} else if (ahc_sent_msg(ahc, AHCMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
|
|
/* note asynch xfers and clear flag */
|
|
ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL, /*period*/0,
|
|
/*offset*/0, /*ppr_options*/0,
|
|
AHC_TRANS_ACTIVE|AHC_TRANS_GOAL,
|
|
/*paused*/TRUE);
|
|
printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
|
|
"Using asynchronous transfers\n",
|
|
ahc_name(ahc), devinfo->channel,
|
|
devinfo->target, devinfo->lun);
|
|
} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
|
|
int tag_type;
|
|
int mask;
|
|
|
|
tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
|
|
|
|
if (tag_type == MSG_SIMPLE_TASK) {
|
|
printk("(%s:%c:%d:%d): refuses tagged commands. "
|
|
"Performing non-tagged I/O\n", ahc_name(ahc),
|
|
devinfo->channel, devinfo->target, devinfo->lun);
|
|
ahc_set_tags(ahc, scb->io_ctx, devinfo, AHC_QUEUE_NONE);
|
|
mask = ~0x23;
|
|
} else {
|
|
printk("(%s:%c:%d:%d): refuses %s tagged commands. "
|
|
"Performing simple queue tagged I/O only\n",
|
|
ahc_name(ahc), devinfo->channel, devinfo->target,
|
|
devinfo->lun, tag_type == MSG_ORDERED_TASK
|
|
? "ordered" : "head of queue");
|
|
ahc_set_tags(ahc, scb->io_ctx, devinfo, AHC_QUEUE_BASIC);
|
|
mask = ~0x03;
|
|
}
|
|
|
|
/*
|
|
* Resend the identify for this CCB as the target
|
|
* may believe that the selection is invalid otherwise.
|
|
*/
|
|
ahc_outb(ahc, SCB_CONTROL,
|
|
ahc_inb(ahc, SCB_CONTROL) & mask);
|
|
scb->hscb->control &= mask;
|
|
ahc_set_transaction_tag(scb, /*enabled*/FALSE,
|
|
/*type*/MSG_SIMPLE_TASK);
|
|
ahc_outb(ahc, MSG_OUT, MSG_IDENTIFYFLAG);
|
|
ahc_assert_atn(ahc);
|
|
|
|
/*
|
|
* This transaction is now at the head of
|
|
* the untagged queue for this target.
|
|
*/
|
|
if ((ahc->flags & AHC_SCB_BTT) == 0) {
|
|
struct scb_tailq *untagged_q;
|
|
|
|
untagged_q =
|
|
&(ahc->untagged_queues[devinfo->target_offset]);
|
|
TAILQ_INSERT_HEAD(untagged_q, scb, links.tqe);
|
|
scb->flags |= SCB_UNTAGGEDQ;
|
|
}
|
|
ahc_busy_tcl(ahc, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
|
|
scb->hscb->tag);
|
|
|
|
/*
|
|
* Requeue all tagged commands for this target
|
|
* currently in our possession so they can be
|
|
* converted to untagged commands.
|
|
*/
|
|
ahc_search_qinfifo(ahc, SCB_GET_TARGET(ahc, scb),
|
|
SCB_GET_CHANNEL(ahc, scb),
|
|
SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
|
|
ROLE_INITIATOR, CAM_REQUEUE_REQ,
|
|
SEARCH_COMPLETE);
|
|
} else {
|
|
/*
|
|
* Otherwise, we ignore it.
|
|
*/
|
|
printk("%s:%c:%d: Message reject for %x -- ignored\n",
|
|
ahc_name(ahc), devinfo->channel, devinfo->target,
|
|
last_msg);
|
|
}
|
|
return (response);
|
|
}
|
|
|
|
/*
|
|
* Process an ingnore wide residue message.
|
|
*/
|
|
static void
|
|
ahc_handle_ign_wide_residue(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
|
|
{
|
|
u_int scb_index;
|
|
struct scb *scb;
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
/*
|
|
* XXX Actually check data direction in the sequencer?
|
|
* Perhaps add datadir to some spare bits in the hscb?
|
|
*/
|
|
if ((ahc_inb(ahc, SEQ_FLAGS) & DPHASE) == 0
|
|
|| ahc_get_transfer_dir(scb) != CAM_DIR_IN) {
|
|
/*
|
|
* Ignore the message if we haven't
|
|
* seen an appropriate data phase yet.
|
|
*/
|
|
} else {
|
|
/*
|
|
* If the residual occurred on the last
|
|
* transfer and the transfer request was
|
|
* expected to end on an odd count, do
|
|
* nothing. Otherwise, subtract a byte
|
|
* and update the residual count accordingly.
|
|
*/
|
|
uint32_t sgptr;
|
|
|
|
sgptr = ahc_inb(ahc, SCB_RESIDUAL_SGPTR);
|
|
if ((sgptr & SG_LIST_NULL) != 0
|
|
&& (ahc_inb(ahc, SCB_LUN) & SCB_XFERLEN_ODD) != 0) {
|
|
/*
|
|
* If the residual occurred on the last
|
|
* transfer and the transfer request was
|
|
* expected to end on an odd count, do
|
|
* nothing.
|
|
*/
|
|
} else {
|
|
struct ahc_dma_seg *sg;
|
|
uint32_t data_cnt;
|
|
uint32_t data_addr;
|
|
uint32_t sglen;
|
|
|
|
/* Pull in all of the sgptr */
|
|
sgptr = ahc_inl(ahc, SCB_RESIDUAL_SGPTR);
|
|
data_cnt = ahc_inl(ahc, SCB_RESIDUAL_DATACNT);
|
|
|
|
if ((sgptr & SG_LIST_NULL) != 0) {
|
|
/*
|
|
* The residual data count is not updated
|
|
* for the command run to completion case.
|
|
* Explicitly zero the count.
|
|
*/
|
|
data_cnt &= ~AHC_SG_LEN_MASK;
|
|
}
|
|
|
|
data_addr = ahc_inl(ahc, SHADDR);
|
|
|
|
data_cnt += 1;
|
|
data_addr -= 1;
|
|
sgptr &= SG_PTR_MASK;
|
|
|
|
sg = ahc_sg_bus_to_virt(scb, sgptr);
|
|
|
|
/*
|
|
* The residual sg ptr points to the next S/G
|
|
* to load so we must go back one.
|
|
*/
|
|
sg--;
|
|
sglen = ahc_le32toh(sg->len) & AHC_SG_LEN_MASK;
|
|
if (sg != scb->sg_list
|
|
&& sglen < (data_cnt & AHC_SG_LEN_MASK)) {
|
|
|
|
sg--;
|
|
sglen = ahc_le32toh(sg->len);
|
|
/*
|
|
* Preserve High Address and SG_LIST bits
|
|
* while setting the count to 1.
|
|
*/
|
|
data_cnt = 1 | (sglen & (~AHC_SG_LEN_MASK));
|
|
data_addr = ahc_le32toh(sg->addr)
|
|
+ (sglen & AHC_SG_LEN_MASK) - 1;
|
|
|
|
/*
|
|
* Increment sg so it points to the
|
|
* "next" sg.
|
|
*/
|
|
sg++;
|
|
sgptr = ahc_sg_virt_to_bus(scb, sg);
|
|
}
|
|
ahc_outl(ahc, SCB_RESIDUAL_SGPTR, sgptr);
|
|
ahc_outl(ahc, SCB_RESIDUAL_DATACNT, data_cnt);
|
|
/*
|
|
* Toggle the "oddness" of the transfer length
|
|
* to handle this mid-transfer ignore wide
|
|
* residue. This ensures that the oddness is
|
|
* correct for subsequent data transfers.
|
|
*/
|
|
ahc_outb(ahc, SCB_LUN,
|
|
ahc_inb(ahc, SCB_LUN) ^ SCB_XFERLEN_ODD);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Reinitialize the data pointers for the active transfer
|
|
* based on its current residual.
|
|
*/
|
|
static void
|
|
ahc_reinitialize_dataptrs(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *scb;
|
|
struct ahc_dma_seg *sg;
|
|
u_int scb_index;
|
|
uint32_t sgptr;
|
|
uint32_t resid;
|
|
uint32_t dataptr;
|
|
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
sgptr = (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 3) << 24)
|
|
| (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 2) << 16)
|
|
| (ahc_inb(ahc, SCB_RESIDUAL_SGPTR + 1) << 8)
|
|
| ahc_inb(ahc, SCB_RESIDUAL_SGPTR);
|
|
|
|
sgptr &= SG_PTR_MASK;
|
|
sg = ahc_sg_bus_to_virt(scb, sgptr);
|
|
|
|
/* The residual sg_ptr always points to the next sg */
|
|
sg--;
|
|
|
|
resid = (ahc_inb(ahc, SCB_RESIDUAL_DATACNT + 2) << 16)
|
|
| (ahc_inb(ahc, SCB_RESIDUAL_DATACNT + 1) << 8)
|
|
| ahc_inb(ahc, SCB_RESIDUAL_DATACNT);
|
|
|
|
dataptr = ahc_le32toh(sg->addr)
|
|
+ (ahc_le32toh(sg->len) & AHC_SG_LEN_MASK)
|
|
- resid;
|
|
if ((ahc->flags & AHC_39BIT_ADDRESSING) != 0) {
|
|
u_int dscommand1;
|
|
|
|
dscommand1 = ahc_inb(ahc, DSCOMMAND1);
|
|
ahc_outb(ahc, DSCOMMAND1, dscommand1 | HADDLDSEL0);
|
|
ahc_outb(ahc, HADDR,
|
|
(ahc_le32toh(sg->len) >> 24) & SG_HIGH_ADDR_BITS);
|
|
ahc_outb(ahc, DSCOMMAND1, dscommand1);
|
|
}
|
|
ahc_outb(ahc, HADDR + 3, dataptr >> 24);
|
|
ahc_outb(ahc, HADDR + 2, dataptr >> 16);
|
|
ahc_outb(ahc, HADDR + 1, dataptr >> 8);
|
|
ahc_outb(ahc, HADDR, dataptr);
|
|
ahc_outb(ahc, HCNT + 2, resid >> 16);
|
|
ahc_outb(ahc, HCNT + 1, resid >> 8);
|
|
ahc_outb(ahc, HCNT, resid);
|
|
if ((ahc->features & AHC_ULTRA2) == 0) {
|
|
ahc_outb(ahc, STCNT + 2, resid >> 16);
|
|
ahc_outb(ahc, STCNT + 1, resid >> 8);
|
|
ahc_outb(ahc, STCNT, resid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle the effects of issuing a bus device reset message.
|
|
*/
|
|
static void
|
|
ahc_handle_devreset(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
cam_status status, char *message, int verbose_level)
|
|
{
|
|
#ifdef AHC_TARGET_MODE
|
|
struct ahc_tmode_tstate* tstate;
|
|
u_int lun;
|
|
#endif
|
|
int found;
|
|
|
|
found = ahc_abort_scbs(ahc, devinfo->target, devinfo->channel,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL, devinfo->role,
|
|
status);
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Send an immediate notify ccb to all target mord peripheral
|
|
* drivers affected by this action.
|
|
*/
|
|
tstate = ahc->enabled_targets[devinfo->our_scsiid];
|
|
if (tstate != NULL) {
|
|
for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
|
|
struct ahc_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[lun];
|
|
if (lstate == NULL)
|
|
continue;
|
|
|
|
ahc_queue_lstate_event(ahc, lstate, devinfo->our_scsiid,
|
|
MSG_BUS_DEV_RESET, /*arg*/0);
|
|
ahc_send_lstate_events(ahc, lstate);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Go back to async/narrow transfers and renegotiate.
|
|
*/
|
|
ahc_set_width(ahc, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHC_TRANS_CUR, /*paused*/TRUE);
|
|
ahc_set_syncrate(ahc, devinfo, /*syncrate*/NULL,
|
|
/*period*/0, /*offset*/0, /*ppr_options*/0,
|
|
AHC_TRANS_CUR, /*paused*/TRUE);
|
|
|
|
if (status != CAM_SEL_TIMEOUT)
|
|
ahc_send_async(ahc, devinfo->channel, devinfo->target,
|
|
CAM_LUN_WILDCARD, AC_SENT_BDR);
|
|
|
|
if (message != NULL
|
|
&& (verbose_level <= bootverbose))
|
|
printk("%s: %s on %c:%d. %d SCBs aborted\n", ahc_name(ahc),
|
|
message, devinfo->channel, devinfo->target, found);
|
|
}
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
static void
|
|
ahc_setup_target_msgin(struct ahc_softc *ahc, struct ahc_devinfo *devinfo,
|
|
struct scb *scb)
|
|
{
|
|
|
|
/*
|
|
* To facilitate adding multiple messages together,
|
|
* each routine should increment the index and len
|
|
* variables instead of setting them explicitly.
|
|
*/
|
|
ahc->msgout_index = 0;
|
|
ahc->msgout_len = 0;
|
|
|
|
if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
|
|
ahc_build_transfer_msg(ahc, devinfo);
|
|
else
|
|
panic("ahc_intr: AWAITING target message with no message");
|
|
|
|
ahc->msgout_index = 0;
|
|
ahc->msg_type = MSG_TYPE_TARGET_MSGIN;
|
|
}
|
|
#endif
|
|
/**************************** Initialization **********************************/
|
|
/*
|
|
* Allocate a controller structure for a new device
|
|
* and perform initial initializion.
|
|
*/
|
|
struct ahc_softc *
|
|
ahc_alloc(void *platform_arg, char *name)
|
|
{
|
|
struct ahc_softc *ahc;
|
|
int i;
|
|
|
|
#ifndef __FreeBSD__
|
|
ahc = kmalloc(sizeof(*ahc), GFP_ATOMIC);
|
|
if (!ahc) {
|
|
printk("aic7xxx: cannot malloc softc!\n");
|
|
kfree(name);
|
|
return NULL;
|
|
}
|
|
#else
|
|
ahc = device_get_softc((device_t)platform_arg);
|
|
#endif
|
|
memset(ahc, 0, sizeof(*ahc));
|
|
ahc->seep_config = kmalloc(sizeof(*ahc->seep_config), GFP_ATOMIC);
|
|
if (ahc->seep_config == NULL) {
|
|
#ifndef __FreeBSD__
|
|
kfree(ahc);
|
|
#endif
|
|
kfree(name);
|
|
return (NULL);
|
|
}
|
|
LIST_INIT(&ahc->pending_scbs);
|
|
/* We don't know our unit number until the OSM sets it */
|
|
ahc->name = name;
|
|
ahc->unit = -1;
|
|
ahc->description = NULL;
|
|
ahc->channel = 'A';
|
|
ahc->channel_b = 'B';
|
|
ahc->chip = AHC_NONE;
|
|
ahc->features = AHC_FENONE;
|
|
ahc->bugs = AHC_BUGNONE;
|
|
ahc->flags = AHC_FNONE;
|
|
/*
|
|
* Default to all error reporting enabled with the
|
|
* sequencer operating at its fastest speed.
|
|
* The bus attach code may modify this.
|
|
*/
|
|
ahc->seqctl = FASTMODE;
|
|
|
|
for (i = 0; i < AHC_NUM_TARGETS; i++)
|
|
TAILQ_INIT(&ahc->untagged_queues[i]);
|
|
if (ahc_platform_alloc(ahc, platform_arg) != 0) {
|
|
ahc_free(ahc);
|
|
ahc = NULL;
|
|
}
|
|
return (ahc);
|
|
}
|
|
|
|
int
|
|
ahc_softc_init(struct ahc_softc *ahc)
|
|
{
|
|
|
|
/* The IRQMS bit is only valid on VL and EISA chips */
|
|
if ((ahc->chip & AHC_PCI) == 0)
|
|
ahc->unpause = ahc_inb(ahc, HCNTRL) & IRQMS;
|
|
else
|
|
ahc->unpause = 0;
|
|
ahc->pause = ahc->unpause | PAUSE;
|
|
/* XXX The shared scb data stuff should be deprecated */
|
|
if (ahc->scb_data == NULL) {
|
|
ahc->scb_data = kmalloc(sizeof(*ahc->scb_data), GFP_ATOMIC);
|
|
if (ahc->scb_data == NULL)
|
|
return (ENOMEM);
|
|
memset(ahc->scb_data, 0, sizeof(*ahc->scb_data));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ahc_set_unit(struct ahc_softc *ahc, int unit)
|
|
{
|
|
ahc->unit = unit;
|
|
}
|
|
|
|
void
|
|
ahc_set_name(struct ahc_softc *ahc, char *name)
|
|
{
|
|
if (ahc->name != NULL)
|
|
kfree(ahc->name);
|
|
ahc->name = name;
|
|
}
|
|
|
|
void
|
|
ahc_free(struct ahc_softc *ahc)
|
|
{
|
|
int i;
|
|
|
|
switch (ahc->init_level) {
|
|
default:
|
|
case 5:
|
|
ahc_shutdown(ahc);
|
|
/* FALLTHROUGH */
|
|
case 4:
|
|
ahc_dmamap_unload(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap);
|
|
/* FALLTHROUGH */
|
|
case 3:
|
|
ahc_dmamem_free(ahc, ahc->shared_data_dmat, ahc->qoutfifo,
|
|
ahc->shared_data_dmamap);
|
|
ahc_dmamap_destroy(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap);
|
|
/* FALLTHROUGH */
|
|
case 2:
|
|
ahc_dma_tag_destroy(ahc, ahc->shared_data_dmat);
|
|
case 1:
|
|
#ifndef __linux__
|
|
ahc_dma_tag_destroy(ahc, ahc->buffer_dmat);
|
|
#endif
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
|
|
#ifndef __linux__
|
|
ahc_dma_tag_destroy(ahc, ahc->parent_dmat);
|
|
#endif
|
|
ahc_platform_free(ahc);
|
|
ahc_fini_scbdata(ahc);
|
|
for (i = 0; i < AHC_NUM_TARGETS; i++) {
|
|
struct ahc_tmode_tstate *tstate;
|
|
|
|
tstate = ahc->enabled_targets[i];
|
|
if (tstate != NULL) {
|
|
#ifdef AHC_TARGET_MODE
|
|
int j;
|
|
|
|
for (j = 0; j < AHC_NUM_LUNS; j++) {
|
|
struct ahc_tmode_lstate *lstate;
|
|
|
|
lstate = tstate->enabled_luns[j];
|
|
if (lstate != NULL) {
|
|
xpt_free_path(lstate->path);
|
|
kfree(lstate);
|
|
}
|
|
}
|
|
#endif
|
|
kfree(tstate);
|
|
}
|
|
}
|
|
#ifdef AHC_TARGET_MODE
|
|
if (ahc->black_hole != NULL) {
|
|
xpt_free_path(ahc->black_hole->path);
|
|
kfree(ahc->black_hole);
|
|
}
|
|
#endif
|
|
if (ahc->name != NULL)
|
|
kfree(ahc->name);
|
|
if (ahc->seep_config != NULL)
|
|
kfree(ahc->seep_config);
|
|
#ifndef __FreeBSD__
|
|
kfree(ahc);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ahc_shutdown(void *arg)
|
|
{
|
|
struct ahc_softc *ahc;
|
|
int i;
|
|
|
|
ahc = (struct ahc_softc *)arg;
|
|
|
|
/* This will reset most registers to 0, but not all */
|
|
ahc_reset(ahc, /*reinit*/FALSE);
|
|
ahc_outb(ahc, SCSISEQ, 0);
|
|
ahc_outb(ahc, SXFRCTL0, 0);
|
|
ahc_outb(ahc, DSPCISTATUS, 0);
|
|
|
|
for (i = TARG_SCSIRATE; i < SCSICONF; i++)
|
|
ahc_outb(ahc, i, 0);
|
|
}
|
|
|
|
/*
|
|
* Reset the controller and record some information about it
|
|
* that is only available just after a reset. If "reinit" is
|
|
* non-zero, this reset occurred after initial configuration
|
|
* and the caller requests that the chip be fully reinitialized
|
|
* to a runable state. Chip interrupts are *not* enabled after
|
|
* a reinitialization. The caller must enable interrupts via
|
|
* ahc_intr_enable().
|
|
*/
|
|
int
|
|
ahc_reset(struct ahc_softc *ahc, int reinit)
|
|
{
|
|
u_int sblkctl;
|
|
u_int sxfrctl1_a, sxfrctl1_b;
|
|
int error;
|
|
int wait;
|
|
|
|
/*
|
|
* Preserve the value of the SXFRCTL1 register for all channels.
|
|
* It contains settings that affect termination and we don't want
|
|
* to disturb the integrity of the bus.
|
|
*/
|
|
ahc_pause(ahc);
|
|
sxfrctl1_b = 0;
|
|
if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7770) {
|
|
u_int sblkctl;
|
|
|
|
/*
|
|
* Save channel B's settings in case this chip
|
|
* is setup for TWIN channel operation.
|
|
*/
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB);
|
|
sxfrctl1_b = ahc_inb(ahc, SXFRCTL1);
|
|
ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB);
|
|
}
|
|
sxfrctl1_a = ahc_inb(ahc, SXFRCTL1);
|
|
|
|
ahc_outb(ahc, HCNTRL, CHIPRST | ahc->pause);
|
|
|
|
/*
|
|
* Ensure that the reset has finished. We delay 1000us
|
|
* prior to reading the register to make sure the chip
|
|
* has sufficiently completed its reset to handle register
|
|
* accesses.
|
|
*/
|
|
wait = 1000;
|
|
do {
|
|
ahc_delay(1000);
|
|
} while (--wait && !(ahc_inb(ahc, HCNTRL) & CHIPRSTACK));
|
|
|
|
if (wait == 0) {
|
|
printk("%s: WARNING - Failed chip reset! "
|
|
"Trying to initialize anyway.\n", ahc_name(ahc));
|
|
}
|
|
ahc_outb(ahc, HCNTRL, ahc->pause);
|
|
|
|
/* Determine channel configuration */
|
|
sblkctl = ahc_inb(ahc, SBLKCTL) & (SELBUSB|SELWIDE);
|
|
/* No Twin Channel PCI cards */
|
|
if ((ahc->chip & AHC_PCI) != 0)
|
|
sblkctl &= ~SELBUSB;
|
|
switch (sblkctl) {
|
|
case 0:
|
|
/* Single Narrow Channel */
|
|
break;
|
|
case 2:
|
|
/* Wide Channel */
|
|
ahc->features |= AHC_WIDE;
|
|
break;
|
|
case 8:
|
|
/* Twin Channel */
|
|
ahc->features |= AHC_TWIN;
|
|
break;
|
|
default:
|
|
printk(" Unsupported adapter type. Ignoring\n");
|
|
return(-1);
|
|
}
|
|
|
|
/*
|
|
* Reload sxfrctl1.
|
|
*
|
|
* We must always initialize STPWEN to 1 before we
|
|
* restore the saved values. STPWEN is initialized
|
|
* to a tri-state condition which can only be cleared
|
|
* by turning it on.
|
|
*/
|
|
if ((ahc->features & AHC_TWIN) != 0) {
|
|
u_int sblkctl;
|
|
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
ahc_outb(ahc, SBLKCTL, sblkctl | SELBUSB);
|
|
ahc_outb(ahc, SXFRCTL1, sxfrctl1_b);
|
|
ahc_outb(ahc, SBLKCTL, sblkctl & ~SELBUSB);
|
|
}
|
|
ahc_outb(ahc, SXFRCTL1, sxfrctl1_a);
|
|
|
|
error = 0;
|
|
if (reinit != 0)
|
|
/*
|
|
* If a recovery action has forced a chip reset,
|
|
* re-initialize the chip to our liking.
|
|
*/
|
|
error = ahc->bus_chip_init(ahc);
|
|
#ifdef AHC_DUMP_SEQ
|
|
else
|
|
ahc_dumpseq(ahc);
|
|
#endif
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Determine the number of SCBs available on the controller
|
|
*/
|
|
int
|
|
ahc_probe_scbs(struct ahc_softc *ahc) {
|
|
int i;
|
|
|
|
for (i = 0; i < AHC_SCB_MAX; i++) {
|
|
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
ahc_outb(ahc, SCB_BASE, i);
|
|
if (ahc_inb(ahc, SCB_BASE) != i)
|
|
break;
|
|
ahc_outb(ahc, SCBPTR, 0);
|
|
if (ahc_inb(ahc, SCB_BASE) != 0)
|
|
break;
|
|
}
|
|
return (i);
|
|
}
|
|
|
|
static void
|
|
ahc_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
dma_addr_t *baddr;
|
|
|
|
baddr = (dma_addr_t *)arg;
|
|
*baddr = segs->ds_addr;
|
|
}
|
|
|
|
static void
|
|
ahc_build_free_scb_list(struct ahc_softc *ahc)
|
|
{
|
|
int scbsize;
|
|
int i;
|
|
|
|
scbsize = 32;
|
|
if ((ahc->flags & AHC_LSCBS_ENABLED) != 0)
|
|
scbsize = 64;
|
|
|
|
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
|
|
int j;
|
|
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
|
|
/*
|
|
* Touch all SCB bytes to avoid parity errors
|
|
* should one of our debugging routines read
|
|
* an otherwise uninitiatlized byte.
|
|
*/
|
|
for (j = 0; j < scbsize; j++)
|
|
ahc_outb(ahc, SCB_BASE+j, 0xFF);
|
|
|
|
/* Clear the control byte. */
|
|
ahc_outb(ahc, SCB_CONTROL, 0);
|
|
|
|
/* Set the next pointer */
|
|
if ((ahc->flags & AHC_PAGESCBS) != 0)
|
|
ahc_outb(ahc, SCB_NEXT, i+1);
|
|
else
|
|
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
|
|
|
|
/* Make the tag number, SCSIID, and lun invalid */
|
|
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
|
|
ahc_outb(ahc, SCB_SCSIID, 0xFF);
|
|
ahc_outb(ahc, SCB_LUN, 0xFF);
|
|
}
|
|
|
|
if ((ahc->flags & AHC_PAGESCBS) != 0) {
|
|
/* SCB 0 heads the free list. */
|
|
ahc_outb(ahc, FREE_SCBH, 0);
|
|
} else {
|
|
/* No free list. */
|
|
ahc_outb(ahc, FREE_SCBH, SCB_LIST_NULL);
|
|
}
|
|
|
|
/* Make sure that the last SCB terminates the free list */
|
|
ahc_outb(ahc, SCBPTR, i-1);
|
|
ahc_outb(ahc, SCB_NEXT, SCB_LIST_NULL);
|
|
}
|
|
|
|
static int
|
|
ahc_init_scbdata(struct ahc_softc *ahc)
|
|
{
|
|
struct scb_data *scb_data;
|
|
|
|
scb_data = ahc->scb_data;
|
|
SLIST_INIT(&scb_data->free_scbs);
|
|
SLIST_INIT(&scb_data->sg_maps);
|
|
|
|
/* Allocate SCB resources */
|
|
scb_data->scbarray = kmalloc(sizeof(struct scb) * AHC_SCB_MAX_ALLOC, GFP_ATOMIC);
|
|
if (scb_data->scbarray == NULL)
|
|
return (ENOMEM);
|
|
memset(scb_data->scbarray, 0, sizeof(struct scb) * AHC_SCB_MAX_ALLOC);
|
|
|
|
/* Determine the number of hardware SCBs and initialize them */
|
|
|
|
scb_data->maxhscbs = ahc_probe_scbs(ahc);
|
|
if (ahc->scb_data->maxhscbs == 0) {
|
|
printk("%s: No SCB space found\n", ahc_name(ahc));
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Create our DMA tags. These tags define the kinds of device
|
|
* accessible memory allocations and memory mappings we will
|
|
* need to perform during normal operation.
|
|
*
|
|
* Unless we need to further restrict the allocation, we rely
|
|
* on the restrictions of the parent dmat, hence the common
|
|
* use of MAXADDR and MAXSIZE.
|
|
*/
|
|
|
|
/* DMA tag for our hardware scb structures */
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb),
|
|
/*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->hscb_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* Allocation for our hscbs */
|
|
if (ahc_dmamem_alloc(ahc, scb_data->hscb_dmat,
|
|
(void **)&scb_data->hscbs,
|
|
BUS_DMA_NOWAIT, &scb_data->hscb_dmamap) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* And permanently map them */
|
|
ahc_dmamap_load(ahc, scb_data->hscb_dmat, scb_data->hscb_dmamap,
|
|
scb_data->hscbs,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb),
|
|
ahc_dmamap_cb, &scb_data->hscb_busaddr, /*flags*/0);
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* DMA tag for our sense buffers */
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct scsi_sense_data),
|
|
/*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->sense_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* Allocate them */
|
|
if (ahc_dmamem_alloc(ahc, scb_data->sense_dmat,
|
|
(void **)&scb_data->sense,
|
|
BUS_DMA_NOWAIT, &scb_data->sense_dmamap) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* And permanently map them */
|
|
ahc_dmamap_load(ahc, scb_data->sense_dmat, scb_data->sense_dmamap,
|
|
scb_data->sense,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct scsi_sense_data),
|
|
ahc_dmamap_cb, &scb_data->sense_busaddr, /*flags*/0);
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* DMA tag for our S/G structures. We allocate in page sized chunks */
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/8,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
PAGE_SIZE, /*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &scb_data->sg_dmat) != 0) {
|
|
goto error_exit;
|
|
}
|
|
|
|
scb_data->init_level++;
|
|
|
|
/* Perform initial CCB allocation */
|
|
memset(scb_data->hscbs, 0,
|
|
AHC_SCB_MAX_ALLOC * sizeof(struct hardware_scb));
|
|
ahc_alloc_scbs(ahc);
|
|
|
|
if (scb_data->numscbs == 0) {
|
|
printk("%s: ahc_init_scbdata - "
|
|
"Unable to allocate initial scbs\n",
|
|
ahc_name(ahc));
|
|
goto error_exit;
|
|
}
|
|
|
|
/*
|
|
* Reserve the next queued SCB.
|
|
*/
|
|
ahc->next_queued_scb = ahc_get_scb(ahc);
|
|
|
|
/*
|
|
* Note that we were successful
|
|
*/
|
|
return (0);
|
|
|
|
error_exit:
|
|
|
|
return (ENOMEM);
|
|
}
|
|
|
|
static void
|
|
ahc_fini_scbdata(struct ahc_softc *ahc)
|
|
{
|
|
struct scb_data *scb_data;
|
|
|
|
scb_data = ahc->scb_data;
|
|
if (scb_data == NULL)
|
|
return;
|
|
|
|
switch (scb_data->init_level) {
|
|
default:
|
|
case 7:
|
|
{
|
|
struct sg_map_node *sg_map;
|
|
|
|
while ((sg_map = SLIST_FIRST(&scb_data->sg_maps))!= NULL) {
|
|
SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
|
|
ahc_dmamap_unload(ahc, scb_data->sg_dmat,
|
|
sg_map->sg_dmamap);
|
|
ahc_dmamem_free(ahc, scb_data->sg_dmat,
|
|
sg_map->sg_vaddr,
|
|
sg_map->sg_dmamap);
|
|
kfree(sg_map);
|
|
}
|
|
ahc_dma_tag_destroy(ahc, scb_data->sg_dmat);
|
|
}
|
|
case 6:
|
|
ahc_dmamap_unload(ahc, scb_data->sense_dmat,
|
|
scb_data->sense_dmamap);
|
|
case 5:
|
|
ahc_dmamem_free(ahc, scb_data->sense_dmat, scb_data->sense,
|
|
scb_data->sense_dmamap);
|
|
ahc_dmamap_destroy(ahc, scb_data->sense_dmat,
|
|
scb_data->sense_dmamap);
|
|
case 4:
|
|
ahc_dma_tag_destroy(ahc, scb_data->sense_dmat);
|
|
case 3:
|
|
ahc_dmamap_unload(ahc, scb_data->hscb_dmat,
|
|
scb_data->hscb_dmamap);
|
|
case 2:
|
|
ahc_dmamem_free(ahc, scb_data->hscb_dmat, scb_data->hscbs,
|
|
scb_data->hscb_dmamap);
|
|
ahc_dmamap_destroy(ahc, scb_data->hscb_dmat,
|
|
scb_data->hscb_dmamap);
|
|
case 1:
|
|
ahc_dma_tag_destroy(ahc, scb_data->hscb_dmat);
|
|
break;
|
|
case 0:
|
|
break;
|
|
}
|
|
if (scb_data->scbarray != NULL)
|
|
kfree(scb_data->scbarray);
|
|
}
|
|
|
|
static void
|
|
ahc_alloc_scbs(struct ahc_softc *ahc)
|
|
{
|
|
struct scb_data *scb_data;
|
|
struct scb *next_scb;
|
|
struct sg_map_node *sg_map;
|
|
dma_addr_t physaddr;
|
|
struct ahc_dma_seg *segs;
|
|
int newcount;
|
|
int i;
|
|
|
|
scb_data = ahc->scb_data;
|
|
if (scb_data->numscbs >= AHC_SCB_MAX_ALLOC)
|
|
/* Can't allocate any more */
|
|
return;
|
|
|
|
next_scb = &scb_data->scbarray[scb_data->numscbs];
|
|
|
|
sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
|
|
|
|
if (sg_map == NULL)
|
|
return;
|
|
|
|
/* Allocate S/G space for the next batch of SCBS */
|
|
if (ahc_dmamem_alloc(ahc, scb_data->sg_dmat,
|
|
(void **)&sg_map->sg_vaddr,
|
|
BUS_DMA_NOWAIT, &sg_map->sg_dmamap) != 0) {
|
|
kfree(sg_map);
|
|
return;
|
|
}
|
|
|
|
SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
|
|
|
|
ahc_dmamap_load(ahc, scb_data->sg_dmat, sg_map->sg_dmamap,
|
|
sg_map->sg_vaddr, PAGE_SIZE, ahc_dmamap_cb,
|
|
&sg_map->sg_physaddr, /*flags*/0);
|
|
|
|
segs = sg_map->sg_vaddr;
|
|
physaddr = sg_map->sg_physaddr;
|
|
|
|
newcount = (PAGE_SIZE / (AHC_NSEG * sizeof(struct ahc_dma_seg)));
|
|
newcount = min(newcount, (AHC_SCB_MAX_ALLOC - scb_data->numscbs));
|
|
for (i = 0; i < newcount; i++) {
|
|
struct scb_platform_data *pdata;
|
|
#ifndef __linux__
|
|
int error;
|
|
#endif
|
|
pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
|
|
if (pdata == NULL)
|
|
break;
|
|
next_scb->platform_data = pdata;
|
|
next_scb->sg_map = sg_map;
|
|
next_scb->sg_list = segs;
|
|
/*
|
|
* The sequencer always starts with the second entry.
|
|
* The first entry is embedded in the scb.
|
|
*/
|
|
next_scb->sg_list_phys = physaddr + sizeof(struct ahc_dma_seg);
|
|
next_scb->ahc_softc = ahc;
|
|
next_scb->flags = SCB_FREE;
|
|
#ifndef __linux__
|
|
error = ahc_dmamap_create(ahc, ahc->buffer_dmat, /*flags*/0,
|
|
&next_scb->dmamap);
|
|
if (error != 0)
|
|
break;
|
|
#endif
|
|
next_scb->hscb = &scb_data->hscbs[scb_data->numscbs];
|
|
next_scb->hscb->tag = ahc->scb_data->numscbs;
|
|
SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs,
|
|
next_scb, links.sle);
|
|
segs += AHC_NSEG;
|
|
physaddr += (AHC_NSEG * sizeof(struct ahc_dma_seg));
|
|
next_scb++;
|
|
ahc->scb_data->numscbs++;
|
|
}
|
|
}
|
|
|
|
void
|
|
ahc_controller_info(struct ahc_softc *ahc, char *buf)
|
|
{
|
|
int len;
|
|
|
|
len = sprintf(buf, "%s: ", ahc_chip_names[ahc->chip & AHC_CHIPID_MASK]);
|
|
buf += len;
|
|
if ((ahc->features & AHC_TWIN) != 0)
|
|
len = sprintf(buf, "Twin Channel, A SCSI Id=%d, "
|
|
"B SCSI Id=%d, primary %c, ",
|
|
ahc->our_id, ahc->our_id_b,
|
|
(ahc->flags & AHC_PRIMARY_CHANNEL) + 'A');
|
|
else {
|
|
const char *speed;
|
|
const char *type;
|
|
|
|
speed = "";
|
|
if ((ahc->features & AHC_ULTRA) != 0) {
|
|
speed = "Ultra ";
|
|
} else if ((ahc->features & AHC_DT) != 0) {
|
|
speed = "Ultra160 ";
|
|
} else if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
speed = "Ultra2 ";
|
|
}
|
|
if ((ahc->features & AHC_WIDE) != 0) {
|
|
type = "Wide";
|
|
} else {
|
|
type = "Single";
|
|
}
|
|
len = sprintf(buf, "%s%s Channel %c, SCSI Id=%d, ",
|
|
speed, type, ahc->channel, ahc->our_id);
|
|
}
|
|
buf += len;
|
|
|
|
if ((ahc->flags & AHC_PAGESCBS) != 0)
|
|
sprintf(buf, "%d/%d SCBs",
|
|
ahc->scb_data->maxhscbs, AHC_MAX_QUEUE);
|
|
else
|
|
sprintf(buf, "%d SCBs", ahc->scb_data->maxhscbs);
|
|
}
|
|
|
|
int
|
|
ahc_chip_init(struct ahc_softc *ahc)
|
|
{
|
|
int term;
|
|
int error;
|
|
u_int i;
|
|
u_int scsi_conf;
|
|
u_int scsiseq_template;
|
|
uint32_t physaddr;
|
|
|
|
ahc_outb(ahc, SEQ_FLAGS, 0);
|
|
ahc_outb(ahc, SEQ_FLAGS2, 0);
|
|
|
|
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels*/
|
|
if (ahc->features & AHC_TWIN) {
|
|
|
|
/*
|
|
* Setup Channel B first.
|
|
*/
|
|
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) | SELBUSB);
|
|
term = (ahc->flags & AHC_TERM_ENB_B) != 0 ? STPWEN : 0;
|
|
ahc_outb(ahc, SCSIID, ahc->our_id_b);
|
|
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
|
|
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|
|
|term|ahc->seltime_b|ENSTIMER|ACTNEGEN);
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SIMODE0, ahc_inb(ahc, SIMODE0)|ENIOERR);
|
|
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
|
|
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
|
|
|
|
/* Select Channel A */
|
|
ahc_outb(ahc, SBLKCTL, ahc_inb(ahc, SBLKCTL) & ~SELBUSB);
|
|
}
|
|
term = (ahc->flags & AHC_TERM_ENB_A) != 0 ? STPWEN : 0;
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SCSIID_ULTRA2, ahc->our_id);
|
|
else
|
|
ahc_outb(ahc, SCSIID, ahc->our_id);
|
|
scsi_conf = ahc_inb(ahc, SCSICONF);
|
|
ahc_outb(ahc, SXFRCTL1, (scsi_conf & (ENSPCHK|STIMESEL))
|
|
|term|ahc->seltime
|
|
|ENSTIMER|ACTNEGEN);
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SIMODE0, ahc_inb(ahc, SIMODE0)|ENIOERR);
|
|
ahc_outb(ahc, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
|
|
ahc_outb(ahc, SXFRCTL0, DFON|SPIOEN);
|
|
|
|
/* There are no untagged SCBs active yet. */
|
|
for (i = 0; i < 16; i++) {
|
|
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, 0));
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0) {
|
|
int lun;
|
|
|
|
/*
|
|
* The SCB based BTT allows an entry per
|
|
* target and lun pair.
|
|
*/
|
|
for (lun = 1; lun < AHC_NUM_LUNS; lun++)
|
|
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, lun));
|
|
}
|
|
}
|
|
|
|
/* All of our queues are empty */
|
|
for (i = 0; i < 256; i++)
|
|
ahc->qoutfifo[i] = SCB_LIST_NULL;
|
|
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_PREREAD);
|
|
|
|
for (i = 0; i < 256; i++)
|
|
ahc->qinfifo[i] = SCB_LIST_NULL;
|
|
|
|
if ((ahc->features & AHC_MULTI_TID) != 0) {
|
|
ahc_outb(ahc, TARGID, 0);
|
|
ahc_outb(ahc, TARGID + 1, 0);
|
|
}
|
|
|
|
/*
|
|
* Tell the sequencer where it can find our arrays in memory.
|
|
*/
|
|
physaddr = ahc->scb_data->hscb_busaddr;
|
|
ahc_outb(ahc, HSCB_ADDR, physaddr & 0xFF);
|
|
ahc_outb(ahc, HSCB_ADDR + 1, (physaddr >> 8) & 0xFF);
|
|
ahc_outb(ahc, HSCB_ADDR + 2, (physaddr >> 16) & 0xFF);
|
|
ahc_outb(ahc, HSCB_ADDR + 3, (physaddr >> 24) & 0xFF);
|
|
|
|
physaddr = ahc->shared_data_busaddr;
|
|
ahc_outb(ahc, SHARED_DATA_ADDR, physaddr & 0xFF);
|
|
ahc_outb(ahc, SHARED_DATA_ADDR + 1, (physaddr >> 8) & 0xFF);
|
|
ahc_outb(ahc, SHARED_DATA_ADDR + 2, (physaddr >> 16) & 0xFF);
|
|
ahc_outb(ahc, SHARED_DATA_ADDR + 3, (physaddr >> 24) & 0xFF);
|
|
|
|
/*
|
|
* Initialize the group code to command length table.
|
|
* This overrides the values in TARG_SCSIRATE, so only
|
|
* setup the table after we have processed that information.
|
|
*/
|
|
ahc_outb(ahc, CMDSIZE_TABLE, 5);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 1, 9);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 2, 9);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 3, 0);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 4, 15);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 5, 11);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 6, 0);
|
|
ahc_outb(ahc, CMDSIZE_TABLE + 7, 0);
|
|
|
|
if ((ahc->features & AHC_HS_MAILBOX) != 0)
|
|
ahc_outb(ahc, HS_MAILBOX, 0);
|
|
|
|
/* Tell the sequencer of our initial queue positions */
|
|
if ((ahc->features & AHC_TARGETMODE) != 0) {
|
|
ahc->tqinfifonext = 1;
|
|
ahc_outb(ahc, KERNEL_TQINPOS, ahc->tqinfifonext - 1);
|
|
ahc_outb(ahc, TQINPOS, ahc->tqinfifonext);
|
|
}
|
|
ahc->qinfifonext = 0;
|
|
ahc->qoutfifonext = 0;
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
ahc_outb(ahc, QOFF_CTLSTA, SCB_QSIZE_256);
|
|
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
|
|
ahc_outb(ahc, SNSCB_QOFF, ahc->qinfifonext);
|
|
ahc_outb(ahc, SDSCB_QOFF, 0);
|
|
} else {
|
|
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
|
|
ahc_outb(ahc, QINPOS, ahc->qinfifonext);
|
|
ahc_outb(ahc, QOUTPOS, ahc->qoutfifonext);
|
|
}
|
|
|
|
/* We don't have any waiting selections */
|
|
ahc_outb(ahc, WAITING_SCBH, SCB_LIST_NULL);
|
|
|
|
/* Our disconnection list is empty too */
|
|
ahc_outb(ahc, DISCONNECTED_SCBH, SCB_LIST_NULL);
|
|
|
|
/* Message out buffer starts empty */
|
|
ahc_outb(ahc, MSG_OUT, MSG_NOOP);
|
|
|
|
/*
|
|
* Setup the allowed SCSI Sequences based on operational mode.
|
|
* If we are a target, we'll enable select in operations once
|
|
* we've had a lun enabled.
|
|
*/
|
|
scsiseq_template = ENSELO|ENAUTOATNO|ENAUTOATNP;
|
|
if ((ahc->flags & AHC_INITIATORROLE) != 0)
|
|
scsiseq_template |= ENRSELI;
|
|
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq_template);
|
|
|
|
/* Initialize our list of free SCBs. */
|
|
ahc_build_free_scb_list(ahc);
|
|
|
|
/*
|
|
* Tell the sequencer which SCB will be the next one it receives.
|
|
*/
|
|
ahc_outb(ahc, NEXT_QUEUED_SCB, ahc->next_queued_scb->hscb->tag);
|
|
|
|
/*
|
|
* Load the Sequencer program and Enable the adapter
|
|
* in "fast" mode.
|
|
*/
|
|
if (bootverbose)
|
|
printk("%s: Downloading Sequencer Program...",
|
|
ahc_name(ahc));
|
|
|
|
error = ahc_loadseq(ahc);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
int wait;
|
|
|
|
/*
|
|
* Wait for up to 500ms for our transceivers
|
|
* to settle. If the adapter does not have
|
|
* a cable attached, the transceivers may
|
|
* never settle, so don't complain if we
|
|
* fail here.
|
|
*/
|
|
for (wait = 5000;
|
|
(ahc_inb(ahc, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
|
|
wait--)
|
|
ahc_delay(100);
|
|
}
|
|
ahc_restart(ahc);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Start the board, ready for normal operation
|
|
*/
|
|
int
|
|
ahc_init(struct ahc_softc *ahc)
|
|
{
|
|
int max_targ;
|
|
u_int i;
|
|
u_int scsi_conf;
|
|
u_int ultraenb;
|
|
u_int discenable;
|
|
u_int tagenable;
|
|
size_t driver_data_size;
|
|
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_DEBUG_SEQUENCER) != 0)
|
|
ahc->flags |= AHC_SEQUENCER_DEBUG;
|
|
#endif
|
|
|
|
#ifdef AHC_PRINT_SRAM
|
|
printk("Scratch Ram:");
|
|
for (i = 0x20; i < 0x5f; i++) {
|
|
if (((i % 8) == 0) && (i != 0)) {
|
|
printk ("\n ");
|
|
}
|
|
printk (" 0x%x", ahc_inb(ahc, i));
|
|
}
|
|
if ((ahc->features & AHC_MORE_SRAM) != 0) {
|
|
for (i = 0x70; i < 0x7f; i++) {
|
|
if (((i % 8) == 0) && (i != 0)) {
|
|
printk ("\n ");
|
|
}
|
|
printk (" 0x%x", ahc_inb(ahc, i));
|
|
}
|
|
}
|
|
printk ("\n");
|
|
/*
|
|
* Reading uninitialized scratch ram may
|
|
* generate parity errors.
|
|
*/
|
|
ahc_outb(ahc, CLRINT, CLRPARERR);
|
|
ahc_outb(ahc, CLRINT, CLRBRKADRINT);
|
|
#endif
|
|
max_targ = 15;
|
|
|
|
/*
|
|
* Assume we have a board at this stage and it has been reset.
|
|
*/
|
|
if ((ahc->flags & AHC_USEDEFAULTS) != 0)
|
|
ahc->our_id = ahc->our_id_b = 7;
|
|
|
|
/*
|
|
* Default to allowing initiator operations.
|
|
*/
|
|
ahc->flags |= AHC_INITIATORROLE;
|
|
|
|
/*
|
|
* Only allow target mode features if this unit has them enabled.
|
|
*/
|
|
if ((AHC_TMODE_ENABLE & (0x1 << ahc->unit)) == 0)
|
|
ahc->features &= ~AHC_TARGETMODE;
|
|
|
|
#ifndef __linux__
|
|
/* DMA tag for mapping buffers into device visible space. */
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/ahc->flags & AHC_39BIT_ADDRESSING
|
|
? (dma_addr_t)0x7FFFFFFFFFULL
|
|
: BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
/*maxsize*/(AHC_NSEG - 1) * PAGE_SIZE,
|
|
/*nsegments*/AHC_NSEG,
|
|
/*maxsegsz*/AHC_MAXTRANSFER_SIZE,
|
|
/*flags*/BUS_DMA_ALLOCNOW,
|
|
&ahc->buffer_dmat) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
#endif
|
|
|
|
ahc->init_level++;
|
|
|
|
/*
|
|
* DMA tag for our command fifos and other data in system memory
|
|
* the card's sequencer must be able to access. For initiator
|
|
* roles, we need to allocate space for the qinfifo and qoutfifo.
|
|
* The qinfifo and qoutfifo are composed of 256 1 byte elements.
|
|
* When providing for the target mode role, we must additionally
|
|
* provide space for the incoming target command fifo and an extra
|
|
* byte to deal with a dma bug in some chip versions.
|
|
*/
|
|
driver_data_size = 2 * 256 * sizeof(uint8_t);
|
|
if ((ahc->features & AHC_TARGETMODE) != 0)
|
|
driver_data_size += AHC_TMODE_CMDS * sizeof(struct target_cmd)
|
|
+ /*DMA WideOdd Bug Buffer*/1;
|
|
if (ahc_dma_tag_create(ahc, ahc->parent_dmat, /*alignment*/1,
|
|
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
|
|
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
|
|
/*highaddr*/BUS_SPACE_MAXADDR,
|
|
/*filter*/NULL, /*filterarg*/NULL,
|
|
driver_data_size,
|
|
/*nsegments*/1,
|
|
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
|
|
/*flags*/0, &ahc->shared_data_dmat) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ahc->init_level++;
|
|
|
|
/* Allocation of driver data */
|
|
if (ahc_dmamem_alloc(ahc, ahc->shared_data_dmat,
|
|
(void **)&ahc->qoutfifo,
|
|
BUS_DMA_NOWAIT, &ahc->shared_data_dmamap) != 0) {
|
|
return (ENOMEM);
|
|
}
|
|
|
|
ahc->init_level++;
|
|
|
|
/* And permanently map it in */
|
|
ahc_dmamap_load(ahc, ahc->shared_data_dmat, ahc->shared_data_dmamap,
|
|
ahc->qoutfifo, driver_data_size, ahc_dmamap_cb,
|
|
&ahc->shared_data_busaddr, /*flags*/0);
|
|
|
|
if ((ahc->features & AHC_TARGETMODE) != 0) {
|
|
ahc->targetcmds = (struct target_cmd *)ahc->qoutfifo;
|
|
ahc->qoutfifo = (uint8_t *)&ahc->targetcmds[AHC_TMODE_CMDS];
|
|
ahc->dma_bug_buf = ahc->shared_data_busaddr
|
|
+ driver_data_size - 1;
|
|
/* All target command blocks start out invalid. */
|
|
for (i = 0; i < AHC_TMODE_CMDS; i++)
|
|
ahc->targetcmds[i].cmd_valid = 0;
|
|
ahc_sync_tqinfifo(ahc, BUS_DMASYNC_PREREAD);
|
|
ahc->qoutfifo = (uint8_t *)&ahc->targetcmds[256];
|
|
}
|
|
ahc->qinfifo = &ahc->qoutfifo[256];
|
|
|
|
ahc->init_level++;
|
|
|
|
/* Allocate SCB data now that buffer_dmat is initialized */
|
|
if (ahc->scb_data->maxhscbs == 0)
|
|
if (ahc_init_scbdata(ahc) != 0)
|
|
return (ENOMEM);
|
|
|
|
/*
|
|
* Allocate a tstate to house information for our
|
|
* initiator presence on the bus as well as the user
|
|
* data for any target mode initiator.
|
|
*/
|
|
if (ahc_alloc_tstate(ahc, ahc->our_id, 'A') == NULL) {
|
|
printk("%s: unable to allocate ahc_tmode_tstate. "
|
|
"Failing attach\n", ahc_name(ahc));
|
|
return (ENOMEM);
|
|
}
|
|
|
|
if ((ahc->features & AHC_TWIN) != 0) {
|
|
if (ahc_alloc_tstate(ahc, ahc->our_id_b, 'B') == NULL) {
|
|
printk("%s: unable to allocate ahc_tmode_tstate. "
|
|
"Failing attach\n", ahc_name(ahc));
|
|
return (ENOMEM);
|
|
}
|
|
}
|
|
|
|
if (ahc->scb_data->maxhscbs < AHC_SCB_MAX_ALLOC) {
|
|
ahc->flags |= AHC_PAGESCBS;
|
|
} else {
|
|
ahc->flags &= ~AHC_PAGESCBS;
|
|
}
|
|
|
|
#ifdef AHC_DEBUG
|
|
if (ahc_debug & AHC_SHOW_MISC) {
|
|
printk("%s: hardware scb %u bytes; kernel scb %u bytes; "
|
|
"ahc_dma %u bytes\n",
|
|
ahc_name(ahc),
|
|
(u_int)sizeof(struct hardware_scb),
|
|
(u_int)sizeof(struct scb),
|
|
(u_int)sizeof(struct ahc_dma_seg));
|
|
}
|
|
#endif /* AHC_DEBUG */
|
|
|
|
/*
|
|
* Look at the information that board initialization or
|
|
* the board bios has left us.
|
|
*/
|
|
if (ahc->features & AHC_TWIN) {
|
|
scsi_conf = ahc_inb(ahc, SCSICONF + 1);
|
|
if ((scsi_conf & RESET_SCSI) != 0
|
|
&& (ahc->flags & AHC_INITIATORROLE) != 0)
|
|
ahc->flags |= AHC_RESET_BUS_B;
|
|
}
|
|
|
|
scsi_conf = ahc_inb(ahc, SCSICONF);
|
|
if ((scsi_conf & RESET_SCSI) != 0
|
|
&& (ahc->flags & AHC_INITIATORROLE) != 0)
|
|
ahc->flags |= AHC_RESET_BUS_A;
|
|
|
|
ultraenb = 0;
|
|
tagenable = ALL_TARGETS_MASK;
|
|
|
|
/* Grab the disconnection disable table and invert it for our needs */
|
|
if ((ahc->flags & AHC_USEDEFAULTS) != 0) {
|
|
printk("%s: Host Adapter Bios disabled. Using default SCSI "
|
|
"device parameters\n", ahc_name(ahc));
|
|
ahc->flags |= AHC_EXTENDED_TRANS_A|AHC_EXTENDED_TRANS_B|
|
|
AHC_TERM_ENB_A|AHC_TERM_ENB_B;
|
|
discenable = ALL_TARGETS_MASK;
|
|
if ((ahc->features & AHC_ULTRA) != 0)
|
|
ultraenb = ALL_TARGETS_MASK;
|
|
} else {
|
|
discenable = ~((ahc_inb(ahc, DISC_DSB + 1) << 8)
|
|
| ahc_inb(ahc, DISC_DSB));
|
|
if ((ahc->features & (AHC_ULTRA|AHC_ULTRA2)) != 0)
|
|
ultraenb = (ahc_inb(ahc, ULTRA_ENB + 1) << 8)
|
|
| ahc_inb(ahc, ULTRA_ENB);
|
|
}
|
|
|
|
if ((ahc->features & (AHC_WIDE|AHC_TWIN)) == 0)
|
|
max_targ = 7;
|
|
|
|
for (i = 0; i <= max_targ; i++) {
|
|
struct ahc_initiator_tinfo *tinfo;
|
|
struct ahc_tmode_tstate *tstate;
|
|
u_int our_id;
|
|
u_int target_id;
|
|
char channel;
|
|
|
|
channel = 'A';
|
|
our_id = ahc->our_id;
|
|
target_id = i;
|
|
if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
|
|
channel = 'B';
|
|
our_id = ahc->our_id_b;
|
|
target_id = i % 8;
|
|
}
|
|
tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
|
|
target_id, &tstate);
|
|
/* Default to async narrow across the board */
|
|
memset(tinfo, 0, sizeof(*tinfo));
|
|
if (ahc->flags & AHC_USEDEFAULTS) {
|
|
if ((ahc->features & AHC_WIDE) != 0)
|
|
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
|
|
/*
|
|
* These will be truncated when we determine the
|
|
* connection type we have with the target.
|
|
*/
|
|
tinfo->user.period = ahc_syncrates->period;
|
|
tinfo->user.offset = MAX_OFFSET;
|
|
} else {
|
|
u_int scsirate;
|
|
uint16_t mask;
|
|
|
|
/* Take the settings leftover in scratch RAM. */
|
|
scsirate = ahc_inb(ahc, TARG_SCSIRATE + i);
|
|
mask = (0x01 << i);
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
u_int offset;
|
|
u_int maxsync;
|
|
|
|
if ((scsirate & SOFS) == 0x0F) {
|
|
/*
|
|
* Haven't negotiated yet,
|
|
* so the format is different.
|
|
*/
|
|
scsirate = (scsirate & SXFR) >> 4
|
|
| (ultraenb & mask)
|
|
? 0x08 : 0x0
|
|
| (scsirate & WIDEXFER);
|
|
offset = MAX_OFFSET_ULTRA2;
|
|
} else
|
|
offset = ahc_inb(ahc, TARG_OFFSET + i);
|
|
if ((scsirate & ~WIDEXFER) == 0 && offset != 0)
|
|
/* Set to the lowest sync rate, 5MHz */
|
|
scsirate |= 0x1c;
|
|
maxsync = AHC_SYNCRATE_ULTRA2;
|
|
if ((ahc->features & AHC_DT) != 0)
|
|
maxsync = AHC_SYNCRATE_DT;
|
|
tinfo->user.period =
|
|
ahc_find_period(ahc, scsirate, maxsync);
|
|
if (offset == 0)
|
|
tinfo->user.period = 0;
|
|
else
|
|
tinfo->user.offset = MAX_OFFSET;
|
|
if ((scsirate & SXFR_ULTRA2) <= 8/*10MHz*/
|
|
&& (ahc->features & AHC_DT) != 0)
|
|
tinfo->user.ppr_options =
|
|
MSG_EXT_PPR_DT_REQ;
|
|
} else if ((scsirate & SOFS) != 0) {
|
|
if ((scsirate & SXFR) == 0x40
|
|
&& (ultraenb & mask) != 0) {
|
|
/* Treat 10MHz as a non-ultra speed */
|
|
scsirate &= ~SXFR;
|
|
ultraenb &= ~mask;
|
|
}
|
|
tinfo->user.period =
|
|
ahc_find_period(ahc, scsirate,
|
|
(ultraenb & mask)
|
|
? AHC_SYNCRATE_ULTRA
|
|
: AHC_SYNCRATE_FAST);
|
|
if (tinfo->user.period != 0)
|
|
tinfo->user.offset = MAX_OFFSET;
|
|
}
|
|
if (tinfo->user.period == 0)
|
|
tinfo->user.offset = 0;
|
|
if ((scsirate & WIDEXFER) != 0
|
|
&& (ahc->features & AHC_WIDE) != 0)
|
|
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
|
|
tinfo->user.protocol_version = 4;
|
|
if ((ahc->features & AHC_DT) != 0)
|
|
tinfo->user.transport_version = 3;
|
|
else
|
|
tinfo->user.transport_version = 2;
|
|
tinfo->goal.protocol_version = 2;
|
|
tinfo->goal.transport_version = 2;
|
|
tinfo->curr.protocol_version = 2;
|
|
tinfo->curr.transport_version = 2;
|
|
}
|
|
tstate->ultraenb = 0;
|
|
}
|
|
ahc->user_discenable = discenable;
|
|
ahc->user_tagenable = tagenable;
|
|
|
|
return (ahc->bus_chip_init(ahc));
|
|
}
|
|
|
|
void
|
|
ahc_intr_enable(struct ahc_softc *ahc, int enable)
|
|
{
|
|
u_int hcntrl;
|
|
|
|
hcntrl = ahc_inb(ahc, HCNTRL);
|
|
hcntrl &= ~INTEN;
|
|
ahc->pause &= ~INTEN;
|
|
ahc->unpause &= ~INTEN;
|
|
if (enable) {
|
|
hcntrl |= INTEN;
|
|
ahc->pause |= INTEN;
|
|
ahc->unpause |= INTEN;
|
|
}
|
|
ahc_outb(ahc, HCNTRL, hcntrl);
|
|
}
|
|
|
|
/*
|
|
* Ensure that the card is paused in a location
|
|
* outside of all critical sections and that all
|
|
* pending work is completed prior to returning.
|
|
* This routine should only be called from outside
|
|
* an interrupt context.
|
|
*/
|
|
void
|
|
ahc_pause_and_flushwork(struct ahc_softc *ahc)
|
|
{
|
|
int intstat;
|
|
int maxloops;
|
|
int paused;
|
|
|
|
maxloops = 1000;
|
|
ahc->flags |= AHC_ALL_INTERRUPTS;
|
|
paused = FALSE;
|
|
do {
|
|
if (paused) {
|
|
ahc_unpause(ahc);
|
|
/*
|
|
* Give the sequencer some time to service
|
|
* any active selections.
|
|
*/
|
|
ahc_delay(500);
|
|
}
|
|
ahc_intr(ahc);
|
|
ahc_pause(ahc);
|
|
paused = TRUE;
|
|
ahc_outb(ahc, SCSISEQ, ahc_inb(ahc, SCSISEQ) & ~ENSELO);
|
|
intstat = ahc_inb(ahc, INTSTAT);
|
|
if ((intstat & INT_PEND) == 0) {
|
|
ahc_clear_critical_section(ahc);
|
|
intstat = ahc_inb(ahc, INTSTAT);
|
|
}
|
|
} while (--maxloops
|
|
&& (intstat != 0xFF || (ahc->features & AHC_REMOVABLE) == 0)
|
|
&& ((intstat & INT_PEND) != 0
|
|
|| (ahc_inb(ahc, SSTAT0) & (SELDO|SELINGO)) != 0));
|
|
if (maxloops == 0) {
|
|
printk("Infinite interrupt loop, INTSTAT = %x",
|
|
ahc_inb(ahc, INTSTAT));
|
|
}
|
|
ahc_platform_flushwork(ahc);
|
|
ahc->flags &= ~AHC_ALL_INTERRUPTS;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
int
|
|
ahc_suspend(struct ahc_softc *ahc)
|
|
{
|
|
|
|
ahc_pause_and_flushwork(ahc);
|
|
|
|
if (LIST_FIRST(&ahc->pending_scbs) != NULL) {
|
|
ahc_unpause(ahc);
|
|
return (EBUSY);
|
|
}
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* XXX What about ATIOs that have not yet been serviced?
|
|
* Perhaps we should just refuse to be suspended if we
|
|
* are acting in a target role.
|
|
*/
|
|
if (ahc->pending_device != NULL) {
|
|
ahc_unpause(ahc);
|
|
return (EBUSY);
|
|
}
|
|
#endif
|
|
ahc_shutdown(ahc);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ahc_resume(struct ahc_softc *ahc)
|
|
{
|
|
|
|
ahc_reset(ahc, /*reinit*/TRUE);
|
|
ahc_intr_enable(ahc, TRUE);
|
|
ahc_restart(ahc);
|
|
return (0);
|
|
}
|
|
#endif
|
|
/************************** Busy Target Table *********************************/
|
|
/*
|
|
* Return the untagged transaction id for a given target/channel lun.
|
|
* Optionally, clear the entry.
|
|
*/
|
|
static u_int
|
|
ahc_index_busy_tcl(struct ahc_softc *ahc, u_int tcl)
|
|
{
|
|
u_int scbid;
|
|
u_int target_offset;
|
|
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0) {
|
|
u_int saved_scbptr;
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
|
|
scbid = ahc_inb(ahc, SCB_64_BTT + TCL_TARGET_OFFSET(tcl));
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
} else {
|
|
target_offset = TCL_TARGET_OFFSET(tcl);
|
|
scbid = ahc_inb(ahc, BUSY_TARGETS + target_offset);
|
|
}
|
|
|
|
return (scbid);
|
|
}
|
|
|
|
static void
|
|
ahc_unbusy_tcl(struct ahc_softc *ahc, u_int tcl)
|
|
{
|
|
u_int target_offset;
|
|
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0) {
|
|
u_int saved_scbptr;
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
|
|
ahc_outb(ahc, SCB_64_BTT+TCL_TARGET_OFFSET(tcl), SCB_LIST_NULL);
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
} else {
|
|
target_offset = TCL_TARGET_OFFSET(tcl);
|
|
ahc_outb(ahc, BUSY_TARGETS + target_offset, SCB_LIST_NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahc_busy_tcl(struct ahc_softc *ahc, u_int tcl, u_int scbid)
|
|
{
|
|
u_int target_offset;
|
|
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0) {
|
|
u_int saved_scbptr;
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
ahc_outb(ahc, SCBPTR, TCL_LUN(tcl));
|
|
ahc_outb(ahc, SCB_64_BTT + TCL_TARGET_OFFSET(tcl), scbid);
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
} else {
|
|
target_offset = TCL_TARGET_OFFSET(tcl);
|
|
ahc_outb(ahc, BUSY_TARGETS + target_offset, scbid);
|
|
}
|
|
}
|
|
|
|
/************************** SCB and SCB queue management **********************/
|
|
int
|
|
ahc_match_scb(struct ahc_softc *ahc, struct scb *scb, int target,
|
|
char channel, int lun, u_int tag, role_t role)
|
|
{
|
|
int targ = SCB_GET_TARGET(ahc, scb);
|
|
char chan = SCB_GET_CHANNEL(ahc, scb);
|
|
int slun = SCB_GET_LUN(scb);
|
|
int match;
|
|
|
|
match = ((chan == channel) || (channel == ALL_CHANNELS));
|
|
if (match != 0)
|
|
match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
|
|
if (match != 0)
|
|
match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
|
|
if (match != 0) {
|
|
#ifdef AHC_TARGET_MODE
|
|
int group;
|
|
|
|
group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
|
|
if (role == ROLE_INITIATOR) {
|
|
match = (group != XPT_FC_GROUP_TMODE)
|
|
&& ((tag == scb->hscb->tag)
|
|
|| (tag == SCB_LIST_NULL));
|
|
} else if (role == ROLE_TARGET) {
|
|
match = (group == XPT_FC_GROUP_TMODE)
|
|
&& ((tag == scb->io_ctx->csio.tag_id)
|
|
|| (tag == SCB_LIST_NULL));
|
|
}
|
|
#else /* !AHC_TARGET_MODE */
|
|
match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL));
|
|
#endif /* AHC_TARGET_MODE */
|
|
}
|
|
|
|
return match;
|
|
}
|
|
|
|
static void
|
|
ahc_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
int target;
|
|
char channel;
|
|
int lun;
|
|
|
|
target = SCB_GET_TARGET(ahc, scb);
|
|
lun = SCB_GET_LUN(scb);
|
|
channel = SCB_GET_CHANNEL(ahc, scb);
|
|
|
|
ahc_search_qinfifo(ahc, target, channel, lun,
|
|
/*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
|
|
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
|
|
|
|
ahc_platform_freeze_devq(ahc, scb);
|
|
}
|
|
|
|
void
|
|
ahc_qinfifo_requeue_tail(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
struct scb *prev_scb;
|
|
|
|
prev_scb = NULL;
|
|
if (ahc_qinfifo_count(ahc) != 0) {
|
|
u_int prev_tag;
|
|
uint8_t prev_pos;
|
|
|
|
prev_pos = ahc->qinfifonext - 1;
|
|
prev_tag = ahc->qinfifo[prev_pos];
|
|
prev_scb = ahc_lookup_scb(ahc, prev_tag);
|
|
}
|
|
ahc_qinfifo_requeue(ahc, prev_scb, scb);
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
|
|
} else {
|
|
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahc_qinfifo_requeue(struct ahc_softc *ahc, struct scb *prev_scb,
|
|
struct scb *scb)
|
|
{
|
|
if (prev_scb == NULL) {
|
|
ahc_outb(ahc, NEXT_QUEUED_SCB, scb->hscb->tag);
|
|
} else {
|
|
prev_scb->hscb->next = scb->hscb->tag;
|
|
ahc_sync_scb(ahc, prev_scb,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;
|
|
scb->hscb->next = ahc->next_queued_scb->hscb->tag;
|
|
ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static int
|
|
ahc_qinfifo_count(struct ahc_softc *ahc)
|
|
{
|
|
uint8_t qinpos;
|
|
uint8_t diff;
|
|
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
qinpos = ahc_inb(ahc, SNSCB_QOFF);
|
|
ahc_outb(ahc, SNSCB_QOFF, qinpos);
|
|
} else
|
|
qinpos = ahc_inb(ahc, QINPOS);
|
|
diff = ahc->qinfifonext - qinpos;
|
|
return (diff);
|
|
}
|
|
|
|
int
|
|
ahc_search_qinfifo(struct ahc_softc *ahc, int target, char channel,
|
|
int lun, u_int tag, role_t role, uint32_t status,
|
|
ahc_search_action action)
|
|
{
|
|
struct scb *scb;
|
|
struct scb *prev_scb;
|
|
uint8_t qinstart;
|
|
uint8_t qinpos;
|
|
uint8_t qintail;
|
|
uint8_t next;
|
|
uint8_t prev;
|
|
uint8_t curscbptr;
|
|
int found;
|
|
int have_qregs;
|
|
|
|
qintail = ahc->qinfifonext;
|
|
have_qregs = (ahc->features & AHC_QUEUE_REGS) != 0;
|
|
if (have_qregs) {
|
|
qinstart = ahc_inb(ahc, SNSCB_QOFF);
|
|
ahc_outb(ahc, SNSCB_QOFF, qinstart);
|
|
} else
|
|
qinstart = ahc_inb(ahc, QINPOS);
|
|
qinpos = qinstart;
|
|
found = 0;
|
|
prev_scb = NULL;
|
|
|
|
if (action == SEARCH_COMPLETE) {
|
|
/*
|
|
* Don't attempt to run any queued untagged transactions
|
|
* until we are done with the abort process.
|
|
*/
|
|
ahc_freeze_untagged_queues(ahc);
|
|
}
|
|
|
|
/*
|
|
* Start with an empty queue. Entries that are not chosen
|
|
* for removal will be re-added to the queue as we go.
|
|
*/
|
|
ahc->qinfifonext = qinpos;
|
|
ahc_outb(ahc, NEXT_QUEUED_SCB, ahc->next_queued_scb->hscb->tag);
|
|
|
|
while (qinpos != qintail) {
|
|
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qinpos]);
|
|
if (scb == NULL) {
|
|
printk("qinpos = %d, SCB index = %d\n",
|
|
qinpos, ahc->qinfifo[qinpos]);
|
|
panic("Loop 1\n");
|
|
}
|
|
|
|
if (ahc_match_scb(ahc, scb, target, channel, lun, tag, role)) {
|
|
/*
|
|
* We found an scb that needs to be acted on.
|
|
*/
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
{
|
|
cam_status ostat;
|
|
cam_status cstat;
|
|
|
|
ostat = ahc_get_transaction_status(scb);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahc_set_transaction_status(scb, status);
|
|
cstat = ahc_get_transaction_status(scb);
|
|
if (cstat != CAM_REQ_CMP)
|
|
ahc_freeze_scb(scb);
|
|
if ((scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB in qinfifo\n");
|
|
ahc_done(ahc, scb);
|
|
|
|
/* FALLTHROUGH */
|
|
}
|
|
case SEARCH_REMOVE:
|
|
break;
|
|
case SEARCH_COUNT:
|
|
ahc_qinfifo_requeue(ahc, prev_scb, scb);
|
|
prev_scb = scb;
|
|
break;
|
|
}
|
|
} else {
|
|
ahc_qinfifo_requeue(ahc, prev_scb, scb);
|
|
prev_scb = scb;
|
|
}
|
|
qinpos++;
|
|
}
|
|
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
|
|
} else {
|
|
ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
|
|
}
|
|
|
|
if (action != SEARCH_COUNT
|
|
&& (found != 0)
|
|
&& (qinstart != ahc->qinfifonext)) {
|
|
/*
|
|
* The sequencer may be in the process of dmaing
|
|
* down the SCB at the beginning of the queue.
|
|
* This could be problematic if either the first,
|
|
* or the second SCB is removed from the queue
|
|
* (the first SCB includes a pointer to the "next"
|
|
* SCB to dma). If we have removed any entries, swap
|
|
* the first element in the queue with the next HSCB
|
|
* so the sequencer will notice that NEXT_QUEUED_SCB
|
|
* has changed during its dma attempt and will retry
|
|
* the DMA.
|
|
*/
|
|
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qinstart]);
|
|
|
|
if (scb == NULL) {
|
|
printk("found = %d, qinstart = %d, qinfifionext = %d\n",
|
|
found, qinstart, ahc->qinfifonext);
|
|
panic("First/Second Qinfifo fixup\n");
|
|
}
|
|
/*
|
|
* ahc_swap_with_next_hscb forces our next pointer to
|
|
* point to the reserved SCB for future commands. Save
|
|
* and restore our original next pointer to maintain
|
|
* queue integrity.
|
|
*/
|
|
next = scb->hscb->next;
|
|
ahc->scb_data->scbindex[scb->hscb->tag] = NULL;
|
|
ahc_swap_with_next_hscb(ahc, scb);
|
|
scb->hscb->next = next;
|
|
ahc->qinfifo[qinstart] = scb->hscb->tag;
|
|
|
|
/* Tell the card about the new head of the qinfifo. */
|
|
ahc_outb(ahc, NEXT_QUEUED_SCB, scb->hscb->tag);
|
|
|
|
/* Fixup the tail "next" pointer. */
|
|
qintail = ahc->qinfifonext - 1;
|
|
scb = ahc_lookup_scb(ahc, ahc->qinfifo[qintail]);
|
|
scb->hscb->next = ahc->next_queued_scb->hscb->tag;
|
|
}
|
|
|
|
/*
|
|
* Search waiting for selection list.
|
|
*/
|
|
curscbptr = ahc_inb(ahc, SCBPTR);
|
|
next = ahc_inb(ahc, WAITING_SCBH); /* Start at head of list. */
|
|
prev = SCB_LIST_NULL;
|
|
|
|
while (next != SCB_LIST_NULL) {
|
|
uint8_t scb_index;
|
|
|
|
ahc_outb(ahc, SCBPTR, next);
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
if (scb_index >= ahc->scb_data->numscbs) {
|
|
printk("Waiting List inconsistency. "
|
|
"SCB index == %d, yet numscbs == %d.",
|
|
scb_index, ahc->scb_data->numscbs);
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
}
|
|
scb = ahc_lookup_scb(ahc, scb_index);
|
|
if (scb == NULL) {
|
|
printk("scb_index = %d, next = %d\n",
|
|
scb_index, next);
|
|
panic("Waiting List traversal\n");
|
|
}
|
|
if (ahc_match_scb(ahc, scb, target, channel,
|
|
lun, SCB_LIST_NULL, role)) {
|
|
/*
|
|
* We found an scb that needs to be acted on.
|
|
*/
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
{
|
|
cam_status ostat;
|
|
cam_status cstat;
|
|
|
|
ostat = ahc_get_transaction_status(scb);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahc_set_transaction_status(scb,
|
|
status);
|
|
cstat = ahc_get_transaction_status(scb);
|
|
if (cstat != CAM_REQ_CMP)
|
|
ahc_freeze_scb(scb);
|
|
if ((scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB in Waiting List\n");
|
|
ahc_done(ahc, scb);
|
|
/* FALLTHROUGH */
|
|
}
|
|
case SEARCH_REMOVE:
|
|
next = ahc_rem_wscb(ahc, next, prev);
|
|
break;
|
|
case SEARCH_COUNT:
|
|
prev = next;
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
break;
|
|
}
|
|
} else {
|
|
|
|
prev = next;
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
}
|
|
ahc_outb(ahc, SCBPTR, curscbptr);
|
|
|
|
found += ahc_search_untagged_queues(ahc, /*ahc_io_ctx_t*/NULL, target,
|
|
channel, lun, status, action);
|
|
|
|
if (action == SEARCH_COMPLETE)
|
|
ahc_release_untagged_queues(ahc);
|
|
return (found);
|
|
}
|
|
|
|
int
|
|
ahc_search_untagged_queues(struct ahc_softc *ahc, ahc_io_ctx_t ctx,
|
|
int target, char channel, int lun, uint32_t status,
|
|
ahc_search_action action)
|
|
{
|
|
struct scb *scb;
|
|
int maxtarget;
|
|
int found;
|
|
int i;
|
|
|
|
if (action == SEARCH_COMPLETE) {
|
|
/*
|
|
* Don't attempt to run any queued untagged transactions
|
|
* until we are done with the abort process.
|
|
*/
|
|
ahc_freeze_untagged_queues(ahc);
|
|
}
|
|
|
|
found = 0;
|
|
i = 0;
|
|
if ((ahc->flags & AHC_SCB_BTT) == 0) {
|
|
|
|
maxtarget = 16;
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
|
|
i = target;
|
|
if (channel == 'B')
|
|
i += 8;
|
|
maxtarget = i + 1;
|
|
}
|
|
} else {
|
|
maxtarget = 0;
|
|
}
|
|
|
|
for (; i < maxtarget; i++) {
|
|
struct scb_tailq *untagged_q;
|
|
struct scb *next_scb;
|
|
|
|
untagged_q = &(ahc->untagged_queues[i]);
|
|
next_scb = TAILQ_FIRST(untagged_q);
|
|
while (next_scb != NULL) {
|
|
|
|
scb = next_scb;
|
|
next_scb = TAILQ_NEXT(scb, links.tqe);
|
|
|
|
/*
|
|
* The head of the list may be the currently
|
|
* active untagged command for a device.
|
|
* We're only searching for commands that
|
|
* have not been started. A transaction
|
|
* marked active but still in the qinfifo
|
|
* is removed by the qinfifo scanning code
|
|
* above.
|
|
*/
|
|
if ((scb->flags & SCB_ACTIVE) != 0)
|
|
continue;
|
|
|
|
if (ahc_match_scb(ahc, scb, target, channel, lun,
|
|
SCB_LIST_NULL, ROLE_INITIATOR) == 0
|
|
|| (ctx != NULL && ctx != scb->io_ctx))
|
|
continue;
|
|
|
|
/*
|
|
* We found an scb that needs to be acted on.
|
|
*/
|
|
found++;
|
|
switch (action) {
|
|
case SEARCH_COMPLETE:
|
|
{
|
|
cam_status ostat;
|
|
cam_status cstat;
|
|
|
|
ostat = ahc_get_transaction_status(scb);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahc_set_transaction_status(scb, status);
|
|
cstat = ahc_get_transaction_status(scb);
|
|
if (cstat != CAM_REQ_CMP)
|
|
ahc_freeze_scb(scb);
|
|
if ((scb->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB in untaggedQ\n");
|
|
ahc_done(ahc, scb);
|
|
break;
|
|
}
|
|
case SEARCH_REMOVE:
|
|
scb->flags &= ~SCB_UNTAGGEDQ;
|
|
TAILQ_REMOVE(untagged_q, scb, links.tqe);
|
|
break;
|
|
case SEARCH_COUNT:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (action == SEARCH_COMPLETE)
|
|
ahc_release_untagged_queues(ahc);
|
|
return (found);
|
|
}
|
|
|
|
int
|
|
ahc_search_disc_list(struct ahc_softc *ahc, int target, char channel,
|
|
int lun, u_int tag, int stop_on_first, int remove,
|
|
int save_state)
|
|
{
|
|
struct scb *scbp;
|
|
u_int next;
|
|
u_int prev;
|
|
u_int count;
|
|
u_int active_scb;
|
|
|
|
count = 0;
|
|
next = ahc_inb(ahc, DISCONNECTED_SCBH);
|
|
prev = SCB_LIST_NULL;
|
|
|
|
if (save_state) {
|
|
/* restore this when we're done */
|
|
active_scb = ahc_inb(ahc, SCBPTR);
|
|
} else
|
|
/* Silence compiler */
|
|
active_scb = SCB_LIST_NULL;
|
|
|
|
while (next != SCB_LIST_NULL) {
|
|
u_int scb_index;
|
|
|
|
ahc_outb(ahc, SCBPTR, next);
|
|
scb_index = ahc_inb(ahc, SCB_TAG);
|
|
if (scb_index >= ahc->scb_data->numscbs) {
|
|
printk("Disconnected List inconsistency. "
|
|
"SCB index == %d, yet numscbs == %d.",
|
|
scb_index, ahc->scb_data->numscbs);
|
|
ahc_dump_card_state(ahc);
|
|
panic("for safety");
|
|
}
|
|
|
|
if (next == prev) {
|
|
panic("Disconnected List Loop. "
|
|
"cur SCBPTR == %x, prev SCBPTR == %x.",
|
|
next, prev);
|
|
}
|
|
scbp = ahc_lookup_scb(ahc, scb_index);
|
|
if (ahc_match_scb(ahc, scbp, target, channel, lun,
|
|
tag, ROLE_INITIATOR)) {
|
|
count++;
|
|
if (remove) {
|
|
next =
|
|
ahc_rem_scb_from_disc_list(ahc, prev, next);
|
|
} else {
|
|
prev = next;
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
if (stop_on_first)
|
|
break;
|
|
} else {
|
|
prev = next;
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
}
|
|
if (save_state)
|
|
ahc_outb(ahc, SCBPTR, active_scb);
|
|
return (count);
|
|
}
|
|
|
|
/*
|
|
* Remove an SCB from the on chip list of disconnected transactions.
|
|
* This is empty/unused if we are not performing SCB paging.
|
|
*/
|
|
static u_int
|
|
ahc_rem_scb_from_disc_list(struct ahc_softc *ahc, u_int prev, u_int scbptr)
|
|
{
|
|
u_int next;
|
|
|
|
ahc_outb(ahc, SCBPTR, scbptr);
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
|
|
ahc_outb(ahc, SCB_CONTROL, 0);
|
|
|
|
ahc_add_curscb_to_free_list(ahc);
|
|
|
|
if (prev != SCB_LIST_NULL) {
|
|
ahc_outb(ahc, SCBPTR, prev);
|
|
ahc_outb(ahc, SCB_NEXT, next);
|
|
} else
|
|
ahc_outb(ahc, DISCONNECTED_SCBH, next);
|
|
|
|
return (next);
|
|
}
|
|
|
|
/*
|
|
* Add the SCB as selected by SCBPTR onto the on chip list of
|
|
* free hardware SCBs. This list is empty/unused if we are not
|
|
* performing SCB paging.
|
|
*/
|
|
static void
|
|
ahc_add_curscb_to_free_list(struct ahc_softc *ahc)
|
|
{
|
|
/*
|
|
* Invalidate the tag so that our abort
|
|
* routines don't think it's active.
|
|
*/
|
|
ahc_outb(ahc, SCB_TAG, SCB_LIST_NULL);
|
|
|
|
if ((ahc->flags & AHC_PAGESCBS) != 0) {
|
|
ahc_outb(ahc, SCB_NEXT, ahc_inb(ahc, FREE_SCBH));
|
|
ahc_outb(ahc, FREE_SCBH, ahc_inb(ahc, SCBPTR));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manipulate the waiting for selection list and return the
|
|
* scb that follows the one that we remove.
|
|
*/
|
|
static u_int
|
|
ahc_rem_wscb(struct ahc_softc *ahc, u_int scbpos, u_int prev)
|
|
{
|
|
u_int curscb, next;
|
|
|
|
/*
|
|
* Select the SCB we want to abort and
|
|
* pull the next pointer out of it.
|
|
*/
|
|
curscb = ahc_inb(ahc, SCBPTR);
|
|
ahc_outb(ahc, SCBPTR, scbpos);
|
|
next = ahc_inb(ahc, SCB_NEXT);
|
|
|
|
/* Clear the necessary fields */
|
|
ahc_outb(ahc, SCB_CONTROL, 0);
|
|
|
|
ahc_add_curscb_to_free_list(ahc);
|
|
|
|
/* update the waiting list */
|
|
if (prev == SCB_LIST_NULL) {
|
|
/* First in the list */
|
|
ahc_outb(ahc, WAITING_SCBH, next);
|
|
|
|
/*
|
|
* Ensure we aren't attempting to perform
|
|
* selection for this entry.
|
|
*/
|
|
ahc_outb(ahc, SCSISEQ, (ahc_inb(ahc, SCSISEQ) & ~ENSELO));
|
|
} else {
|
|
/*
|
|
* Select the scb that pointed to us
|
|
* and update its next pointer.
|
|
*/
|
|
ahc_outb(ahc, SCBPTR, prev);
|
|
ahc_outb(ahc, SCB_NEXT, next);
|
|
}
|
|
|
|
/*
|
|
* Point us back at the original scb position.
|
|
*/
|
|
ahc_outb(ahc, SCBPTR, curscb);
|
|
return next;
|
|
}
|
|
|
|
/******************************** Error Handling ******************************/
|
|
/*
|
|
* Abort all SCBs that match the given description (target/channel/lun/tag),
|
|
* setting their status to the passed in status if the status has not already
|
|
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
|
|
* is paused before it is called.
|
|
*/
|
|
static int
|
|
ahc_abort_scbs(struct ahc_softc *ahc, int target, char channel,
|
|
int lun, u_int tag, role_t role, uint32_t status)
|
|
{
|
|
struct scb *scbp;
|
|
struct scb *scbp_next;
|
|
u_int active_scb;
|
|
int i, j;
|
|
int maxtarget;
|
|
int minlun;
|
|
int maxlun;
|
|
|
|
int found;
|
|
|
|
/*
|
|
* Don't attempt to run any queued untagged transactions
|
|
* until we are done with the abort process.
|
|
*/
|
|
ahc_freeze_untagged_queues(ahc);
|
|
|
|
/* restore this when we're done */
|
|
active_scb = ahc_inb(ahc, SCBPTR);
|
|
|
|
found = ahc_search_qinfifo(ahc, target, channel, lun, SCB_LIST_NULL,
|
|
role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
|
|
|
|
/*
|
|
* Clean out the busy target table for any untagged commands.
|
|
*/
|
|
i = 0;
|
|
maxtarget = 16;
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
i = target;
|
|
if (channel == 'B')
|
|
i += 8;
|
|
maxtarget = i + 1;
|
|
}
|
|
|
|
if (lun == CAM_LUN_WILDCARD) {
|
|
|
|
/*
|
|
* Unless we are using an SCB based
|
|
* busy targets table, there is only
|
|
* one table entry for all luns of
|
|
* a target.
|
|
*/
|
|
minlun = 0;
|
|
maxlun = 1;
|
|
if ((ahc->flags & AHC_SCB_BTT) != 0)
|
|
maxlun = AHC_NUM_LUNS;
|
|
} else {
|
|
minlun = lun;
|
|
maxlun = lun + 1;
|
|
}
|
|
|
|
if (role != ROLE_TARGET) {
|
|
for (;i < maxtarget; i++) {
|
|
for (j = minlun;j < maxlun; j++) {
|
|
u_int scbid;
|
|
u_int tcl;
|
|
|
|
tcl = BUILD_TCL(i << 4, j);
|
|
scbid = ahc_index_busy_tcl(ahc, tcl);
|
|
scbp = ahc_lookup_scb(ahc, scbid);
|
|
if (scbp == NULL
|
|
|| ahc_match_scb(ahc, scbp, target, channel,
|
|
lun, tag, role) == 0)
|
|
continue;
|
|
ahc_unbusy_tcl(ahc, BUILD_TCL(i << 4, j));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Go through the disconnected list and remove any entries we
|
|
* have queued for completion, 0'ing their control byte too.
|
|
* We save the active SCB and restore it ourselves, so there
|
|
* is no reason for this search to restore it too.
|
|
*/
|
|
ahc_search_disc_list(ahc, target, channel, lun, tag,
|
|
/*stop_on_first*/FALSE, /*remove*/TRUE,
|
|
/*save_state*/FALSE);
|
|
}
|
|
|
|
/*
|
|
* Go through the hardware SCB array looking for commands that
|
|
* were active but not on any list. In some cases, these remnants
|
|
* might not still have mappings in the scbindex array (e.g. unexpected
|
|
* bus free with the same scb queued for an abort). Don't hold this
|
|
* against them.
|
|
*/
|
|
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
|
|
u_int scbid;
|
|
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
scbid = ahc_inb(ahc, SCB_TAG);
|
|
scbp = ahc_lookup_scb(ahc, scbid);
|
|
if ((scbp == NULL && scbid != SCB_LIST_NULL)
|
|
|| (scbp != NULL
|
|
&& ahc_match_scb(ahc, scbp, target, channel, lun, tag, role)))
|
|
ahc_add_curscb_to_free_list(ahc);
|
|
}
|
|
|
|
/*
|
|
* Go through the pending CCB list and look for
|
|
* commands for this target that are still active.
|
|
* These are other tagged commands that were
|
|
* disconnected when the reset occurred.
|
|
*/
|
|
scbp_next = LIST_FIRST(&ahc->pending_scbs);
|
|
while (scbp_next != NULL) {
|
|
scbp = scbp_next;
|
|
scbp_next = LIST_NEXT(scbp, pending_links);
|
|
if (ahc_match_scb(ahc, scbp, target, channel, lun, tag, role)) {
|
|
cam_status ostat;
|
|
|
|
ostat = ahc_get_transaction_status(scbp);
|
|
if (ostat == CAM_REQ_INPROG)
|
|
ahc_set_transaction_status(scbp, status);
|
|
if (ahc_get_transaction_status(scbp) != CAM_REQ_CMP)
|
|
ahc_freeze_scb(scbp);
|
|
if ((scbp->flags & SCB_ACTIVE) == 0)
|
|
printk("Inactive SCB on pending list\n");
|
|
ahc_done(ahc, scbp);
|
|
found++;
|
|
}
|
|
}
|
|
ahc_outb(ahc, SCBPTR, active_scb);
|
|
ahc_platform_abort_scbs(ahc, target, channel, lun, tag, role, status);
|
|
ahc_release_untagged_queues(ahc);
|
|
return found;
|
|
}
|
|
|
|
static void
|
|
ahc_reset_current_bus(struct ahc_softc *ahc)
|
|
{
|
|
uint8_t scsiseq;
|
|
|
|
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) & ~ENSCSIRST);
|
|
scsiseq = ahc_inb(ahc, SCSISEQ);
|
|
ahc_outb(ahc, SCSISEQ, scsiseq | SCSIRSTO);
|
|
ahc_flush_device_writes(ahc);
|
|
ahc_delay(AHC_BUSRESET_DELAY);
|
|
/* Turn off the bus reset */
|
|
ahc_outb(ahc, SCSISEQ, scsiseq & ~SCSIRSTO);
|
|
|
|
ahc_clear_intstat(ahc);
|
|
|
|
/* Re-enable reset interrupts */
|
|
ahc_outb(ahc, SIMODE1, ahc_inb(ahc, SIMODE1) | ENSCSIRST);
|
|
}
|
|
|
|
int
|
|
ahc_reset_channel(struct ahc_softc *ahc, char channel, int initiate_reset)
|
|
{
|
|
struct ahc_devinfo devinfo;
|
|
u_int initiator, target, max_scsiid;
|
|
u_int sblkctl;
|
|
u_int scsiseq;
|
|
u_int simode1;
|
|
int found;
|
|
int restart_needed;
|
|
char cur_channel;
|
|
|
|
ahc->pending_device = NULL;
|
|
|
|
ahc_compile_devinfo(&devinfo,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD,
|
|
channel, ROLE_UNKNOWN);
|
|
ahc_pause(ahc);
|
|
|
|
/* Make sure the sequencer is in a safe location. */
|
|
ahc_clear_critical_section(ahc);
|
|
|
|
/*
|
|
* Run our command complete fifos to ensure that we perform
|
|
* completion processing on any commands that 'completed'
|
|
* before the reset occurred.
|
|
*/
|
|
ahc_run_qoutfifo(ahc);
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* XXX - In Twin mode, the tqinfifo may have commands
|
|
* for an unaffected channel in it. However, if
|
|
* we have run out of ATIO resources to drain that
|
|
* queue, we may not get them all out here. Further,
|
|
* the blocked transactions for the reset channel
|
|
* should just be killed off, irrespecitve of whether
|
|
* we are blocked on ATIO resources. Write a routine
|
|
* to compact the tqinfifo appropriately.
|
|
*/
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0) {
|
|
ahc_run_tqinfifo(ahc, /*paused*/TRUE);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Reset the bus if we are initiating this reset
|
|
*/
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
cur_channel = 'A';
|
|
if ((ahc->features & AHC_TWIN) != 0
|
|
&& ((sblkctl & SELBUSB) != 0))
|
|
cur_channel = 'B';
|
|
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
|
|
if (cur_channel != channel) {
|
|
/* Case 1: Command for another bus is active
|
|
* Stealthily reset the other bus without
|
|
* upsetting the current bus.
|
|
*/
|
|
ahc_outb(ahc, SBLKCTL, sblkctl ^ SELBUSB);
|
|
simode1 = ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENSCSIRST);
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Bus resets clear ENSELI, so we cannot
|
|
* defer re-enabling bus reset interrupts
|
|
* if we are in target mode.
|
|
*/
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0)
|
|
simode1 |= ENSCSIRST;
|
|
#endif
|
|
ahc_outb(ahc, SIMODE1, simode1);
|
|
if (initiate_reset)
|
|
ahc_reset_current_bus(ahc);
|
|
ahc_clear_intstat(ahc);
|
|
ahc_outb(ahc, SCSISEQ, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
ahc_outb(ahc, SBLKCTL, sblkctl);
|
|
restart_needed = FALSE;
|
|
} else {
|
|
/* Case 2: A command from this bus is active or we're idle */
|
|
simode1 = ahc_inb(ahc, SIMODE1) & ~(ENBUSFREE|ENSCSIRST);
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Bus resets clear ENSELI, so we cannot
|
|
* defer re-enabling bus reset interrupts
|
|
* if we are in target mode.
|
|
*/
|
|
if ((ahc->flags & AHC_TARGETROLE) != 0)
|
|
simode1 |= ENSCSIRST;
|
|
#endif
|
|
ahc_outb(ahc, SIMODE1, simode1);
|
|
if (initiate_reset)
|
|
ahc_reset_current_bus(ahc);
|
|
ahc_clear_intstat(ahc);
|
|
ahc_outb(ahc, SCSISEQ, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
|
|
restart_needed = TRUE;
|
|
}
|
|
|
|
/*
|
|
* Clean up all the state information for the
|
|
* pending transactions on this bus.
|
|
*/
|
|
found = ahc_abort_scbs(ahc, CAM_TARGET_WILDCARD, channel,
|
|
CAM_LUN_WILDCARD, SCB_LIST_NULL,
|
|
ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
|
|
|
|
max_scsiid = (ahc->features & AHC_WIDE) ? 15 : 7;
|
|
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Send an immediate notify ccb to all target more peripheral
|
|
* drivers affected by this action.
|
|
*/
|
|
for (target = 0; target <= max_scsiid; target++) {
|
|
struct ahc_tmode_tstate* tstate;
|
|
u_int lun;
|
|
|
|
tstate = ahc->enabled_targets[target];
|
|
if (tstate == NULL)
|
|
continue;
|
|
for (lun = 0; lun < AHC_NUM_LUNS; lun++) {
|
|
struct ahc_tmode_lstate* lstate;
|
|
|
|
lstate = tstate->enabled_luns[lun];
|
|
if (lstate == NULL)
|
|
continue;
|
|
|
|
ahc_queue_lstate_event(ahc, lstate, CAM_TARGET_WILDCARD,
|
|
EVENT_TYPE_BUS_RESET, /*arg*/0);
|
|
ahc_send_lstate_events(ahc, lstate);
|
|
}
|
|
}
|
|
#endif
|
|
/* Notify the XPT that a bus reset occurred */
|
|
ahc_send_async(ahc, devinfo.channel, CAM_TARGET_WILDCARD,
|
|
CAM_LUN_WILDCARD, AC_BUS_RESET);
|
|
|
|
/*
|
|
* Revert to async/narrow transfers until we renegotiate.
|
|
*/
|
|
for (target = 0; target <= max_scsiid; target++) {
|
|
|
|
if (ahc->enabled_targets[target] == NULL)
|
|
continue;
|
|
for (initiator = 0; initiator <= max_scsiid; initiator++) {
|
|
struct ahc_devinfo devinfo;
|
|
|
|
ahc_compile_devinfo(&devinfo, target, initiator,
|
|
CAM_LUN_WILDCARD,
|
|
channel, ROLE_UNKNOWN);
|
|
ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
|
|
AHC_TRANS_CUR, /*paused*/TRUE);
|
|
ahc_set_syncrate(ahc, &devinfo, /*syncrate*/NULL,
|
|
/*period*/0, /*offset*/0,
|
|
/*ppr_options*/0, AHC_TRANS_CUR,
|
|
/*paused*/TRUE);
|
|
}
|
|
}
|
|
|
|
if (restart_needed)
|
|
ahc_restart(ahc);
|
|
else
|
|
ahc_unpause(ahc);
|
|
return found;
|
|
}
|
|
|
|
|
|
/***************************** Residual Processing ****************************/
|
|
/*
|
|
* Calculate the residual for a just completed SCB.
|
|
*/
|
|
static void
|
|
ahc_calc_residual(struct ahc_softc *ahc, struct scb *scb)
|
|
{
|
|
struct hardware_scb *hscb;
|
|
struct status_pkt *spkt;
|
|
uint32_t sgptr;
|
|
uint32_t resid_sgptr;
|
|
uint32_t resid;
|
|
|
|
/*
|
|
* 5 cases.
|
|
* 1) No residual.
|
|
* SG_RESID_VALID clear in sgptr.
|
|
* 2) Transferless command
|
|
* 3) Never performed any transfers.
|
|
* sgptr has SG_FULL_RESID set.
|
|
* 4) No residual but target did not
|
|
* save data pointers after the
|
|
* last transfer, so sgptr was
|
|
* never updated.
|
|
* 5) We have a partial residual.
|
|
* Use residual_sgptr to determine
|
|
* where we are.
|
|
*/
|
|
|
|
hscb = scb->hscb;
|
|
sgptr = ahc_le32toh(hscb->sgptr);
|
|
if ((sgptr & SG_RESID_VALID) == 0)
|
|
/* Case 1 */
|
|
return;
|
|
sgptr &= ~SG_RESID_VALID;
|
|
|
|
if ((sgptr & SG_LIST_NULL) != 0)
|
|
/* Case 2 */
|
|
return;
|
|
|
|
spkt = &hscb->shared_data.status;
|
|
resid_sgptr = ahc_le32toh(spkt->residual_sg_ptr);
|
|
if ((sgptr & SG_FULL_RESID) != 0) {
|
|
/* Case 3 */
|
|
resid = ahc_get_transfer_length(scb);
|
|
} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
|
|
/* Case 4 */
|
|
return;
|
|
} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
|
|
panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
|
|
} else {
|
|
struct ahc_dma_seg *sg;
|
|
|
|
/*
|
|
* Remainder of the SG where the transfer
|
|
* stopped.
|
|
*/
|
|
resid = ahc_le32toh(spkt->residual_datacnt) & AHC_SG_LEN_MASK;
|
|
sg = ahc_sg_bus_to_virt(scb, resid_sgptr & SG_PTR_MASK);
|
|
|
|
/* The residual sg_ptr always points to the next sg */
|
|
sg--;
|
|
|
|
/*
|
|
* Add up the contents of all residual
|
|
* SG segments that are after the SG where
|
|
* the transfer stopped.
|
|
*/
|
|
while ((ahc_le32toh(sg->len) & AHC_DMA_LAST_SEG) == 0) {
|
|
sg++;
|
|
resid += ahc_le32toh(sg->len) & AHC_SG_LEN_MASK;
|
|
}
|
|
}
|
|
if ((scb->flags & SCB_SENSE) == 0)
|
|
ahc_set_residual(scb, resid);
|
|
else
|
|
ahc_set_sense_residual(scb, resid);
|
|
|
|
#ifdef AHC_DEBUG
|
|
if ((ahc_debug & AHC_SHOW_MISC) != 0) {
|
|
ahc_print_path(ahc, scb);
|
|
printk("Handled %sResidual of %d bytes\n",
|
|
(scb->flags & SCB_SENSE) ? "Sense " : "", resid);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/******************************* Target Mode **********************************/
|
|
#ifdef AHC_TARGET_MODE
|
|
/*
|
|
* Add a target mode event to this lun's queue
|
|
*/
|
|
static void
|
|
ahc_queue_lstate_event(struct ahc_softc *ahc, struct ahc_tmode_lstate *lstate,
|
|
u_int initiator_id, u_int event_type, u_int event_arg)
|
|
{
|
|
struct ahc_tmode_event *event;
|
|
int pending;
|
|
|
|
xpt_freeze_devq(lstate->path, /*count*/1);
|
|
if (lstate->event_w_idx >= lstate->event_r_idx)
|
|
pending = lstate->event_w_idx - lstate->event_r_idx;
|
|
else
|
|
pending = AHC_TMODE_EVENT_BUFFER_SIZE + 1
|
|
- (lstate->event_r_idx - lstate->event_w_idx);
|
|
|
|
if (event_type == EVENT_TYPE_BUS_RESET
|
|
|| event_type == MSG_BUS_DEV_RESET) {
|
|
/*
|
|
* Any earlier events are irrelevant, so reset our buffer.
|
|
* This has the effect of allowing us to deal with reset
|
|
* floods (an external device holding down the reset line)
|
|
* without losing the event that is really interesting.
|
|
*/
|
|
lstate->event_r_idx = 0;
|
|
lstate->event_w_idx = 0;
|
|
xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
|
|
}
|
|
|
|
if (pending == AHC_TMODE_EVENT_BUFFER_SIZE) {
|
|
xpt_print_path(lstate->path);
|
|
printk("immediate event %x:%x lost\n",
|
|
lstate->event_buffer[lstate->event_r_idx].event_type,
|
|
lstate->event_buffer[lstate->event_r_idx].event_arg);
|
|
lstate->event_r_idx++;
|
|
if (lstate->event_r_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_r_idx = 0;
|
|
xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
|
|
}
|
|
|
|
event = &lstate->event_buffer[lstate->event_w_idx];
|
|
event->initiator_id = initiator_id;
|
|
event->event_type = event_type;
|
|
event->event_arg = event_arg;
|
|
lstate->event_w_idx++;
|
|
if (lstate->event_w_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_w_idx = 0;
|
|
}
|
|
|
|
/*
|
|
* Send any target mode events queued up waiting
|
|
* for immediate notify resources.
|
|
*/
|
|
void
|
|
ahc_send_lstate_events(struct ahc_softc *ahc, struct ahc_tmode_lstate *lstate)
|
|
{
|
|
struct ccb_hdr *ccbh;
|
|
struct ccb_immed_notify *inot;
|
|
|
|
while (lstate->event_r_idx != lstate->event_w_idx
|
|
&& (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
|
|
struct ahc_tmode_event *event;
|
|
|
|
event = &lstate->event_buffer[lstate->event_r_idx];
|
|
SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
|
|
inot = (struct ccb_immed_notify *)ccbh;
|
|
switch (event->event_type) {
|
|
case EVENT_TYPE_BUS_RESET:
|
|
ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
|
|
break;
|
|
default:
|
|
ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
|
|
inot->message_args[0] = event->event_type;
|
|
inot->message_args[1] = event->event_arg;
|
|
break;
|
|
}
|
|
inot->initiator_id = event->initiator_id;
|
|
inot->sense_len = 0;
|
|
xpt_done((union ccb *)inot);
|
|
lstate->event_r_idx++;
|
|
if (lstate->event_r_idx == AHC_TMODE_EVENT_BUFFER_SIZE)
|
|
lstate->event_r_idx = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/******************** Sequencer Program Patching/Download *********************/
|
|
|
|
#ifdef AHC_DUMP_SEQ
|
|
void
|
|
ahc_dumpseq(struct ahc_softc* ahc)
|
|
{
|
|
int i;
|
|
|
|
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
|
|
ahc_outb(ahc, SEQADDR0, 0);
|
|
ahc_outb(ahc, SEQADDR1, 0);
|
|
for (i = 0; i < ahc->instruction_ram_size; i++) {
|
|
uint8_t ins_bytes[4];
|
|
|
|
ahc_insb(ahc, SEQRAM, ins_bytes, 4);
|
|
printk("0x%08x\n", ins_bytes[0] << 24
|
|
| ins_bytes[1] << 16
|
|
| ins_bytes[2] << 8
|
|
| ins_bytes[3]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
ahc_loadseq(struct ahc_softc *ahc)
|
|
{
|
|
struct cs cs_table[num_critical_sections];
|
|
u_int begin_set[num_critical_sections];
|
|
u_int end_set[num_critical_sections];
|
|
const struct patch *cur_patch;
|
|
u_int cs_count;
|
|
u_int cur_cs;
|
|
u_int i;
|
|
u_int skip_addr;
|
|
u_int sg_prefetch_cnt;
|
|
int downloaded;
|
|
uint8_t download_consts[7];
|
|
|
|
/*
|
|
* Start out with 0 critical sections
|
|
* that apply to this firmware load.
|
|
*/
|
|
cs_count = 0;
|
|
cur_cs = 0;
|
|
memset(begin_set, 0, sizeof(begin_set));
|
|
memset(end_set, 0, sizeof(end_set));
|
|
|
|
/* Setup downloadable constant table */
|
|
download_consts[QOUTFIFO_OFFSET] = 0;
|
|
if (ahc->targetcmds != NULL)
|
|
download_consts[QOUTFIFO_OFFSET] += 32;
|
|
download_consts[QINFIFO_OFFSET] = download_consts[QOUTFIFO_OFFSET] + 1;
|
|
download_consts[CACHESIZE_MASK] = ahc->pci_cachesize - 1;
|
|
download_consts[INVERTED_CACHESIZE_MASK] = ~(ahc->pci_cachesize - 1);
|
|
sg_prefetch_cnt = ahc->pci_cachesize;
|
|
if (sg_prefetch_cnt < (2 * sizeof(struct ahc_dma_seg)))
|
|
sg_prefetch_cnt = 2 * sizeof(struct ahc_dma_seg);
|
|
download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
|
|
download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_cnt - 1);
|
|
download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_cnt - 1);
|
|
|
|
cur_patch = patches;
|
|
downloaded = 0;
|
|
skip_addr = 0;
|
|
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
|
|
ahc_outb(ahc, SEQADDR0, 0);
|
|
ahc_outb(ahc, SEQADDR1, 0);
|
|
|
|
for (i = 0; i < sizeof(seqprog)/4; i++) {
|
|
if (ahc_check_patch(ahc, &cur_patch, i, &skip_addr) == 0) {
|
|
/*
|
|
* Don't download this instruction as it
|
|
* is in a patch that was removed.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (downloaded == ahc->instruction_ram_size) {
|
|
/*
|
|
* We're about to exceed the instruction
|
|
* storage capacity for this chip. Fail
|
|
* the load.
|
|
*/
|
|
printk("\n%s: Program too large for instruction memory "
|
|
"size of %d!\n", ahc_name(ahc),
|
|
ahc->instruction_ram_size);
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* Move through the CS table until we find a CS
|
|
* that might apply to this instruction.
|
|
*/
|
|
for (; cur_cs < num_critical_sections; cur_cs++) {
|
|
if (critical_sections[cur_cs].end <= i) {
|
|
if (begin_set[cs_count] == TRUE
|
|
&& end_set[cs_count] == FALSE) {
|
|
cs_table[cs_count].end = downloaded;
|
|
end_set[cs_count] = TRUE;
|
|
cs_count++;
|
|
}
|
|
continue;
|
|
}
|
|
if (critical_sections[cur_cs].begin <= i
|
|
&& begin_set[cs_count] == FALSE) {
|
|
cs_table[cs_count].begin = downloaded;
|
|
begin_set[cs_count] = TRUE;
|
|
}
|
|
break;
|
|
}
|
|
ahc_download_instr(ahc, i, download_consts);
|
|
downloaded++;
|
|
}
|
|
|
|
ahc->num_critical_sections = cs_count;
|
|
if (cs_count != 0) {
|
|
|
|
cs_count *= sizeof(struct cs);
|
|
ahc->critical_sections = kmalloc(cs_count, GFP_ATOMIC);
|
|
if (ahc->critical_sections == NULL)
|
|
panic("ahc_loadseq: Could not malloc");
|
|
memcpy(ahc->critical_sections, cs_table, cs_count);
|
|
}
|
|
ahc_outb(ahc, SEQCTL, PERRORDIS|FAILDIS|FASTMODE);
|
|
|
|
if (bootverbose) {
|
|
printk(" %d instructions downloaded\n", downloaded);
|
|
printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
|
|
ahc_name(ahc), ahc->features, ahc->bugs, ahc->flags);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ahc_check_patch(struct ahc_softc *ahc, const struct patch **start_patch,
|
|
u_int start_instr, u_int *skip_addr)
|
|
{
|
|
const struct patch *cur_patch;
|
|
const struct patch *last_patch;
|
|
u_int num_patches;
|
|
|
|
num_patches = ARRAY_SIZE(patches);
|
|
last_patch = &patches[num_patches];
|
|
cur_patch = *start_patch;
|
|
|
|
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
|
|
|
|
if (cur_patch->patch_func(ahc) == 0) {
|
|
|
|
/* Start rejecting code */
|
|
*skip_addr = start_instr + cur_patch->skip_instr;
|
|
cur_patch += cur_patch->skip_patch;
|
|
} else {
|
|
/* Accepted this patch. Advance to the next
|
|
* one and wait for our intruction pointer to
|
|
* hit this point.
|
|
*/
|
|
cur_patch++;
|
|
}
|
|
}
|
|
|
|
*start_patch = cur_patch;
|
|
if (start_instr < *skip_addr)
|
|
/* Still skipping */
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
ahc_download_instr(struct ahc_softc *ahc, u_int instrptr, uint8_t *dconsts)
|
|
{
|
|
union ins_formats instr;
|
|
struct ins_format1 *fmt1_ins;
|
|
struct ins_format3 *fmt3_ins;
|
|
u_int opcode;
|
|
|
|
/*
|
|
* The firmware is always compiled into a little endian format.
|
|
*/
|
|
instr.integer = ahc_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
|
|
|
|
fmt1_ins = &instr.format1;
|
|
fmt3_ins = NULL;
|
|
|
|
/* Pull the opcode */
|
|
opcode = instr.format1.opcode;
|
|
switch (opcode) {
|
|
case AIC_OP_JMP:
|
|
case AIC_OP_JC:
|
|
case AIC_OP_JNC:
|
|
case AIC_OP_CALL:
|
|
case AIC_OP_JNE:
|
|
case AIC_OP_JNZ:
|
|
case AIC_OP_JE:
|
|
case AIC_OP_JZ:
|
|
{
|
|
const struct patch *cur_patch;
|
|
int address_offset;
|
|
u_int address;
|
|
u_int skip_addr;
|
|
u_int i;
|
|
|
|
fmt3_ins = &instr.format3;
|
|
address_offset = 0;
|
|
address = fmt3_ins->address;
|
|
cur_patch = patches;
|
|
skip_addr = 0;
|
|
|
|
for (i = 0; i < address;) {
|
|
|
|
ahc_check_patch(ahc, &cur_patch, i, &skip_addr);
|
|
|
|
if (skip_addr > i) {
|
|
int end_addr;
|
|
|
|
end_addr = min(address, skip_addr);
|
|
address_offset += end_addr - i;
|
|
i = skip_addr;
|
|
} else {
|
|
i++;
|
|
}
|
|
}
|
|
address -= address_offset;
|
|
fmt3_ins->address = address;
|
|
/* FALLTHROUGH */
|
|
}
|
|
case AIC_OP_OR:
|
|
case AIC_OP_AND:
|
|
case AIC_OP_XOR:
|
|
case AIC_OP_ADD:
|
|
case AIC_OP_ADC:
|
|
case AIC_OP_BMOV:
|
|
if (fmt1_ins->parity != 0) {
|
|
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
|
|
}
|
|
fmt1_ins->parity = 0;
|
|
if ((ahc->features & AHC_CMD_CHAN) == 0
|
|
&& opcode == AIC_OP_BMOV) {
|
|
/*
|
|
* Block move was added at the same time
|
|
* as the command channel. Verify that
|
|
* this is only a move of a single element
|
|
* and convert the BMOV to a MOV
|
|
* (AND with an immediate of FF).
|
|
*/
|
|
if (fmt1_ins->immediate != 1)
|
|
panic("%s: BMOV not supported\n",
|
|
ahc_name(ahc));
|
|
fmt1_ins->opcode = AIC_OP_AND;
|
|
fmt1_ins->immediate = 0xff;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case AIC_OP_ROL:
|
|
if ((ahc->features & AHC_ULTRA2) != 0) {
|
|
int i, count;
|
|
|
|
/* Calculate odd parity for the instruction */
|
|
for (i = 0, count = 0; i < 31; i++) {
|
|
uint32_t mask;
|
|
|
|
mask = 0x01 << i;
|
|
if ((instr.integer & mask) != 0)
|
|
count++;
|
|
}
|
|
if ((count & 0x01) == 0)
|
|
instr.format1.parity = 1;
|
|
} else {
|
|
/* Compress the instruction for older sequencers */
|
|
if (fmt3_ins != NULL) {
|
|
instr.integer =
|
|
fmt3_ins->immediate
|
|
| (fmt3_ins->source << 8)
|
|
| (fmt3_ins->address << 16)
|
|
| (fmt3_ins->opcode << 25);
|
|
} else {
|
|
instr.integer =
|
|
fmt1_ins->immediate
|
|
| (fmt1_ins->source << 8)
|
|
| (fmt1_ins->destination << 16)
|
|
| (fmt1_ins->ret << 24)
|
|
| (fmt1_ins->opcode << 25);
|
|
}
|
|
}
|
|
/* The sequencer is a little endian cpu */
|
|
instr.integer = ahc_htole32(instr.integer);
|
|
ahc_outsb(ahc, SEQRAM, instr.bytes, 4);
|
|
break;
|
|
default:
|
|
panic("Unknown opcode encountered in seq program");
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
ahc_print_register(const ahc_reg_parse_entry_t *table, u_int num_entries,
|
|
const char *name, u_int address, u_int value,
|
|
u_int *cur_column, u_int wrap_point)
|
|
{
|
|
int printed;
|
|
u_int printed_mask;
|
|
|
|
if (cur_column != NULL && *cur_column >= wrap_point) {
|
|
printk("\n");
|
|
*cur_column = 0;
|
|
}
|
|
printed = printk("%s[0x%x]", name, value);
|
|
if (table == NULL) {
|
|
printed += printk(" ");
|
|
*cur_column += printed;
|
|
return (printed);
|
|
}
|
|
printed_mask = 0;
|
|
while (printed_mask != 0xFF) {
|
|
int entry;
|
|
|
|
for (entry = 0; entry < num_entries; entry++) {
|
|
if (((value & table[entry].mask)
|
|
!= table[entry].value)
|
|
|| ((printed_mask & table[entry].mask)
|
|
== table[entry].mask))
|
|
continue;
|
|
|
|
printed += printk("%s%s",
|
|
printed_mask == 0 ? ":(" : "|",
|
|
table[entry].name);
|
|
printed_mask |= table[entry].mask;
|
|
|
|
break;
|
|
}
|
|
if (entry >= num_entries)
|
|
break;
|
|
}
|
|
if (printed_mask != 0)
|
|
printed += printk(") ");
|
|
else
|
|
printed += printk(" ");
|
|
if (cur_column != NULL)
|
|
*cur_column += printed;
|
|
return (printed);
|
|
}
|
|
|
|
void
|
|
ahc_dump_card_state(struct ahc_softc *ahc)
|
|
{
|
|
struct scb *scb;
|
|
struct scb_tailq *untagged_q;
|
|
u_int cur_col;
|
|
int paused;
|
|
int target;
|
|
int maxtarget;
|
|
int i;
|
|
uint8_t last_phase;
|
|
uint8_t qinpos;
|
|
uint8_t qintail;
|
|
uint8_t qoutpos;
|
|
uint8_t scb_index;
|
|
uint8_t saved_scbptr;
|
|
|
|
if (ahc_is_paused(ahc)) {
|
|
paused = 1;
|
|
} else {
|
|
paused = 0;
|
|
ahc_pause(ahc);
|
|
}
|
|
|
|
saved_scbptr = ahc_inb(ahc, SCBPTR);
|
|
last_phase = ahc_inb(ahc, LASTPHASE);
|
|
printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
|
|
"%s: Dumping Card State %s, at SEQADDR 0x%x\n",
|
|
ahc_name(ahc), ahc_lookup_phase_entry(last_phase)->phasemsg,
|
|
ahc_inb(ahc, SEQADDR0) | (ahc_inb(ahc, SEQADDR1) << 8));
|
|
if (paused)
|
|
printk("Card was paused\n");
|
|
printk("ACCUM = 0x%x, SINDEX = 0x%x, DINDEX = 0x%x, ARG_2 = 0x%x\n",
|
|
ahc_inb(ahc, ACCUM), ahc_inb(ahc, SINDEX), ahc_inb(ahc, DINDEX),
|
|
ahc_inb(ahc, ARG_2));
|
|
printk("HCNT = 0x%x SCBPTR = 0x%x\n", ahc_inb(ahc, HCNT),
|
|
ahc_inb(ahc, SCBPTR));
|
|
cur_col = 0;
|
|
if ((ahc->features & AHC_DT) != 0)
|
|
ahc_scsiphase_print(ahc_inb(ahc, SCSIPHASE), &cur_col, 50);
|
|
ahc_scsisigi_print(ahc_inb(ahc, SCSISIGI), &cur_col, 50);
|
|
ahc_error_print(ahc_inb(ahc, ERROR), &cur_col, 50);
|
|
ahc_scsibusl_print(ahc_inb(ahc, SCSIBUSL), &cur_col, 50);
|
|
ahc_lastphase_print(ahc_inb(ahc, LASTPHASE), &cur_col, 50);
|
|
ahc_scsiseq_print(ahc_inb(ahc, SCSISEQ), &cur_col, 50);
|
|
ahc_sblkctl_print(ahc_inb(ahc, SBLKCTL), &cur_col, 50);
|
|
ahc_scsirate_print(ahc_inb(ahc, SCSIRATE), &cur_col, 50);
|
|
ahc_seqctl_print(ahc_inb(ahc, SEQCTL), &cur_col, 50);
|
|
ahc_seq_flags_print(ahc_inb(ahc, SEQ_FLAGS), &cur_col, 50);
|
|
ahc_sstat0_print(ahc_inb(ahc, SSTAT0), &cur_col, 50);
|
|
ahc_sstat1_print(ahc_inb(ahc, SSTAT1), &cur_col, 50);
|
|
ahc_sstat2_print(ahc_inb(ahc, SSTAT2), &cur_col, 50);
|
|
ahc_sstat3_print(ahc_inb(ahc, SSTAT3), &cur_col, 50);
|
|
ahc_simode0_print(ahc_inb(ahc, SIMODE0), &cur_col, 50);
|
|
ahc_simode1_print(ahc_inb(ahc, SIMODE1), &cur_col, 50);
|
|
ahc_sxfrctl0_print(ahc_inb(ahc, SXFRCTL0), &cur_col, 50);
|
|
ahc_dfcntrl_print(ahc_inb(ahc, DFCNTRL), &cur_col, 50);
|
|
ahc_dfstatus_print(ahc_inb(ahc, DFSTATUS), &cur_col, 50);
|
|
if (cur_col != 0)
|
|
printk("\n");
|
|
printk("STACK:");
|
|
for (i = 0; i < STACK_SIZE; i++)
|
|
printk(" 0x%x", ahc_inb(ahc, STACK)|(ahc_inb(ahc, STACK) << 8));
|
|
printk("\nSCB count = %d\n", ahc->scb_data->numscbs);
|
|
printk("Kernel NEXTQSCB = %d\n", ahc->next_queued_scb->hscb->tag);
|
|
printk("Card NEXTQSCB = %d\n", ahc_inb(ahc, NEXT_QUEUED_SCB));
|
|
/* QINFIFO */
|
|
printk("QINFIFO entries: ");
|
|
if ((ahc->features & AHC_QUEUE_REGS) != 0) {
|
|
qinpos = ahc_inb(ahc, SNSCB_QOFF);
|
|
ahc_outb(ahc, SNSCB_QOFF, qinpos);
|
|
} else
|
|
qinpos = ahc_inb(ahc, QINPOS);
|
|
qintail = ahc->qinfifonext;
|
|
while (qinpos != qintail) {
|
|
printk("%d ", ahc->qinfifo[qinpos]);
|
|
qinpos++;
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Waiting Queue entries: ");
|
|
scb_index = ahc_inb(ahc, WAITING_SCBH);
|
|
i = 0;
|
|
while (scb_index != SCB_LIST_NULL && i++ < 256) {
|
|
ahc_outb(ahc, SCBPTR, scb_index);
|
|
printk("%d:%d ", scb_index, ahc_inb(ahc, SCB_TAG));
|
|
scb_index = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Disconnected Queue entries: ");
|
|
scb_index = ahc_inb(ahc, DISCONNECTED_SCBH);
|
|
i = 0;
|
|
while (scb_index != SCB_LIST_NULL && i++ < 256) {
|
|
ahc_outb(ahc, SCBPTR, scb_index);
|
|
printk("%d:%d ", scb_index, ahc_inb(ahc, SCB_TAG));
|
|
scb_index = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
printk("\n");
|
|
|
|
ahc_sync_qoutfifo(ahc, BUS_DMASYNC_POSTREAD);
|
|
printk("QOUTFIFO entries: ");
|
|
qoutpos = ahc->qoutfifonext;
|
|
i = 0;
|
|
while (ahc->qoutfifo[qoutpos] != SCB_LIST_NULL && i++ < 256) {
|
|
printk("%d ", ahc->qoutfifo[qoutpos]);
|
|
qoutpos++;
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Sequencer Free SCB List: ");
|
|
scb_index = ahc_inb(ahc, FREE_SCBH);
|
|
i = 0;
|
|
while (scb_index != SCB_LIST_NULL && i++ < 256) {
|
|
ahc_outb(ahc, SCBPTR, scb_index);
|
|
printk("%d ", scb_index);
|
|
scb_index = ahc_inb(ahc, SCB_NEXT);
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Sequencer SCB Info: ");
|
|
for (i = 0; i < ahc->scb_data->maxhscbs; i++) {
|
|
ahc_outb(ahc, SCBPTR, i);
|
|
cur_col = printk("\n%3d ", i);
|
|
|
|
ahc_scb_control_print(ahc_inb(ahc, SCB_CONTROL), &cur_col, 60);
|
|
ahc_scb_scsiid_print(ahc_inb(ahc, SCB_SCSIID), &cur_col, 60);
|
|
ahc_scb_lun_print(ahc_inb(ahc, SCB_LUN), &cur_col, 60);
|
|
ahc_scb_tag_print(ahc_inb(ahc, SCB_TAG), &cur_col, 60);
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Pending list: ");
|
|
i = 0;
|
|
LIST_FOREACH(scb, &ahc->pending_scbs, pending_links) {
|
|
if (i++ > 256)
|
|
break;
|
|
cur_col = printk("\n%3d ", scb->hscb->tag);
|
|
ahc_scb_control_print(scb->hscb->control, &cur_col, 60);
|
|
ahc_scb_scsiid_print(scb->hscb->scsiid, &cur_col, 60);
|
|
ahc_scb_lun_print(scb->hscb->lun, &cur_col, 60);
|
|
if ((ahc->flags & AHC_PAGESCBS) == 0) {
|
|
ahc_outb(ahc, SCBPTR, scb->hscb->tag);
|
|
printk("(");
|
|
ahc_scb_control_print(ahc_inb(ahc, SCB_CONTROL),
|
|
&cur_col, 60);
|
|
ahc_scb_tag_print(ahc_inb(ahc, SCB_TAG), &cur_col, 60);
|
|
printk(")");
|
|
}
|
|
}
|
|
printk("\n");
|
|
|
|
printk("Kernel Free SCB list: ");
|
|
i = 0;
|
|
SLIST_FOREACH(scb, &ahc->scb_data->free_scbs, links.sle) {
|
|
if (i++ > 256)
|
|
break;
|
|
printk("%d ", scb->hscb->tag);
|
|
}
|
|
printk("\n");
|
|
|
|
maxtarget = (ahc->features & (AHC_WIDE|AHC_TWIN)) ? 15 : 7;
|
|
for (target = 0; target <= maxtarget; target++) {
|
|
untagged_q = &ahc->untagged_queues[target];
|
|
if (TAILQ_FIRST(untagged_q) == NULL)
|
|
continue;
|
|
printk("Untagged Q(%d): ", target);
|
|
i = 0;
|
|
TAILQ_FOREACH(scb, untagged_q, links.tqe) {
|
|
if (i++ > 256)
|
|
break;
|
|
printk("%d ", scb->hscb->tag);
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
ahc_platform_dump_card_state(ahc);
|
|
printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
|
|
ahc_outb(ahc, SCBPTR, saved_scbptr);
|
|
if (paused == 0)
|
|
ahc_unpause(ahc);
|
|
}
|
|
|
|
/************************* Target Mode ****************************************/
|
|
#ifdef AHC_TARGET_MODE
|
|
cam_status
|
|
ahc_find_tmode_devs(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb,
|
|
struct ahc_tmode_tstate **tstate,
|
|
struct ahc_tmode_lstate **lstate,
|
|
int notfound_failure)
|
|
{
|
|
|
|
if ((ahc->features & AHC_TARGETMODE) == 0)
|
|
return (CAM_REQ_INVALID);
|
|
|
|
/*
|
|
* Handle the 'black hole' device that sucks up
|
|
* requests to unattached luns on enabled targets.
|
|
*/
|
|
if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
|
|
&& ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
|
|
*tstate = NULL;
|
|
*lstate = ahc->black_hole;
|
|
} else {
|
|
u_int max_id;
|
|
|
|
max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
|
|
if (ccb->ccb_h.target_id >= max_id)
|
|
return (CAM_TID_INVALID);
|
|
|
|
if (ccb->ccb_h.target_lun >= AHC_NUM_LUNS)
|
|
return (CAM_LUN_INVALID);
|
|
|
|
*tstate = ahc->enabled_targets[ccb->ccb_h.target_id];
|
|
*lstate = NULL;
|
|
if (*tstate != NULL)
|
|
*lstate =
|
|
(*tstate)->enabled_luns[ccb->ccb_h.target_lun];
|
|
}
|
|
|
|
if (notfound_failure != 0 && *lstate == NULL)
|
|
return (CAM_PATH_INVALID);
|
|
|
|
return (CAM_REQ_CMP);
|
|
}
|
|
|
|
void
|
|
ahc_handle_en_lun(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb)
|
|
{
|
|
struct ahc_tmode_tstate *tstate;
|
|
struct ahc_tmode_lstate *lstate;
|
|
struct ccb_en_lun *cel;
|
|
cam_status status;
|
|
u_long s;
|
|
u_int target;
|
|
u_int lun;
|
|
u_int target_mask;
|
|
u_int our_id;
|
|
int error;
|
|
char channel;
|
|
|
|
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate, &lstate,
|
|
/*notfound_failure*/FALSE);
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
ccb->ccb_h.status = status;
|
|
return;
|
|
}
|
|
|
|
if (cam_sim_bus(sim) == 0)
|
|
our_id = ahc->our_id;
|
|
else
|
|
our_id = ahc->our_id_b;
|
|
|
|
if (ccb->ccb_h.target_id != our_id) {
|
|
/*
|
|
* our_id represents our initiator ID, or
|
|
* the ID of the first target to have an
|
|
* enabled lun in target mode. There are
|
|
* two cases that may preclude enabling a
|
|
* target id other than our_id.
|
|
*
|
|
* o our_id is for an active initiator role.
|
|
* Since the hardware does not support
|
|
* reselections to the initiator role at
|
|
* anything other than our_id, and our_id
|
|
* is used by the hardware to indicate the
|
|
* ID to use for both select-out and
|
|
* reselect-out operations, the only target
|
|
* ID we can support in this mode is our_id.
|
|
*
|
|
* o The MULTARGID feature is not available and
|
|
* a previous target mode ID has been enabled.
|
|
*/
|
|
if ((ahc->features & AHC_MULTIROLE) != 0) {
|
|
|
|
if ((ahc->features & AHC_MULTI_TID) != 0
|
|
&& (ahc->flags & AHC_INITIATORROLE) != 0) {
|
|
/*
|
|
* Only allow additional targets if
|
|
* the initiator role is disabled.
|
|
* The hardware cannot handle a re-select-in
|
|
* on the initiator id during a re-select-out
|
|
* on a different target id.
|
|
*/
|
|
status = CAM_TID_INVALID;
|
|
} else if ((ahc->flags & AHC_INITIATORROLE) != 0
|
|
|| ahc->enabled_luns > 0) {
|
|
/*
|
|
* Only allow our target id to change
|
|
* if the initiator role is not configured
|
|
* and there are no enabled luns which
|
|
* are attached to the currently registered
|
|
* scsi id.
|
|
*/
|
|
status = CAM_TID_INVALID;
|
|
}
|
|
} else if ((ahc->features & AHC_MULTI_TID) == 0
|
|
&& ahc->enabled_luns > 0) {
|
|
|
|
status = CAM_TID_INVALID;
|
|
}
|
|
}
|
|
|
|
if (status != CAM_REQ_CMP) {
|
|
ccb->ccb_h.status = status;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We now have an id that is valid.
|
|
* If we aren't in target mode, switch modes.
|
|
*/
|
|
if ((ahc->flags & AHC_TARGETROLE) == 0
|
|
&& ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
|
|
u_long s;
|
|
ahc_flag saved_flags;
|
|
|
|
printk("Configuring Target Mode\n");
|
|
ahc_lock(ahc, &s);
|
|
if (LIST_FIRST(&ahc->pending_scbs) != NULL) {
|
|
ccb->ccb_h.status = CAM_BUSY;
|
|
ahc_unlock(ahc, &s);
|
|
return;
|
|
}
|
|
saved_flags = ahc->flags;
|
|
ahc->flags |= AHC_TARGETROLE;
|
|
if ((ahc->features & AHC_MULTIROLE) == 0)
|
|
ahc->flags &= ~AHC_INITIATORROLE;
|
|
ahc_pause(ahc);
|
|
error = ahc_loadseq(ahc);
|
|
if (error != 0) {
|
|
/*
|
|
* Restore original configuration and notify
|
|
* the caller that we cannot support target mode.
|
|
* Since the adapter started out in this
|
|
* configuration, the firmware load will succeed,
|
|
* so there is no point in checking ahc_loadseq's
|
|
* return value.
|
|
*/
|
|
ahc->flags = saved_flags;
|
|
(void)ahc_loadseq(ahc);
|
|
ahc_restart(ahc);
|
|
ahc_unlock(ahc, &s);
|
|
ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
|
|
return;
|
|
}
|
|
ahc_restart(ahc);
|
|
ahc_unlock(ahc, &s);
|
|
}
|
|
cel = &ccb->cel;
|
|
target = ccb->ccb_h.target_id;
|
|
lun = ccb->ccb_h.target_lun;
|
|
channel = SIM_CHANNEL(ahc, sim);
|
|
target_mask = 0x01 << target;
|
|
if (channel == 'B')
|
|
target_mask <<= 8;
|
|
|
|
if (cel->enable != 0) {
|
|
u_int scsiseq;
|
|
|
|
/* Are we already enabled?? */
|
|
if (lstate != NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Lun already enabled\n");
|
|
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
|
|
return;
|
|
}
|
|
|
|
if (cel->grp6_len != 0
|
|
|| cel->grp7_len != 0) {
|
|
/*
|
|
* Don't (yet?) support vendor
|
|
* specific commands.
|
|
*/
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
printk("Non-zero Group Codes\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Seems to be okay.
|
|
* Setup our data structures.
|
|
*/
|
|
if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
|
|
tstate = ahc_alloc_tstate(ahc, target, channel);
|
|
if (tstate == NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate tstate\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
}
|
|
lstate = kmalloc(sizeof(*lstate), GFP_ATOMIC);
|
|
if (lstate == NULL) {
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate lstate\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
memset(lstate, 0, sizeof(*lstate));
|
|
status = xpt_create_path(&lstate->path, /*periph*/NULL,
|
|
xpt_path_path_id(ccb->ccb_h.path),
|
|
xpt_path_target_id(ccb->ccb_h.path),
|
|
xpt_path_lun_id(ccb->ccb_h.path));
|
|
if (status != CAM_REQ_CMP) {
|
|
kfree(lstate);
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Couldn't allocate path\n");
|
|
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
|
|
return;
|
|
}
|
|
SLIST_INIT(&lstate->accept_tios);
|
|
SLIST_INIT(&lstate->immed_notifies);
|
|
ahc_lock(ahc, &s);
|
|
ahc_pause(ahc);
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
tstate->enabled_luns[lun] = lstate;
|
|
ahc->enabled_luns++;
|
|
|
|
if ((ahc->features & AHC_MULTI_TID) != 0) {
|
|
u_int targid_mask;
|
|
|
|
targid_mask = ahc_inb(ahc, TARGID)
|
|
| (ahc_inb(ahc, TARGID + 1) << 8);
|
|
|
|
targid_mask |= target_mask;
|
|
ahc_outb(ahc, TARGID, targid_mask);
|
|
ahc_outb(ahc, TARGID+1, (targid_mask >> 8));
|
|
|
|
ahc_update_scsiid(ahc, targid_mask);
|
|
} else {
|
|
u_int our_id;
|
|
char channel;
|
|
|
|
channel = SIM_CHANNEL(ahc, sim);
|
|
our_id = SIM_SCSI_ID(ahc, sim);
|
|
|
|
/*
|
|
* This can only happen if selections
|
|
* are not enabled
|
|
*/
|
|
if (target != our_id) {
|
|
u_int sblkctl;
|
|
char cur_channel;
|
|
int swap;
|
|
|
|
sblkctl = ahc_inb(ahc, SBLKCTL);
|
|
cur_channel = (sblkctl & SELBUSB)
|
|
? 'B' : 'A';
|
|
if ((ahc->features & AHC_TWIN) == 0)
|
|
cur_channel = 'A';
|
|
swap = cur_channel != channel;
|
|
if (channel == 'A')
|
|
ahc->our_id = target;
|
|
else
|
|
ahc->our_id_b = target;
|
|
|
|
if (swap)
|
|
ahc_outb(ahc, SBLKCTL,
|
|
sblkctl ^ SELBUSB);
|
|
|
|
ahc_outb(ahc, SCSIID, target);
|
|
|
|
if (swap)
|
|
ahc_outb(ahc, SBLKCTL, sblkctl);
|
|
}
|
|
}
|
|
} else
|
|
ahc->black_hole = lstate;
|
|
/* Allow select-in operations */
|
|
if (ahc->black_hole != NULL && ahc->enabled_luns > 0) {
|
|
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
|
|
scsiseq |= ENSELI;
|
|
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq);
|
|
scsiseq = ahc_inb(ahc, SCSISEQ);
|
|
scsiseq |= ENSELI;
|
|
ahc_outb(ahc, SCSISEQ, scsiseq);
|
|
}
|
|
ahc_unpause(ahc);
|
|
ahc_unlock(ahc, &s);
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Lun now enabled for target mode\n");
|
|
} else {
|
|
struct scb *scb;
|
|
int i, empty;
|
|
|
|
if (lstate == NULL) {
|
|
ccb->ccb_h.status = CAM_LUN_INVALID;
|
|
return;
|
|
}
|
|
|
|
ahc_lock(ahc, &s);
|
|
|
|
ccb->ccb_h.status = CAM_REQ_CMP;
|
|
LIST_FOREACH(scb, &ahc->pending_scbs, pending_links) {
|
|
struct ccb_hdr *ccbh;
|
|
|
|
ccbh = &scb->io_ctx->ccb_h;
|
|
if (ccbh->func_code == XPT_CONT_TARGET_IO
|
|
&& !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
|
|
printk("CTIO pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
ahc_unlock(ahc, &s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
|
|
printk("ATIOs pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
}
|
|
|
|
if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
|
|
printk("INOTs pending\n");
|
|
ccb->ccb_h.status = CAM_REQ_INVALID;
|
|
}
|
|
|
|
if (ccb->ccb_h.status != CAM_REQ_CMP) {
|
|
ahc_unlock(ahc, &s);
|
|
return;
|
|
}
|
|
|
|
xpt_print_path(ccb->ccb_h.path);
|
|
printk("Target mode disabled\n");
|
|
xpt_free_path(lstate->path);
|
|
kfree(lstate);
|
|
|
|
ahc_pause(ahc);
|
|
/* Can we clean up the target too? */
|
|
if (target != CAM_TARGET_WILDCARD) {
|
|
tstate->enabled_luns[lun] = NULL;
|
|
ahc->enabled_luns--;
|
|
for (empty = 1, i = 0; i < 8; i++)
|
|
if (tstate->enabled_luns[i] != NULL) {
|
|
empty = 0;
|
|
break;
|
|
}
|
|
|
|
if (empty) {
|
|
ahc_free_tstate(ahc, target, channel,
|
|
/*force*/FALSE);
|
|
if (ahc->features & AHC_MULTI_TID) {
|
|
u_int targid_mask;
|
|
|
|
targid_mask = ahc_inb(ahc, TARGID)
|
|
| (ahc_inb(ahc, TARGID + 1)
|
|
<< 8);
|
|
|
|
targid_mask &= ~target_mask;
|
|
ahc_outb(ahc, TARGID, targid_mask);
|
|
ahc_outb(ahc, TARGID+1,
|
|
(targid_mask >> 8));
|
|
ahc_update_scsiid(ahc, targid_mask);
|
|
}
|
|
}
|
|
} else {
|
|
|
|
ahc->black_hole = NULL;
|
|
|
|
/*
|
|
* We can't allow selections without
|
|
* our black hole device.
|
|
*/
|
|
empty = TRUE;
|
|
}
|
|
if (ahc->enabled_luns == 0) {
|
|
/* Disallow select-in */
|
|
u_int scsiseq;
|
|
|
|
scsiseq = ahc_inb(ahc, SCSISEQ_TEMPLATE);
|
|
scsiseq &= ~ENSELI;
|
|
ahc_outb(ahc, SCSISEQ_TEMPLATE, scsiseq);
|
|
scsiseq = ahc_inb(ahc, SCSISEQ);
|
|
scsiseq &= ~ENSELI;
|
|
ahc_outb(ahc, SCSISEQ, scsiseq);
|
|
|
|
if ((ahc->features & AHC_MULTIROLE) == 0) {
|
|
printk("Configuring Initiator Mode\n");
|
|
ahc->flags &= ~AHC_TARGETROLE;
|
|
ahc->flags |= AHC_INITIATORROLE;
|
|
/*
|
|
* Returning to a configuration that
|
|
* fit previously will always succeed.
|
|
*/
|
|
(void)ahc_loadseq(ahc);
|
|
ahc_restart(ahc);
|
|
/*
|
|
* Unpaused. The extra unpause
|
|
* that follows is harmless.
|
|
*/
|
|
}
|
|
}
|
|
ahc_unpause(ahc);
|
|
ahc_unlock(ahc, &s);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ahc_update_scsiid(struct ahc_softc *ahc, u_int targid_mask)
|
|
{
|
|
u_int scsiid_mask;
|
|
u_int scsiid;
|
|
|
|
if ((ahc->features & AHC_MULTI_TID) == 0)
|
|
panic("ahc_update_scsiid called on non-multitid unit\n");
|
|
|
|
/*
|
|
* Since we will rely on the TARGID mask
|
|
* for selection enables, ensure that OID
|
|
* in SCSIID is not set to some other ID
|
|
* that we don't want to allow selections on.
|
|
*/
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
scsiid = ahc_inb(ahc, SCSIID_ULTRA2);
|
|
else
|
|
scsiid = ahc_inb(ahc, SCSIID);
|
|
scsiid_mask = 0x1 << (scsiid & OID);
|
|
if ((targid_mask & scsiid_mask) == 0) {
|
|
u_int our_id;
|
|
|
|
/* ffs counts from 1 */
|
|
our_id = ffs(targid_mask);
|
|
if (our_id == 0)
|
|
our_id = ahc->our_id;
|
|
else
|
|
our_id--;
|
|
scsiid &= TID;
|
|
scsiid |= our_id;
|
|
}
|
|
if ((ahc->features & AHC_ULTRA2) != 0)
|
|
ahc_outb(ahc, SCSIID_ULTRA2, scsiid);
|
|
else
|
|
ahc_outb(ahc, SCSIID, scsiid);
|
|
}
|
|
|
|
static void
|
|
ahc_run_tqinfifo(struct ahc_softc *ahc, int paused)
|
|
{
|
|
struct target_cmd *cmd;
|
|
|
|
/*
|
|
* If the card supports auto-access pause,
|
|
* we can access the card directly regardless
|
|
* of whether it is paused or not.
|
|
*/
|
|
if ((ahc->features & AHC_AUTOPAUSE) != 0)
|
|
paused = TRUE;
|
|
|
|
ahc_sync_tqinfifo(ahc, BUS_DMASYNC_POSTREAD);
|
|
while ((cmd = &ahc->targetcmds[ahc->tqinfifonext])->cmd_valid != 0) {
|
|
|
|
/*
|
|
* Only advance through the queue if we
|
|
* have the resources to process the command.
|
|
*/
|
|
if (ahc_handle_target_cmd(ahc, cmd) != 0)
|
|
break;
|
|
|
|
cmd->cmd_valid = 0;
|
|
ahc_dmamap_sync(ahc, ahc->shared_data_dmat,
|
|
ahc->shared_data_dmamap,
|
|
ahc_targetcmd_offset(ahc, ahc->tqinfifonext),
|
|
sizeof(struct target_cmd),
|
|
BUS_DMASYNC_PREREAD);
|
|
ahc->tqinfifonext++;
|
|
|
|
/*
|
|
* Lazily update our position in the target mode incoming
|
|
* command queue as seen by the sequencer.
|
|
*/
|
|
if ((ahc->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
|
|
if ((ahc->features & AHC_HS_MAILBOX) != 0) {
|
|
u_int hs_mailbox;
|
|
|
|
hs_mailbox = ahc_inb(ahc, HS_MAILBOX);
|
|
hs_mailbox &= ~HOST_TQINPOS;
|
|
hs_mailbox |= ahc->tqinfifonext & HOST_TQINPOS;
|
|
ahc_outb(ahc, HS_MAILBOX, hs_mailbox);
|
|
} else {
|
|
if (!paused)
|
|
ahc_pause(ahc);
|
|
ahc_outb(ahc, KERNEL_TQINPOS,
|
|
ahc->tqinfifonext & HOST_TQINPOS);
|
|
if (!paused)
|
|
ahc_unpause(ahc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
ahc_handle_target_cmd(struct ahc_softc *ahc, struct target_cmd *cmd)
|
|
{
|
|
struct ahc_tmode_tstate *tstate;
|
|
struct ahc_tmode_lstate *lstate;
|
|
struct ccb_accept_tio *atio;
|
|
uint8_t *byte;
|
|
int initiator;
|
|
int target;
|
|
int lun;
|
|
|
|
initiator = SCSIID_TARGET(ahc, cmd->scsiid);
|
|
target = SCSIID_OUR_ID(cmd->scsiid);
|
|
lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
|
|
|
|
byte = cmd->bytes;
|
|
tstate = ahc->enabled_targets[target];
|
|
lstate = NULL;
|
|
if (tstate != NULL)
|
|
lstate = tstate->enabled_luns[lun];
|
|
|
|
/*
|
|
* Commands for disabled luns go to the black hole driver.
|
|
*/
|
|
if (lstate == NULL)
|
|
lstate = ahc->black_hole;
|
|
|
|
atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
|
|
if (atio == NULL) {
|
|
ahc->flags |= AHC_TQINFIFO_BLOCKED;
|
|
/*
|
|
* Wait for more ATIOs from the peripheral driver for this lun.
|
|
*/
|
|
if (bootverbose)
|
|
printk("%s: ATIOs exhausted\n", ahc_name(ahc));
|
|
return (1);
|
|
} else
|
|
ahc->flags &= ~AHC_TQINFIFO_BLOCKED;
|
|
#if 0
|
|
printk("Incoming command from %d for %d:%d%s\n",
|
|
initiator, target, lun,
|
|
lstate == ahc->black_hole ? "(Black Holed)" : "");
|
|
#endif
|
|
SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
|
|
|
|
if (lstate == ahc->black_hole) {
|
|
/* Fill in the wildcards */
|
|
atio->ccb_h.target_id = target;
|
|
atio->ccb_h.target_lun = lun;
|
|
}
|
|
|
|
/*
|
|
* Package it up and send it off to
|
|
* whomever has this lun enabled.
|
|
*/
|
|
atio->sense_len = 0;
|
|
atio->init_id = initiator;
|
|
if (byte[0] != 0xFF) {
|
|
/* Tag was included */
|
|
atio->tag_action = *byte++;
|
|
atio->tag_id = *byte++;
|
|
atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
|
|
} else {
|
|
atio->ccb_h.flags = 0;
|
|
}
|
|
byte++;
|
|
|
|
/* Okay. Now determine the cdb size based on the command code */
|
|
switch (*byte >> CMD_GROUP_CODE_SHIFT) {
|
|
case 0:
|
|
atio->cdb_len = 6;
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
atio->cdb_len = 10;
|
|
break;
|
|
case 4:
|
|
atio->cdb_len = 16;
|
|
break;
|
|
case 5:
|
|
atio->cdb_len = 12;
|
|
break;
|
|
case 3:
|
|
default:
|
|
/* Only copy the opcode. */
|
|
atio->cdb_len = 1;
|
|
printk("Reserved or VU command code type encountered\n");
|
|
break;
|
|
}
|
|
|
|
memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
|
|
|
|
atio->ccb_h.status |= CAM_CDB_RECVD;
|
|
|
|
if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
|
|
/*
|
|
* We weren't allowed to disconnect.
|
|
* We're hanging on the bus until a
|
|
* continue target I/O comes in response
|
|
* to this accept tio.
|
|
*/
|
|
#if 0
|
|
printk("Received Immediate Command %d:%d:%d - %p\n",
|
|
initiator, target, lun, ahc->pending_device);
|
|
#endif
|
|
ahc->pending_device = lstate;
|
|
ahc_freeze_ccb((union ccb *)atio);
|
|
atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
|
|
}
|
|
xpt_done((union ccb*)atio);
|
|
return (0);
|
|
}
|
|
|
|
#endif
|