mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-29 21:05:13 +00:00
9879de7373
The OOM killing invocation does a lot of duplicative checks against the task's allocation context. Rework it to take advantage of the existing checks in the allocator slowpath. The OOM killer is invoked when the allocator is unable to reclaim any pages but the allocation has to keep looping. Instead of having a check for __GFP_NORETRY hidden in oom_gfp_allowed(), just move the OOM invocation to the true branch of should_alloc_retry(). The __GFP_FS check from oom_gfp_allowed() can then be moved into the OOM avoidance branch in __alloc_pages_may_oom(), along with the PF_DUMPCORE test. __alloc_pages_may_oom() can then signal to the caller whether the OOM killer was invoked, instead of requiring it to duplicate the order and high_zoneidx checks to guess this when deciding whether to continue. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
6629 lines
184 KiB
C
6629 lines
184 KiB
C
/*
|
|
* linux/mm/page_alloc.c
|
|
*
|
|
* Manages the free list, the system allocates free pages here.
|
|
* Note that kmalloc() lives in slab.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
* Swap reorganised 29.12.95, Stephen Tweedie
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
|
|
* Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
|
|
* Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
|
|
* Zone balancing, Kanoj Sarcar, SGI, Jan 2000
|
|
* Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
|
|
* (lots of bits borrowed from Ingo Molnar & Andrew Morton)
|
|
*/
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kmemcheck.h>
|
|
#include <linux/module.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/memory_hotplug.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/fault-inject.h>
|
|
#include <linux/page-isolation.h>
|
|
#include <linux/page_ext.h>
|
|
#include <linux/debugobjects.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/compaction.h>
|
|
#include <trace/events/kmem.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/page_ext.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/page_owner.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/div64.h>
|
|
#include "internal.h"
|
|
|
|
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
|
|
static DEFINE_MUTEX(pcp_batch_high_lock);
|
|
#define MIN_PERCPU_PAGELIST_FRACTION (8)
|
|
|
|
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
|
|
DEFINE_PER_CPU(int, numa_node);
|
|
EXPORT_PER_CPU_SYMBOL(numa_node);
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
|
|
/*
|
|
* N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
|
|
* It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
|
|
* Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
|
|
* defined in <linux/topology.h>.
|
|
*/
|
|
DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
|
|
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
|
|
int _node_numa_mem_[MAX_NUMNODES];
|
|
#endif
|
|
|
|
/*
|
|
* Array of node states.
|
|
*/
|
|
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
|
|
[N_POSSIBLE] = NODE_MASK_ALL,
|
|
[N_ONLINE] = { { [0] = 1UL } },
|
|
#ifndef CONFIG_NUMA
|
|
[N_NORMAL_MEMORY] = { { [0] = 1UL } },
|
|
#ifdef CONFIG_HIGHMEM
|
|
[N_HIGH_MEMORY] = { { [0] = 1UL } },
|
|
#endif
|
|
#ifdef CONFIG_MOVABLE_NODE
|
|
[N_MEMORY] = { { [0] = 1UL } },
|
|
#endif
|
|
[N_CPU] = { { [0] = 1UL } },
|
|
#endif /* NUMA */
|
|
};
|
|
EXPORT_SYMBOL(node_states);
|
|
|
|
/* Protect totalram_pages and zone->managed_pages */
|
|
static DEFINE_SPINLOCK(managed_page_count_lock);
|
|
|
|
unsigned long totalram_pages __read_mostly;
|
|
unsigned long totalreserve_pages __read_mostly;
|
|
unsigned long totalcma_pages __read_mostly;
|
|
/*
|
|
* When calculating the number of globally allowed dirty pages, there
|
|
* is a certain number of per-zone reserves that should not be
|
|
* considered dirtyable memory. This is the sum of those reserves
|
|
* over all existing zones that contribute dirtyable memory.
|
|
*/
|
|
unsigned long dirty_balance_reserve __read_mostly;
|
|
|
|
int percpu_pagelist_fraction;
|
|
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
/*
|
|
* The following functions are used by the suspend/hibernate code to temporarily
|
|
* change gfp_allowed_mask in order to avoid using I/O during memory allocations
|
|
* while devices are suspended. To avoid races with the suspend/hibernate code,
|
|
* they should always be called with pm_mutex held (gfp_allowed_mask also should
|
|
* only be modified with pm_mutex held, unless the suspend/hibernate code is
|
|
* guaranteed not to run in parallel with that modification).
|
|
*/
|
|
|
|
static gfp_t saved_gfp_mask;
|
|
|
|
void pm_restore_gfp_mask(void)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&pm_mutex));
|
|
if (saved_gfp_mask) {
|
|
gfp_allowed_mask = saved_gfp_mask;
|
|
saved_gfp_mask = 0;
|
|
}
|
|
}
|
|
|
|
void pm_restrict_gfp_mask(void)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&pm_mutex));
|
|
WARN_ON(saved_gfp_mask);
|
|
saved_gfp_mask = gfp_allowed_mask;
|
|
gfp_allowed_mask &= ~GFP_IOFS;
|
|
}
|
|
|
|
bool pm_suspended_storage(void)
|
|
{
|
|
if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
|
|
return false;
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
|
|
int pageblock_order __read_mostly;
|
|
#endif
|
|
|
|
static void __free_pages_ok(struct page *page, unsigned int order);
|
|
|
|
/*
|
|
* results with 256, 32 in the lowmem_reserve sysctl:
|
|
* 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
|
|
* 1G machine -> (16M dma, 784M normal, 224M high)
|
|
* NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
|
|
* HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
|
|
* HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
|
|
*
|
|
* TBD: should special case ZONE_DMA32 machines here - in those we normally
|
|
* don't need any ZONE_NORMAL reservation
|
|
*/
|
|
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
|
|
#ifdef CONFIG_ZONE_DMA
|
|
256,
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
256,
|
|
#endif
|
|
#ifdef CONFIG_HIGHMEM
|
|
32,
|
|
#endif
|
|
32,
|
|
};
|
|
|
|
EXPORT_SYMBOL(totalram_pages);
|
|
|
|
static char * const zone_names[MAX_NR_ZONES] = {
|
|
#ifdef CONFIG_ZONE_DMA
|
|
"DMA",
|
|
#endif
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
"DMA32",
|
|
#endif
|
|
"Normal",
|
|
#ifdef CONFIG_HIGHMEM
|
|
"HighMem",
|
|
#endif
|
|
"Movable",
|
|
};
|
|
|
|
int min_free_kbytes = 1024;
|
|
int user_min_free_kbytes = -1;
|
|
|
|
static unsigned long __meminitdata nr_kernel_pages;
|
|
static unsigned long __meminitdata nr_all_pages;
|
|
static unsigned long __meminitdata dma_reserve;
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
|
|
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
|
|
static unsigned long __initdata required_kernelcore;
|
|
static unsigned long __initdata required_movablecore;
|
|
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
|
|
|
|
/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
|
|
int movable_zone;
|
|
EXPORT_SYMBOL(movable_zone);
|
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
|
|
#if MAX_NUMNODES > 1
|
|
int nr_node_ids __read_mostly = MAX_NUMNODES;
|
|
int nr_online_nodes __read_mostly = 1;
|
|
EXPORT_SYMBOL(nr_node_ids);
|
|
EXPORT_SYMBOL(nr_online_nodes);
|
|
#endif
|
|
|
|
int page_group_by_mobility_disabled __read_mostly;
|
|
|
|
void set_pageblock_migratetype(struct page *page, int migratetype)
|
|
{
|
|
if (unlikely(page_group_by_mobility_disabled &&
|
|
migratetype < MIGRATE_PCPTYPES))
|
|
migratetype = MIGRATE_UNMOVABLE;
|
|
|
|
set_pageblock_flags_group(page, (unsigned long)migratetype,
|
|
PB_migrate, PB_migrate_end);
|
|
}
|
|
|
|
bool oom_killer_disabled __read_mostly;
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
|
|
{
|
|
int ret = 0;
|
|
unsigned seq;
|
|
unsigned long pfn = page_to_pfn(page);
|
|
unsigned long sp, start_pfn;
|
|
|
|
do {
|
|
seq = zone_span_seqbegin(zone);
|
|
start_pfn = zone->zone_start_pfn;
|
|
sp = zone->spanned_pages;
|
|
if (!zone_spans_pfn(zone, pfn))
|
|
ret = 1;
|
|
} while (zone_span_seqretry(zone, seq));
|
|
|
|
if (ret)
|
|
pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
|
|
pfn, zone_to_nid(zone), zone->name,
|
|
start_pfn, start_pfn + sp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int page_is_consistent(struct zone *zone, struct page *page)
|
|
{
|
|
if (!pfn_valid_within(page_to_pfn(page)))
|
|
return 0;
|
|
if (zone != page_zone(page))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
/*
|
|
* Temporary debugging check for pages not lying within a given zone.
|
|
*/
|
|
static int bad_range(struct zone *zone, struct page *page)
|
|
{
|
|
if (page_outside_zone_boundaries(zone, page))
|
|
return 1;
|
|
if (!page_is_consistent(zone, page))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int bad_range(struct zone *zone, struct page *page)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void bad_page(struct page *page, const char *reason,
|
|
unsigned long bad_flags)
|
|
{
|
|
static unsigned long resume;
|
|
static unsigned long nr_shown;
|
|
static unsigned long nr_unshown;
|
|
|
|
/* Don't complain about poisoned pages */
|
|
if (PageHWPoison(page)) {
|
|
page_mapcount_reset(page); /* remove PageBuddy */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Allow a burst of 60 reports, then keep quiet for that minute;
|
|
* or allow a steady drip of one report per second.
|
|
*/
|
|
if (nr_shown == 60) {
|
|
if (time_before(jiffies, resume)) {
|
|
nr_unshown++;
|
|
goto out;
|
|
}
|
|
if (nr_unshown) {
|
|
printk(KERN_ALERT
|
|
"BUG: Bad page state: %lu messages suppressed\n",
|
|
nr_unshown);
|
|
nr_unshown = 0;
|
|
}
|
|
nr_shown = 0;
|
|
}
|
|
if (nr_shown++ == 0)
|
|
resume = jiffies + 60 * HZ;
|
|
|
|
printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
|
|
current->comm, page_to_pfn(page));
|
|
dump_page_badflags(page, reason, bad_flags);
|
|
|
|
print_modules();
|
|
dump_stack();
|
|
out:
|
|
/* Leave bad fields for debug, except PageBuddy could make trouble */
|
|
page_mapcount_reset(page); /* remove PageBuddy */
|
|
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
|
|
}
|
|
|
|
/*
|
|
* Higher-order pages are called "compound pages". They are structured thusly:
|
|
*
|
|
* The first PAGE_SIZE page is called the "head page".
|
|
*
|
|
* The remaining PAGE_SIZE pages are called "tail pages".
|
|
*
|
|
* All pages have PG_compound set. All tail pages have their ->first_page
|
|
* pointing at the head page.
|
|
*
|
|
* The first tail page's ->lru.next holds the address of the compound page's
|
|
* put_page() function. Its ->lru.prev holds the order of allocation.
|
|
* This usage means that zero-order pages may not be compound.
|
|
*/
|
|
|
|
static void free_compound_page(struct page *page)
|
|
{
|
|
__free_pages_ok(page, compound_order(page));
|
|
}
|
|
|
|
void prep_compound_page(struct page *page, unsigned long order)
|
|
{
|
|
int i;
|
|
int nr_pages = 1 << order;
|
|
|
|
set_compound_page_dtor(page, free_compound_page);
|
|
set_compound_order(page, order);
|
|
__SetPageHead(page);
|
|
for (i = 1; i < nr_pages; i++) {
|
|
struct page *p = page + i;
|
|
set_page_count(p, 0);
|
|
p->first_page = page;
|
|
/* Make sure p->first_page is always valid for PageTail() */
|
|
smp_wmb();
|
|
__SetPageTail(p);
|
|
}
|
|
}
|
|
|
|
/* update __split_huge_page_refcount if you change this function */
|
|
static int destroy_compound_page(struct page *page, unsigned long order)
|
|
{
|
|
int i;
|
|
int nr_pages = 1 << order;
|
|
int bad = 0;
|
|
|
|
if (unlikely(compound_order(page) != order)) {
|
|
bad_page(page, "wrong compound order", 0);
|
|
bad++;
|
|
}
|
|
|
|
__ClearPageHead(page);
|
|
|
|
for (i = 1; i < nr_pages; i++) {
|
|
struct page *p = page + i;
|
|
|
|
if (unlikely(!PageTail(p))) {
|
|
bad_page(page, "PageTail not set", 0);
|
|
bad++;
|
|
} else if (unlikely(p->first_page != page)) {
|
|
bad_page(page, "first_page not consistent", 0);
|
|
bad++;
|
|
}
|
|
__ClearPageTail(p);
|
|
}
|
|
|
|
return bad;
|
|
}
|
|
|
|
static inline void prep_zero_page(struct page *page, unsigned int order,
|
|
gfp_t gfp_flags)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
|
|
* and __GFP_HIGHMEM from hard or soft interrupt context.
|
|
*/
|
|
VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
|
|
for (i = 0; i < (1 << order); i++)
|
|
clear_highpage(page + i);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
unsigned int _debug_guardpage_minorder;
|
|
bool _debug_pagealloc_enabled __read_mostly;
|
|
bool _debug_guardpage_enabled __read_mostly;
|
|
|
|
static int __init early_debug_pagealloc(char *buf)
|
|
{
|
|
if (!buf)
|
|
return -EINVAL;
|
|
|
|
if (strcmp(buf, "on") == 0)
|
|
_debug_pagealloc_enabled = true;
|
|
|
|
return 0;
|
|
}
|
|
early_param("debug_pagealloc", early_debug_pagealloc);
|
|
|
|
static bool need_debug_guardpage(void)
|
|
{
|
|
/* If we don't use debug_pagealloc, we don't need guard page */
|
|
if (!debug_pagealloc_enabled())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void init_debug_guardpage(void)
|
|
{
|
|
if (!debug_pagealloc_enabled())
|
|
return;
|
|
|
|
_debug_guardpage_enabled = true;
|
|
}
|
|
|
|
struct page_ext_operations debug_guardpage_ops = {
|
|
.need = need_debug_guardpage,
|
|
.init = init_debug_guardpage,
|
|
};
|
|
|
|
static int __init debug_guardpage_minorder_setup(char *buf)
|
|
{
|
|
unsigned long res;
|
|
|
|
if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
|
|
printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
|
|
return 0;
|
|
}
|
|
_debug_guardpage_minorder = res;
|
|
printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
|
|
return 0;
|
|
}
|
|
__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
|
|
|
|
static inline void set_page_guard(struct zone *zone, struct page *page,
|
|
unsigned int order, int migratetype)
|
|
{
|
|
struct page_ext *page_ext;
|
|
|
|
if (!debug_guardpage_enabled())
|
|
return;
|
|
|
|
page_ext = lookup_page_ext(page);
|
|
__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
|
|
|
|
INIT_LIST_HEAD(&page->lru);
|
|
set_page_private(page, order);
|
|
/* Guard pages are not available for any usage */
|
|
__mod_zone_freepage_state(zone, -(1 << order), migratetype);
|
|
}
|
|
|
|
static inline void clear_page_guard(struct zone *zone, struct page *page,
|
|
unsigned int order, int migratetype)
|
|
{
|
|
struct page_ext *page_ext;
|
|
|
|
if (!debug_guardpage_enabled())
|
|
return;
|
|
|
|
page_ext = lookup_page_ext(page);
|
|
__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
|
|
|
|
set_page_private(page, 0);
|
|
if (!is_migrate_isolate(migratetype))
|
|
__mod_zone_freepage_state(zone, (1 << order), migratetype);
|
|
}
|
|
#else
|
|
struct page_ext_operations debug_guardpage_ops = { NULL, };
|
|
static inline void set_page_guard(struct zone *zone, struct page *page,
|
|
unsigned int order, int migratetype) {}
|
|
static inline void clear_page_guard(struct zone *zone, struct page *page,
|
|
unsigned int order, int migratetype) {}
|
|
#endif
|
|
|
|
static inline void set_page_order(struct page *page, unsigned int order)
|
|
{
|
|
set_page_private(page, order);
|
|
__SetPageBuddy(page);
|
|
}
|
|
|
|
static inline void rmv_page_order(struct page *page)
|
|
{
|
|
__ClearPageBuddy(page);
|
|
set_page_private(page, 0);
|
|
}
|
|
|
|
/*
|
|
* This function checks whether a page is free && is the buddy
|
|
* we can do coalesce a page and its buddy if
|
|
* (a) the buddy is not in a hole &&
|
|
* (b) the buddy is in the buddy system &&
|
|
* (c) a page and its buddy have the same order &&
|
|
* (d) a page and its buddy are in the same zone.
|
|
*
|
|
* For recording whether a page is in the buddy system, we set ->_mapcount
|
|
* PAGE_BUDDY_MAPCOUNT_VALUE.
|
|
* Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
|
|
* serialized by zone->lock.
|
|
*
|
|
* For recording page's order, we use page_private(page).
|
|
*/
|
|
static inline int page_is_buddy(struct page *page, struct page *buddy,
|
|
unsigned int order)
|
|
{
|
|
if (!pfn_valid_within(page_to_pfn(buddy)))
|
|
return 0;
|
|
|
|
if (page_is_guard(buddy) && page_order(buddy) == order) {
|
|
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
|
|
|
|
if (page_zone_id(page) != page_zone_id(buddy))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
if (PageBuddy(buddy) && page_order(buddy) == order) {
|
|
VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
|
|
|
|
/*
|
|
* zone check is done late to avoid uselessly
|
|
* calculating zone/node ids for pages that could
|
|
* never merge.
|
|
*/
|
|
if (page_zone_id(page) != page_zone_id(buddy))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Freeing function for a buddy system allocator.
|
|
*
|
|
* The concept of a buddy system is to maintain direct-mapped table
|
|
* (containing bit values) for memory blocks of various "orders".
|
|
* The bottom level table contains the map for the smallest allocatable
|
|
* units of memory (here, pages), and each level above it describes
|
|
* pairs of units from the levels below, hence, "buddies".
|
|
* At a high level, all that happens here is marking the table entry
|
|
* at the bottom level available, and propagating the changes upward
|
|
* as necessary, plus some accounting needed to play nicely with other
|
|
* parts of the VM system.
|
|
* At each level, we keep a list of pages, which are heads of continuous
|
|
* free pages of length of (1 << order) and marked with _mapcount
|
|
* PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
|
|
* field.
|
|
* So when we are allocating or freeing one, we can derive the state of the
|
|
* other. That is, if we allocate a small block, and both were
|
|
* free, the remainder of the region must be split into blocks.
|
|
* If a block is freed, and its buddy is also free, then this
|
|
* triggers coalescing into a block of larger size.
|
|
*
|
|
* -- nyc
|
|
*/
|
|
|
|
static inline void __free_one_page(struct page *page,
|
|
unsigned long pfn,
|
|
struct zone *zone, unsigned int order,
|
|
int migratetype)
|
|
{
|
|
unsigned long page_idx;
|
|
unsigned long combined_idx;
|
|
unsigned long uninitialized_var(buddy_idx);
|
|
struct page *buddy;
|
|
int max_order = MAX_ORDER;
|
|
|
|
VM_BUG_ON(!zone_is_initialized(zone));
|
|
|
|
if (unlikely(PageCompound(page)))
|
|
if (unlikely(destroy_compound_page(page, order)))
|
|
return;
|
|
|
|
VM_BUG_ON(migratetype == -1);
|
|
if (is_migrate_isolate(migratetype)) {
|
|
/*
|
|
* We restrict max order of merging to prevent merge
|
|
* between freepages on isolate pageblock and normal
|
|
* pageblock. Without this, pageblock isolation
|
|
* could cause incorrect freepage accounting.
|
|
*/
|
|
max_order = min(MAX_ORDER, pageblock_order + 1);
|
|
} else {
|
|
__mod_zone_freepage_state(zone, 1 << order, migratetype);
|
|
}
|
|
|
|
page_idx = pfn & ((1 << max_order) - 1);
|
|
|
|
VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
|
|
VM_BUG_ON_PAGE(bad_range(zone, page), page);
|
|
|
|
while (order < max_order - 1) {
|
|
buddy_idx = __find_buddy_index(page_idx, order);
|
|
buddy = page + (buddy_idx - page_idx);
|
|
if (!page_is_buddy(page, buddy, order))
|
|
break;
|
|
/*
|
|
* Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
|
|
* merge with it and move up one order.
|
|
*/
|
|
if (page_is_guard(buddy)) {
|
|
clear_page_guard(zone, buddy, order, migratetype);
|
|
} else {
|
|
list_del(&buddy->lru);
|
|
zone->free_area[order].nr_free--;
|
|
rmv_page_order(buddy);
|
|
}
|
|
combined_idx = buddy_idx & page_idx;
|
|
page = page + (combined_idx - page_idx);
|
|
page_idx = combined_idx;
|
|
order++;
|
|
}
|
|
set_page_order(page, order);
|
|
|
|
/*
|
|
* If this is not the largest possible page, check if the buddy
|
|
* of the next-highest order is free. If it is, it's possible
|
|
* that pages are being freed that will coalesce soon. In case,
|
|
* that is happening, add the free page to the tail of the list
|
|
* so it's less likely to be used soon and more likely to be merged
|
|
* as a higher order page
|
|
*/
|
|
if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
|
|
struct page *higher_page, *higher_buddy;
|
|
combined_idx = buddy_idx & page_idx;
|
|
higher_page = page + (combined_idx - page_idx);
|
|
buddy_idx = __find_buddy_index(combined_idx, order + 1);
|
|
higher_buddy = higher_page + (buddy_idx - combined_idx);
|
|
if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
|
|
list_add_tail(&page->lru,
|
|
&zone->free_area[order].free_list[migratetype]);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
|
|
out:
|
|
zone->free_area[order].nr_free++;
|
|
}
|
|
|
|
static inline int free_pages_check(struct page *page)
|
|
{
|
|
const char *bad_reason = NULL;
|
|
unsigned long bad_flags = 0;
|
|
|
|
if (unlikely(page_mapcount(page)))
|
|
bad_reason = "nonzero mapcount";
|
|
if (unlikely(page->mapping != NULL))
|
|
bad_reason = "non-NULL mapping";
|
|
if (unlikely(atomic_read(&page->_count) != 0))
|
|
bad_reason = "nonzero _count";
|
|
if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
|
|
bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
|
|
bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
|
|
}
|
|
#ifdef CONFIG_MEMCG
|
|
if (unlikely(page->mem_cgroup))
|
|
bad_reason = "page still charged to cgroup";
|
|
#endif
|
|
if (unlikely(bad_reason)) {
|
|
bad_page(page, bad_reason, bad_flags);
|
|
return 1;
|
|
}
|
|
page_cpupid_reset_last(page);
|
|
if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
|
|
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frees a number of pages from the PCP lists
|
|
* Assumes all pages on list are in same zone, and of same order.
|
|
* count is the number of pages to free.
|
|
*
|
|
* If the zone was previously in an "all pages pinned" state then look to
|
|
* see if this freeing clears that state.
|
|
*
|
|
* And clear the zone's pages_scanned counter, to hold off the "all pages are
|
|
* pinned" detection logic.
|
|
*/
|
|
static void free_pcppages_bulk(struct zone *zone, int count,
|
|
struct per_cpu_pages *pcp)
|
|
{
|
|
int migratetype = 0;
|
|
int batch_free = 0;
|
|
int to_free = count;
|
|
unsigned long nr_scanned;
|
|
|
|
spin_lock(&zone->lock);
|
|
nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
|
|
if (nr_scanned)
|
|
__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
|
|
|
|
while (to_free) {
|
|
struct page *page;
|
|
struct list_head *list;
|
|
|
|
/*
|
|
* Remove pages from lists in a round-robin fashion. A
|
|
* batch_free count is maintained that is incremented when an
|
|
* empty list is encountered. This is so more pages are freed
|
|
* off fuller lists instead of spinning excessively around empty
|
|
* lists
|
|
*/
|
|
do {
|
|
batch_free++;
|
|
if (++migratetype == MIGRATE_PCPTYPES)
|
|
migratetype = 0;
|
|
list = &pcp->lists[migratetype];
|
|
} while (list_empty(list));
|
|
|
|
/* This is the only non-empty list. Free them all. */
|
|
if (batch_free == MIGRATE_PCPTYPES)
|
|
batch_free = to_free;
|
|
|
|
do {
|
|
int mt; /* migratetype of the to-be-freed page */
|
|
|
|
page = list_entry(list->prev, struct page, lru);
|
|
/* must delete as __free_one_page list manipulates */
|
|
list_del(&page->lru);
|
|
mt = get_freepage_migratetype(page);
|
|
if (unlikely(has_isolate_pageblock(zone)))
|
|
mt = get_pageblock_migratetype(page);
|
|
|
|
/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
|
|
__free_one_page(page, page_to_pfn(page), zone, 0, mt);
|
|
trace_mm_page_pcpu_drain(page, 0, mt);
|
|
} while (--to_free && --batch_free && !list_empty(list));
|
|
}
|
|
spin_unlock(&zone->lock);
|
|
}
|
|
|
|
static void free_one_page(struct zone *zone,
|
|
struct page *page, unsigned long pfn,
|
|
unsigned int order,
|
|
int migratetype)
|
|
{
|
|
unsigned long nr_scanned;
|
|
spin_lock(&zone->lock);
|
|
nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
|
|
if (nr_scanned)
|
|
__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
|
|
|
|
if (unlikely(has_isolate_pageblock(zone) ||
|
|
is_migrate_isolate(migratetype))) {
|
|
migratetype = get_pfnblock_migratetype(page, pfn);
|
|
}
|
|
__free_one_page(page, pfn, zone, order, migratetype);
|
|
spin_unlock(&zone->lock);
|
|
}
|
|
|
|
static bool free_pages_prepare(struct page *page, unsigned int order)
|
|
{
|
|
int i;
|
|
int bad = 0;
|
|
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
|
|
|
|
trace_mm_page_free(page, order);
|
|
kmemcheck_free_shadow(page, order);
|
|
|
|
if (PageAnon(page))
|
|
page->mapping = NULL;
|
|
for (i = 0; i < (1 << order); i++)
|
|
bad += free_pages_check(page + i);
|
|
if (bad)
|
|
return false;
|
|
|
|
reset_page_owner(page, order);
|
|
|
|
if (!PageHighMem(page)) {
|
|
debug_check_no_locks_freed(page_address(page),
|
|
PAGE_SIZE << order);
|
|
debug_check_no_obj_freed(page_address(page),
|
|
PAGE_SIZE << order);
|
|
}
|
|
arch_free_page(page, order);
|
|
kernel_map_pages(page, 1 << order, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __free_pages_ok(struct page *page, unsigned int order)
|
|
{
|
|
unsigned long flags;
|
|
int migratetype;
|
|
unsigned long pfn = page_to_pfn(page);
|
|
|
|
if (!free_pages_prepare(page, order))
|
|
return;
|
|
|
|
migratetype = get_pfnblock_migratetype(page, pfn);
|
|
local_irq_save(flags);
|
|
__count_vm_events(PGFREE, 1 << order);
|
|
set_freepage_migratetype(page, migratetype);
|
|
free_one_page(page_zone(page), page, pfn, order, migratetype);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
void __init __free_pages_bootmem(struct page *page, unsigned int order)
|
|
{
|
|
unsigned int nr_pages = 1 << order;
|
|
struct page *p = page;
|
|
unsigned int loop;
|
|
|
|
prefetchw(p);
|
|
for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
|
|
prefetchw(p + 1);
|
|
__ClearPageReserved(p);
|
|
set_page_count(p, 0);
|
|
}
|
|
__ClearPageReserved(p);
|
|
set_page_count(p, 0);
|
|
|
|
page_zone(page)->managed_pages += nr_pages;
|
|
set_page_refcounted(page);
|
|
__free_pages(page, order);
|
|
}
|
|
|
|
#ifdef CONFIG_CMA
|
|
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
|
|
void __init init_cma_reserved_pageblock(struct page *page)
|
|
{
|
|
unsigned i = pageblock_nr_pages;
|
|
struct page *p = page;
|
|
|
|
do {
|
|
__ClearPageReserved(p);
|
|
set_page_count(p, 0);
|
|
} while (++p, --i);
|
|
|
|
set_pageblock_migratetype(page, MIGRATE_CMA);
|
|
|
|
if (pageblock_order >= MAX_ORDER) {
|
|
i = pageblock_nr_pages;
|
|
p = page;
|
|
do {
|
|
set_page_refcounted(p);
|
|
__free_pages(p, MAX_ORDER - 1);
|
|
p += MAX_ORDER_NR_PAGES;
|
|
} while (i -= MAX_ORDER_NR_PAGES);
|
|
} else {
|
|
set_page_refcounted(page);
|
|
__free_pages(page, pageblock_order);
|
|
}
|
|
|
|
adjust_managed_page_count(page, pageblock_nr_pages);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The order of subdivision here is critical for the IO subsystem.
|
|
* Please do not alter this order without good reasons and regression
|
|
* testing. Specifically, as large blocks of memory are subdivided,
|
|
* the order in which smaller blocks are delivered depends on the order
|
|
* they're subdivided in this function. This is the primary factor
|
|
* influencing the order in which pages are delivered to the IO
|
|
* subsystem according to empirical testing, and this is also justified
|
|
* by considering the behavior of a buddy system containing a single
|
|
* large block of memory acted on by a series of small allocations.
|
|
* This behavior is a critical factor in sglist merging's success.
|
|
*
|
|
* -- nyc
|
|
*/
|
|
static inline void expand(struct zone *zone, struct page *page,
|
|
int low, int high, struct free_area *area,
|
|
int migratetype)
|
|
{
|
|
unsigned long size = 1 << high;
|
|
|
|
while (high > low) {
|
|
area--;
|
|
high--;
|
|
size >>= 1;
|
|
VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
|
|
|
|
if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
|
|
debug_guardpage_enabled() &&
|
|
high < debug_guardpage_minorder()) {
|
|
/*
|
|
* Mark as guard pages (or page), that will allow to
|
|
* merge back to allocator when buddy will be freed.
|
|
* Corresponding page table entries will not be touched,
|
|
* pages will stay not present in virtual address space
|
|
*/
|
|
set_page_guard(zone, &page[size], high, migratetype);
|
|
continue;
|
|
}
|
|
list_add(&page[size].lru, &area->free_list[migratetype]);
|
|
area->nr_free++;
|
|
set_page_order(&page[size], high);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This page is about to be returned from the page allocator
|
|
*/
|
|
static inline int check_new_page(struct page *page)
|
|
{
|
|
const char *bad_reason = NULL;
|
|
unsigned long bad_flags = 0;
|
|
|
|
if (unlikely(page_mapcount(page)))
|
|
bad_reason = "nonzero mapcount";
|
|
if (unlikely(page->mapping != NULL))
|
|
bad_reason = "non-NULL mapping";
|
|
if (unlikely(atomic_read(&page->_count) != 0))
|
|
bad_reason = "nonzero _count";
|
|
if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
|
|
bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
|
|
bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
|
|
}
|
|
#ifdef CONFIG_MEMCG
|
|
if (unlikely(page->mem_cgroup))
|
|
bad_reason = "page still charged to cgroup";
|
|
#endif
|
|
if (unlikely(bad_reason)) {
|
|
bad_page(page, bad_reason, bad_flags);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < (1 << order); i++) {
|
|
struct page *p = page + i;
|
|
if (unlikely(check_new_page(p)))
|
|
return 1;
|
|
}
|
|
|
|
set_page_private(page, 0);
|
|
set_page_refcounted(page);
|
|
|
|
arch_alloc_page(page, order);
|
|
kernel_map_pages(page, 1 << order, 1);
|
|
|
|
if (gfp_flags & __GFP_ZERO)
|
|
prep_zero_page(page, order, gfp_flags);
|
|
|
|
if (order && (gfp_flags & __GFP_COMP))
|
|
prep_compound_page(page, order);
|
|
|
|
set_page_owner(page, order, gfp_flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Go through the free lists for the given migratetype and remove
|
|
* the smallest available page from the freelists
|
|
*/
|
|
static inline
|
|
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
|
|
int migratetype)
|
|
{
|
|
unsigned int current_order;
|
|
struct free_area *area;
|
|
struct page *page;
|
|
|
|
/* Find a page of the appropriate size in the preferred list */
|
|
for (current_order = order; current_order < MAX_ORDER; ++current_order) {
|
|
area = &(zone->free_area[current_order]);
|
|
if (list_empty(&area->free_list[migratetype]))
|
|
continue;
|
|
|
|
page = list_entry(area->free_list[migratetype].next,
|
|
struct page, lru);
|
|
list_del(&page->lru);
|
|
rmv_page_order(page);
|
|
area->nr_free--;
|
|
expand(zone, page, order, current_order, area, migratetype);
|
|
set_freepage_migratetype(page, migratetype);
|
|
return page;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* This array describes the order lists are fallen back to when
|
|
* the free lists for the desirable migrate type are depleted
|
|
*/
|
|
static int fallbacks[MIGRATE_TYPES][4] = {
|
|
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
|
|
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
|
|
#ifdef CONFIG_CMA
|
|
[MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
|
|
[MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
|
|
#else
|
|
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
|
|
#endif
|
|
[MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
|
|
#ifdef CONFIG_MEMORY_ISOLATION
|
|
[MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Move the free pages in a range to the free lists of the requested type.
|
|
* Note that start_page and end_pages are not aligned on a pageblock
|
|
* boundary. If alignment is required, use move_freepages_block()
|
|
*/
|
|
int move_freepages(struct zone *zone,
|
|
struct page *start_page, struct page *end_page,
|
|
int migratetype)
|
|
{
|
|
struct page *page;
|
|
unsigned long order;
|
|
int pages_moved = 0;
|
|
|
|
#ifndef CONFIG_HOLES_IN_ZONE
|
|
/*
|
|
* page_zone is not safe to call in this context when
|
|
* CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
|
|
* anyway as we check zone boundaries in move_freepages_block().
|
|
* Remove at a later date when no bug reports exist related to
|
|
* grouping pages by mobility
|
|
*/
|
|
VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
|
|
#endif
|
|
|
|
for (page = start_page; page <= end_page;) {
|
|
/* Make sure we are not inadvertently changing nodes */
|
|
VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
|
|
|
|
if (!pfn_valid_within(page_to_pfn(page))) {
|
|
page++;
|
|
continue;
|
|
}
|
|
|
|
if (!PageBuddy(page)) {
|
|
page++;
|
|
continue;
|
|
}
|
|
|
|
order = page_order(page);
|
|
list_move(&page->lru,
|
|
&zone->free_area[order].free_list[migratetype]);
|
|
set_freepage_migratetype(page, migratetype);
|
|
page += 1 << order;
|
|
pages_moved += 1 << order;
|
|
}
|
|
|
|
return pages_moved;
|
|
}
|
|
|
|
int move_freepages_block(struct zone *zone, struct page *page,
|
|
int migratetype)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
struct page *start_page, *end_page;
|
|
|
|
start_pfn = page_to_pfn(page);
|
|
start_pfn = start_pfn & ~(pageblock_nr_pages-1);
|
|
start_page = pfn_to_page(start_pfn);
|
|
end_page = start_page + pageblock_nr_pages - 1;
|
|
end_pfn = start_pfn + pageblock_nr_pages - 1;
|
|
|
|
/* Do not cross zone boundaries */
|
|
if (!zone_spans_pfn(zone, start_pfn))
|
|
start_page = page;
|
|
if (!zone_spans_pfn(zone, end_pfn))
|
|
return 0;
|
|
|
|
return move_freepages(zone, start_page, end_page, migratetype);
|
|
}
|
|
|
|
static void change_pageblock_range(struct page *pageblock_page,
|
|
int start_order, int migratetype)
|
|
{
|
|
int nr_pageblocks = 1 << (start_order - pageblock_order);
|
|
|
|
while (nr_pageblocks--) {
|
|
set_pageblock_migratetype(pageblock_page, migratetype);
|
|
pageblock_page += pageblock_nr_pages;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If breaking a large block of pages, move all free pages to the preferred
|
|
* allocation list. If falling back for a reclaimable kernel allocation, be
|
|
* more aggressive about taking ownership of free pages.
|
|
*
|
|
* On the other hand, never change migration type of MIGRATE_CMA pageblocks
|
|
* nor move CMA pages to different free lists. We don't want unmovable pages
|
|
* to be allocated from MIGRATE_CMA areas.
|
|
*
|
|
* Returns the new migratetype of the pageblock (or the same old migratetype
|
|
* if it was unchanged).
|
|
*/
|
|
static int try_to_steal_freepages(struct zone *zone, struct page *page,
|
|
int start_type, int fallback_type)
|
|
{
|
|
int current_order = page_order(page);
|
|
|
|
/*
|
|
* When borrowing from MIGRATE_CMA, we need to release the excess
|
|
* buddy pages to CMA itself. We also ensure the freepage_migratetype
|
|
* is set to CMA so it is returned to the correct freelist in case
|
|
* the page ends up being not actually allocated from the pcp lists.
|
|
*/
|
|
if (is_migrate_cma(fallback_type))
|
|
return fallback_type;
|
|
|
|
/* Take ownership for orders >= pageblock_order */
|
|
if (current_order >= pageblock_order) {
|
|
change_pageblock_range(page, current_order, start_type);
|
|
return start_type;
|
|
}
|
|
|
|
if (current_order >= pageblock_order / 2 ||
|
|
start_type == MIGRATE_RECLAIMABLE ||
|
|
page_group_by_mobility_disabled) {
|
|
int pages;
|
|
|
|
pages = move_freepages_block(zone, page, start_type);
|
|
|
|
/* Claim the whole block if over half of it is free */
|
|
if (pages >= (1 << (pageblock_order-1)) ||
|
|
page_group_by_mobility_disabled) {
|
|
|
|
set_pageblock_migratetype(page, start_type);
|
|
return start_type;
|
|
}
|
|
|
|
}
|
|
|
|
return fallback_type;
|
|
}
|
|
|
|
/* Remove an element from the buddy allocator from the fallback list */
|
|
static inline struct page *
|
|
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
|
|
{
|
|
struct free_area *area;
|
|
unsigned int current_order;
|
|
struct page *page;
|
|
int migratetype, new_type, i;
|
|
|
|
/* Find the largest possible block of pages in the other list */
|
|
for (current_order = MAX_ORDER-1;
|
|
current_order >= order && current_order <= MAX_ORDER-1;
|
|
--current_order) {
|
|
for (i = 0;; i++) {
|
|
migratetype = fallbacks[start_migratetype][i];
|
|
|
|
/* MIGRATE_RESERVE handled later if necessary */
|
|
if (migratetype == MIGRATE_RESERVE)
|
|
break;
|
|
|
|
area = &(zone->free_area[current_order]);
|
|
if (list_empty(&area->free_list[migratetype]))
|
|
continue;
|
|
|
|
page = list_entry(area->free_list[migratetype].next,
|
|
struct page, lru);
|
|
area->nr_free--;
|
|
|
|
new_type = try_to_steal_freepages(zone, page,
|
|
start_migratetype,
|
|
migratetype);
|
|
|
|
/* Remove the page from the freelists */
|
|
list_del(&page->lru);
|
|
rmv_page_order(page);
|
|
|
|
expand(zone, page, order, current_order, area,
|
|
new_type);
|
|
/* The freepage_migratetype may differ from pageblock's
|
|
* migratetype depending on the decisions in
|
|
* try_to_steal_freepages. This is OK as long as it does
|
|
* not differ for MIGRATE_CMA type.
|
|
*/
|
|
set_freepage_migratetype(page, new_type);
|
|
|
|
trace_mm_page_alloc_extfrag(page, order, current_order,
|
|
start_migratetype, migratetype, new_type);
|
|
|
|
return page;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Do the hard work of removing an element from the buddy allocator.
|
|
* Call me with the zone->lock already held.
|
|
*/
|
|
static struct page *__rmqueue(struct zone *zone, unsigned int order,
|
|
int migratetype)
|
|
{
|
|
struct page *page;
|
|
|
|
retry_reserve:
|
|
page = __rmqueue_smallest(zone, order, migratetype);
|
|
|
|
if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
|
|
page = __rmqueue_fallback(zone, order, migratetype);
|
|
|
|
/*
|
|
* Use MIGRATE_RESERVE rather than fail an allocation. goto
|
|
* is used because __rmqueue_smallest is an inline function
|
|
* and we want just one call site
|
|
*/
|
|
if (!page) {
|
|
migratetype = MIGRATE_RESERVE;
|
|
goto retry_reserve;
|
|
}
|
|
}
|
|
|
|
trace_mm_page_alloc_zone_locked(page, order, migratetype);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Obtain a specified number of elements from the buddy allocator, all under
|
|
* a single hold of the lock, for efficiency. Add them to the supplied list.
|
|
* Returns the number of new pages which were placed at *list.
|
|
*/
|
|
static int rmqueue_bulk(struct zone *zone, unsigned int order,
|
|
unsigned long count, struct list_head *list,
|
|
int migratetype, bool cold)
|
|
{
|
|
int i;
|
|
|
|
spin_lock(&zone->lock);
|
|
for (i = 0; i < count; ++i) {
|
|
struct page *page = __rmqueue(zone, order, migratetype);
|
|
if (unlikely(page == NULL))
|
|
break;
|
|
|
|
/*
|
|
* Split buddy pages returned by expand() are received here
|
|
* in physical page order. The page is added to the callers and
|
|
* list and the list head then moves forward. From the callers
|
|
* perspective, the linked list is ordered by page number in
|
|
* some conditions. This is useful for IO devices that can
|
|
* merge IO requests if the physical pages are ordered
|
|
* properly.
|
|
*/
|
|
if (likely(!cold))
|
|
list_add(&page->lru, list);
|
|
else
|
|
list_add_tail(&page->lru, list);
|
|
list = &page->lru;
|
|
if (is_migrate_cma(get_freepage_migratetype(page)))
|
|
__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
|
|
-(1 << order));
|
|
}
|
|
__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
|
|
spin_unlock(&zone->lock);
|
|
return i;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Called from the vmstat counter updater to drain pagesets of this
|
|
* currently executing processor on remote nodes after they have
|
|
* expired.
|
|
*
|
|
* Note that this function must be called with the thread pinned to
|
|
* a single processor.
|
|
*/
|
|
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
|
|
{
|
|
unsigned long flags;
|
|
int to_drain, batch;
|
|
|
|
local_irq_save(flags);
|
|
batch = ACCESS_ONCE(pcp->batch);
|
|
to_drain = min(pcp->count, batch);
|
|
if (to_drain > 0) {
|
|
free_pcppages_bulk(zone, to_drain, pcp);
|
|
pcp->count -= to_drain;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Drain pcplists of the indicated processor and zone.
|
|
*
|
|
* The processor must either be the current processor and the
|
|
* thread pinned to the current processor or a processor that
|
|
* is not online.
|
|
*/
|
|
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
|
|
{
|
|
unsigned long flags;
|
|
struct per_cpu_pageset *pset;
|
|
struct per_cpu_pages *pcp;
|
|
|
|
local_irq_save(flags);
|
|
pset = per_cpu_ptr(zone->pageset, cpu);
|
|
|
|
pcp = &pset->pcp;
|
|
if (pcp->count) {
|
|
free_pcppages_bulk(zone, pcp->count, pcp);
|
|
pcp->count = 0;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Drain pcplists of all zones on the indicated processor.
|
|
*
|
|
* The processor must either be the current processor and the
|
|
* thread pinned to the current processor or a processor that
|
|
* is not online.
|
|
*/
|
|
static void drain_pages(unsigned int cpu)
|
|
{
|
|
struct zone *zone;
|
|
|
|
for_each_populated_zone(zone) {
|
|
drain_pages_zone(cpu, zone);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Spill all of this CPU's per-cpu pages back into the buddy allocator.
|
|
*
|
|
* The CPU has to be pinned. When zone parameter is non-NULL, spill just
|
|
* the single zone's pages.
|
|
*/
|
|
void drain_local_pages(struct zone *zone)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
if (zone)
|
|
drain_pages_zone(cpu, zone);
|
|
else
|
|
drain_pages(cpu);
|
|
}
|
|
|
|
/*
|
|
* Spill all the per-cpu pages from all CPUs back into the buddy allocator.
|
|
*
|
|
* When zone parameter is non-NULL, spill just the single zone's pages.
|
|
*
|
|
* Note that this code is protected against sending an IPI to an offline
|
|
* CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
|
|
* on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
|
|
* nothing keeps CPUs from showing up after we populated the cpumask and
|
|
* before the call to on_each_cpu_mask().
|
|
*/
|
|
void drain_all_pages(struct zone *zone)
|
|
{
|
|
int cpu;
|
|
|
|
/*
|
|
* Allocate in the BSS so we wont require allocation in
|
|
* direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
|
|
*/
|
|
static cpumask_t cpus_with_pcps;
|
|
|
|
/*
|
|
* We don't care about racing with CPU hotplug event
|
|
* as offline notification will cause the notified
|
|
* cpu to drain that CPU pcps and on_each_cpu_mask
|
|
* disables preemption as part of its processing
|
|
*/
|
|
for_each_online_cpu(cpu) {
|
|
struct per_cpu_pageset *pcp;
|
|
struct zone *z;
|
|
bool has_pcps = false;
|
|
|
|
if (zone) {
|
|
pcp = per_cpu_ptr(zone->pageset, cpu);
|
|
if (pcp->pcp.count)
|
|
has_pcps = true;
|
|
} else {
|
|
for_each_populated_zone(z) {
|
|
pcp = per_cpu_ptr(z->pageset, cpu);
|
|
if (pcp->pcp.count) {
|
|
has_pcps = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (has_pcps)
|
|
cpumask_set_cpu(cpu, &cpus_with_pcps);
|
|
else
|
|
cpumask_clear_cpu(cpu, &cpus_with_pcps);
|
|
}
|
|
on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
|
|
zone, 1);
|
|
}
|
|
|
|
#ifdef CONFIG_HIBERNATION
|
|
|
|
void mark_free_pages(struct zone *zone)
|
|
{
|
|
unsigned long pfn, max_zone_pfn;
|
|
unsigned long flags;
|
|
unsigned int order, t;
|
|
struct list_head *curr;
|
|
|
|
if (zone_is_empty(zone))
|
|
return;
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
|
|
max_zone_pfn = zone_end_pfn(zone);
|
|
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
|
|
if (pfn_valid(pfn)) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (!swsusp_page_is_forbidden(page))
|
|
swsusp_unset_page_free(page);
|
|
}
|
|
|
|
for_each_migratetype_order(order, t) {
|
|
list_for_each(curr, &zone->free_area[order].free_list[t]) {
|
|
unsigned long i;
|
|
|
|
pfn = page_to_pfn(list_entry(curr, struct page, lru));
|
|
for (i = 0; i < (1UL << order); i++)
|
|
swsusp_set_page_free(pfn_to_page(pfn + i));
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
/*
|
|
* Free a 0-order page
|
|
* cold == true ? free a cold page : free a hot page
|
|
*/
|
|
void free_hot_cold_page(struct page *page, bool cold)
|
|
{
|
|
struct zone *zone = page_zone(page);
|
|
struct per_cpu_pages *pcp;
|
|
unsigned long flags;
|
|
unsigned long pfn = page_to_pfn(page);
|
|
int migratetype;
|
|
|
|
if (!free_pages_prepare(page, 0))
|
|
return;
|
|
|
|
migratetype = get_pfnblock_migratetype(page, pfn);
|
|
set_freepage_migratetype(page, migratetype);
|
|
local_irq_save(flags);
|
|
__count_vm_event(PGFREE);
|
|
|
|
/*
|
|
* We only track unmovable, reclaimable and movable on pcp lists.
|
|
* Free ISOLATE pages back to the allocator because they are being
|
|
* offlined but treat RESERVE as movable pages so we can get those
|
|
* areas back if necessary. Otherwise, we may have to free
|
|
* excessively into the page allocator
|
|
*/
|
|
if (migratetype >= MIGRATE_PCPTYPES) {
|
|
if (unlikely(is_migrate_isolate(migratetype))) {
|
|
free_one_page(zone, page, pfn, 0, migratetype);
|
|
goto out;
|
|
}
|
|
migratetype = MIGRATE_MOVABLE;
|
|
}
|
|
|
|
pcp = &this_cpu_ptr(zone->pageset)->pcp;
|
|
if (!cold)
|
|
list_add(&page->lru, &pcp->lists[migratetype]);
|
|
else
|
|
list_add_tail(&page->lru, &pcp->lists[migratetype]);
|
|
pcp->count++;
|
|
if (pcp->count >= pcp->high) {
|
|
unsigned long batch = ACCESS_ONCE(pcp->batch);
|
|
free_pcppages_bulk(zone, batch, pcp);
|
|
pcp->count -= batch;
|
|
}
|
|
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* Free a list of 0-order pages
|
|
*/
|
|
void free_hot_cold_page_list(struct list_head *list, bool cold)
|
|
{
|
|
struct page *page, *next;
|
|
|
|
list_for_each_entry_safe(page, next, list, lru) {
|
|
trace_mm_page_free_batched(page, cold);
|
|
free_hot_cold_page(page, cold);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* split_page takes a non-compound higher-order page, and splits it into
|
|
* n (1<<order) sub-pages: page[0..n]
|
|
* Each sub-page must be freed individually.
|
|
*
|
|
* Note: this is probably too low level an operation for use in drivers.
|
|
* Please consult with lkml before using this in your driver.
|
|
*/
|
|
void split_page(struct page *page, unsigned int order)
|
|
{
|
|
int i;
|
|
|
|
VM_BUG_ON_PAGE(PageCompound(page), page);
|
|
VM_BUG_ON_PAGE(!page_count(page), page);
|
|
|
|
#ifdef CONFIG_KMEMCHECK
|
|
/*
|
|
* Split shadow pages too, because free(page[0]) would
|
|
* otherwise free the whole shadow.
|
|
*/
|
|
if (kmemcheck_page_is_tracked(page))
|
|
split_page(virt_to_page(page[0].shadow), order);
|
|
#endif
|
|
|
|
set_page_owner(page, 0, 0);
|
|
for (i = 1; i < (1 << order); i++) {
|
|
set_page_refcounted(page + i);
|
|
set_page_owner(page + i, 0, 0);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(split_page);
|
|
|
|
int __isolate_free_page(struct page *page, unsigned int order)
|
|
{
|
|
unsigned long watermark;
|
|
struct zone *zone;
|
|
int mt;
|
|
|
|
BUG_ON(!PageBuddy(page));
|
|
|
|
zone = page_zone(page);
|
|
mt = get_pageblock_migratetype(page);
|
|
|
|
if (!is_migrate_isolate(mt)) {
|
|
/* Obey watermarks as if the page was being allocated */
|
|
watermark = low_wmark_pages(zone) + (1 << order);
|
|
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
|
|
return 0;
|
|
|
|
__mod_zone_freepage_state(zone, -(1UL << order), mt);
|
|
}
|
|
|
|
/* Remove page from free list */
|
|
list_del(&page->lru);
|
|
zone->free_area[order].nr_free--;
|
|
rmv_page_order(page);
|
|
|
|
/* Set the pageblock if the isolated page is at least a pageblock */
|
|
if (order >= pageblock_order - 1) {
|
|
struct page *endpage = page + (1 << order) - 1;
|
|
for (; page < endpage; page += pageblock_nr_pages) {
|
|
int mt = get_pageblock_migratetype(page);
|
|
if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
|
|
set_pageblock_migratetype(page,
|
|
MIGRATE_MOVABLE);
|
|
}
|
|
}
|
|
|
|
set_page_owner(page, order, 0);
|
|
return 1UL << order;
|
|
}
|
|
|
|
/*
|
|
* Similar to split_page except the page is already free. As this is only
|
|
* being used for migration, the migratetype of the block also changes.
|
|
* As this is called with interrupts disabled, the caller is responsible
|
|
* for calling arch_alloc_page() and kernel_map_page() after interrupts
|
|
* are enabled.
|
|
*
|
|
* Note: this is probably too low level an operation for use in drivers.
|
|
* Please consult with lkml before using this in your driver.
|
|
*/
|
|
int split_free_page(struct page *page)
|
|
{
|
|
unsigned int order;
|
|
int nr_pages;
|
|
|
|
order = page_order(page);
|
|
|
|
nr_pages = __isolate_free_page(page, order);
|
|
if (!nr_pages)
|
|
return 0;
|
|
|
|
/* Split into individual pages */
|
|
set_page_refcounted(page);
|
|
split_page(page, order);
|
|
return nr_pages;
|
|
}
|
|
|
|
/*
|
|
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
|
|
* we cheat by calling it from here, in the order > 0 path. Saves a branch
|
|
* or two.
|
|
*/
|
|
static inline
|
|
struct page *buffered_rmqueue(struct zone *preferred_zone,
|
|
struct zone *zone, unsigned int order,
|
|
gfp_t gfp_flags, int migratetype)
|
|
{
|
|
unsigned long flags;
|
|
struct page *page;
|
|
bool cold = ((gfp_flags & __GFP_COLD) != 0);
|
|
|
|
again:
|
|
if (likely(order == 0)) {
|
|
struct per_cpu_pages *pcp;
|
|
struct list_head *list;
|
|
|
|
local_irq_save(flags);
|
|
pcp = &this_cpu_ptr(zone->pageset)->pcp;
|
|
list = &pcp->lists[migratetype];
|
|
if (list_empty(list)) {
|
|
pcp->count += rmqueue_bulk(zone, 0,
|
|
pcp->batch, list,
|
|
migratetype, cold);
|
|
if (unlikely(list_empty(list)))
|
|
goto failed;
|
|
}
|
|
|
|
if (cold)
|
|
page = list_entry(list->prev, struct page, lru);
|
|
else
|
|
page = list_entry(list->next, struct page, lru);
|
|
|
|
list_del(&page->lru);
|
|
pcp->count--;
|
|
} else {
|
|
if (unlikely(gfp_flags & __GFP_NOFAIL)) {
|
|
/*
|
|
* __GFP_NOFAIL is not to be used in new code.
|
|
*
|
|
* All __GFP_NOFAIL callers should be fixed so that they
|
|
* properly detect and handle allocation failures.
|
|
*
|
|
* We most definitely don't want callers attempting to
|
|
* allocate greater than order-1 page units with
|
|
* __GFP_NOFAIL.
|
|
*/
|
|
WARN_ON_ONCE(order > 1);
|
|
}
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
page = __rmqueue(zone, order, migratetype);
|
|
spin_unlock(&zone->lock);
|
|
if (!page)
|
|
goto failed;
|
|
__mod_zone_freepage_state(zone, -(1 << order),
|
|
get_freepage_migratetype(page));
|
|
}
|
|
|
|
__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
|
|
if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
|
|
!test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
|
|
set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
|
|
|
|
__count_zone_vm_events(PGALLOC, zone, 1 << order);
|
|
zone_statistics(preferred_zone, zone, gfp_flags);
|
|
local_irq_restore(flags);
|
|
|
|
VM_BUG_ON_PAGE(bad_range(zone, page), page);
|
|
if (prep_new_page(page, order, gfp_flags))
|
|
goto again;
|
|
return page;
|
|
|
|
failed:
|
|
local_irq_restore(flags);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_FAIL_PAGE_ALLOC
|
|
|
|
static struct {
|
|
struct fault_attr attr;
|
|
|
|
u32 ignore_gfp_highmem;
|
|
u32 ignore_gfp_wait;
|
|
u32 min_order;
|
|
} fail_page_alloc = {
|
|
.attr = FAULT_ATTR_INITIALIZER,
|
|
.ignore_gfp_wait = 1,
|
|
.ignore_gfp_highmem = 1,
|
|
.min_order = 1,
|
|
};
|
|
|
|
static int __init setup_fail_page_alloc(char *str)
|
|
{
|
|
return setup_fault_attr(&fail_page_alloc.attr, str);
|
|
}
|
|
__setup("fail_page_alloc=", setup_fail_page_alloc);
|
|
|
|
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
if (order < fail_page_alloc.min_order)
|
|
return false;
|
|
if (gfp_mask & __GFP_NOFAIL)
|
|
return false;
|
|
if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
|
|
return false;
|
|
if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
|
|
return false;
|
|
|
|
return should_fail(&fail_page_alloc.attr, 1 << order);
|
|
}
|
|
|
|
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
|
|
|
|
static int __init fail_page_alloc_debugfs(void)
|
|
{
|
|
umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
|
|
struct dentry *dir;
|
|
|
|
dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
|
|
&fail_page_alloc.attr);
|
|
if (IS_ERR(dir))
|
|
return PTR_ERR(dir);
|
|
|
|
if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
|
|
&fail_page_alloc.ignore_gfp_wait))
|
|
goto fail;
|
|
if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
|
|
&fail_page_alloc.ignore_gfp_highmem))
|
|
goto fail;
|
|
if (!debugfs_create_u32("min-order", mode, dir,
|
|
&fail_page_alloc.min_order))
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
debugfs_remove_recursive(dir);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
late_initcall(fail_page_alloc_debugfs);
|
|
|
|
#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
|
|
|
|
#else /* CONFIG_FAIL_PAGE_ALLOC */
|
|
|
|
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif /* CONFIG_FAIL_PAGE_ALLOC */
|
|
|
|
/*
|
|
* Return true if free pages are above 'mark'. This takes into account the order
|
|
* of the allocation.
|
|
*/
|
|
static bool __zone_watermark_ok(struct zone *z, unsigned int order,
|
|
unsigned long mark, int classzone_idx, int alloc_flags,
|
|
long free_pages)
|
|
{
|
|
/* free_pages may go negative - that's OK */
|
|
long min = mark;
|
|
int o;
|
|
long free_cma = 0;
|
|
|
|
free_pages -= (1 << order) - 1;
|
|
if (alloc_flags & ALLOC_HIGH)
|
|
min -= min / 2;
|
|
if (alloc_flags & ALLOC_HARDER)
|
|
min -= min / 4;
|
|
#ifdef CONFIG_CMA
|
|
/* If allocation can't use CMA areas don't use free CMA pages */
|
|
if (!(alloc_flags & ALLOC_CMA))
|
|
free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
|
|
#endif
|
|
|
|
if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
|
|
return false;
|
|
for (o = 0; o < order; o++) {
|
|
/* At the next order, this order's pages become unavailable */
|
|
free_pages -= z->free_area[o].nr_free << o;
|
|
|
|
/* Require fewer higher order pages to be free */
|
|
min >>= 1;
|
|
|
|
if (free_pages <= min)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
|
|
int classzone_idx, int alloc_flags)
|
|
{
|
|
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
|
|
zone_page_state(z, NR_FREE_PAGES));
|
|
}
|
|
|
|
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
|
|
unsigned long mark, int classzone_idx, int alloc_flags)
|
|
{
|
|
long free_pages = zone_page_state(z, NR_FREE_PAGES);
|
|
|
|
if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
|
|
free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
|
|
|
|
return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
|
|
free_pages);
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* zlc_setup - Setup for "zonelist cache". Uses cached zone data to
|
|
* skip over zones that are not allowed by the cpuset, or that have
|
|
* been recently (in last second) found to be nearly full. See further
|
|
* comments in mmzone.h. Reduces cache footprint of zonelist scans
|
|
* that have to skip over a lot of full or unallowed zones.
|
|
*
|
|
* If the zonelist cache is present in the passed zonelist, then
|
|
* returns a pointer to the allowed node mask (either the current
|
|
* tasks mems_allowed, or node_states[N_MEMORY].)
|
|
*
|
|
* If the zonelist cache is not available for this zonelist, does
|
|
* nothing and returns NULL.
|
|
*
|
|
* If the fullzones BITMAP in the zonelist cache is stale (more than
|
|
* a second since last zap'd) then we zap it out (clear its bits.)
|
|
*
|
|
* We hold off even calling zlc_setup, until after we've checked the
|
|
* first zone in the zonelist, on the theory that most allocations will
|
|
* be satisfied from that first zone, so best to examine that zone as
|
|
* quickly as we can.
|
|
*/
|
|
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
|
|
{
|
|
struct zonelist_cache *zlc; /* cached zonelist speedup info */
|
|
nodemask_t *allowednodes; /* zonelist_cache approximation */
|
|
|
|
zlc = zonelist->zlcache_ptr;
|
|
if (!zlc)
|
|
return NULL;
|
|
|
|
if (time_after(jiffies, zlc->last_full_zap + HZ)) {
|
|
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
|
|
zlc->last_full_zap = jiffies;
|
|
}
|
|
|
|
allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
|
|
&cpuset_current_mems_allowed :
|
|
&node_states[N_MEMORY];
|
|
return allowednodes;
|
|
}
|
|
|
|
/*
|
|
* Given 'z' scanning a zonelist, run a couple of quick checks to see
|
|
* if it is worth looking at further for free memory:
|
|
* 1) Check that the zone isn't thought to be full (doesn't have its
|
|
* bit set in the zonelist_cache fullzones BITMAP).
|
|
* 2) Check that the zones node (obtained from the zonelist_cache
|
|
* z_to_n[] mapping) is allowed in the passed in allowednodes mask.
|
|
* Return true (non-zero) if zone is worth looking at further, or
|
|
* else return false (zero) if it is not.
|
|
*
|
|
* This check -ignores- the distinction between various watermarks,
|
|
* such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
|
|
* found to be full for any variation of these watermarks, it will
|
|
* be considered full for up to one second by all requests, unless
|
|
* we are so low on memory on all allowed nodes that we are forced
|
|
* into the second scan of the zonelist.
|
|
*
|
|
* In the second scan we ignore this zonelist cache and exactly
|
|
* apply the watermarks to all zones, even it is slower to do so.
|
|
* We are low on memory in the second scan, and should leave no stone
|
|
* unturned looking for a free page.
|
|
*/
|
|
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
|
|
nodemask_t *allowednodes)
|
|
{
|
|
struct zonelist_cache *zlc; /* cached zonelist speedup info */
|
|
int i; /* index of *z in zonelist zones */
|
|
int n; /* node that zone *z is on */
|
|
|
|
zlc = zonelist->zlcache_ptr;
|
|
if (!zlc)
|
|
return 1;
|
|
|
|
i = z - zonelist->_zonerefs;
|
|
n = zlc->z_to_n[i];
|
|
|
|
/* This zone is worth trying if it is allowed but not full */
|
|
return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
|
|
}
|
|
|
|
/*
|
|
* Given 'z' scanning a zonelist, set the corresponding bit in
|
|
* zlc->fullzones, so that subsequent attempts to allocate a page
|
|
* from that zone don't waste time re-examining it.
|
|
*/
|
|
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
|
|
{
|
|
struct zonelist_cache *zlc; /* cached zonelist speedup info */
|
|
int i; /* index of *z in zonelist zones */
|
|
|
|
zlc = zonelist->zlcache_ptr;
|
|
if (!zlc)
|
|
return;
|
|
|
|
i = z - zonelist->_zonerefs;
|
|
|
|
set_bit(i, zlc->fullzones);
|
|
}
|
|
|
|
/*
|
|
* clear all zones full, called after direct reclaim makes progress so that
|
|
* a zone that was recently full is not skipped over for up to a second
|
|
*/
|
|
static void zlc_clear_zones_full(struct zonelist *zonelist)
|
|
{
|
|
struct zonelist_cache *zlc; /* cached zonelist speedup info */
|
|
|
|
zlc = zonelist->zlcache_ptr;
|
|
if (!zlc)
|
|
return;
|
|
|
|
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
|
|
}
|
|
|
|
static bool zone_local(struct zone *local_zone, struct zone *zone)
|
|
{
|
|
return local_zone->node == zone->node;
|
|
}
|
|
|
|
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
|
|
{
|
|
return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
|
|
RECLAIM_DISTANCE;
|
|
}
|
|
|
|
#else /* CONFIG_NUMA */
|
|
|
|
static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
|
|
nodemask_t *allowednodes)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
|
|
{
|
|
}
|
|
|
|
static void zlc_clear_zones_full(struct zonelist *zonelist)
|
|
{
|
|
}
|
|
|
|
static bool zone_local(struct zone *local_zone, struct zone *zone)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
static void reset_alloc_batches(struct zone *preferred_zone)
|
|
{
|
|
struct zone *zone = preferred_zone->zone_pgdat->node_zones;
|
|
|
|
do {
|
|
mod_zone_page_state(zone, NR_ALLOC_BATCH,
|
|
high_wmark_pages(zone) - low_wmark_pages(zone) -
|
|
atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
|
|
clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
|
|
} while (zone++ != preferred_zone);
|
|
}
|
|
|
|
/*
|
|
* get_page_from_freelist goes through the zonelist trying to allocate
|
|
* a page.
|
|
*/
|
|
static struct page *
|
|
get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
|
|
struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
|
|
struct zone *preferred_zone, int classzone_idx, int migratetype)
|
|
{
|
|
struct zoneref *z;
|
|
struct page *page = NULL;
|
|
struct zone *zone;
|
|
nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
|
|
int zlc_active = 0; /* set if using zonelist_cache */
|
|
int did_zlc_setup = 0; /* just call zlc_setup() one time */
|
|
bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
|
|
(gfp_mask & __GFP_WRITE);
|
|
int nr_fair_skipped = 0;
|
|
bool zonelist_rescan;
|
|
|
|
zonelist_scan:
|
|
zonelist_rescan = false;
|
|
|
|
/*
|
|
* Scan zonelist, looking for a zone with enough free.
|
|
* See also __cpuset_node_allowed() comment in kernel/cpuset.c.
|
|
*/
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist,
|
|
high_zoneidx, nodemask) {
|
|
unsigned long mark;
|
|
|
|
if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
|
|
!zlc_zone_worth_trying(zonelist, z, allowednodes))
|
|
continue;
|
|
if (cpusets_enabled() &&
|
|
(alloc_flags & ALLOC_CPUSET) &&
|
|
!cpuset_zone_allowed(zone, gfp_mask))
|
|
continue;
|
|
/*
|
|
* Distribute pages in proportion to the individual
|
|
* zone size to ensure fair page aging. The zone a
|
|
* page was allocated in should have no effect on the
|
|
* time the page has in memory before being reclaimed.
|
|
*/
|
|
if (alloc_flags & ALLOC_FAIR) {
|
|
if (!zone_local(preferred_zone, zone))
|
|
break;
|
|
if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
|
|
nr_fair_skipped++;
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* When allocating a page cache page for writing, we
|
|
* want to get it from a zone that is within its dirty
|
|
* limit, such that no single zone holds more than its
|
|
* proportional share of globally allowed dirty pages.
|
|
* The dirty limits take into account the zone's
|
|
* lowmem reserves and high watermark so that kswapd
|
|
* should be able to balance it without having to
|
|
* write pages from its LRU list.
|
|
*
|
|
* This may look like it could increase pressure on
|
|
* lower zones by failing allocations in higher zones
|
|
* before they are full. But the pages that do spill
|
|
* over are limited as the lower zones are protected
|
|
* by this very same mechanism. It should not become
|
|
* a practical burden to them.
|
|
*
|
|
* XXX: For now, allow allocations to potentially
|
|
* exceed the per-zone dirty limit in the slowpath
|
|
* (ALLOC_WMARK_LOW unset) before going into reclaim,
|
|
* which is important when on a NUMA setup the allowed
|
|
* zones are together not big enough to reach the
|
|
* global limit. The proper fix for these situations
|
|
* will require awareness of zones in the
|
|
* dirty-throttling and the flusher threads.
|
|
*/
|
|
if (consider_zone_dirty && !zone_dirty_ok(zone))
|
|
continue;
|
|
|
|
mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
|
|
if (!zone_watermark_ok(zone, order, mark,
|
|
classzone_idx, alloc_flags)) {
|
|
int ret;
|
|
|
|
/* Checked here to keep the fast path fast */
|
|
BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
|
|
if (alloc_flags & ALLOC_NO_WATERMARKS)
|
|
goto try_this_zone;
|
|
|
|
if (IS_ENABLED(CONFIG_NUMA) &&
|
|
!did_zlc_setup && nr_online_nodes > 1) {
|
|
/*
|
|
* we do zlc_setup if there are multiple nodes
|
|
* and before considering the first zone allowed
|
|
* by the cpuset.
|
|
*/
|
|
allowednodes = zlc_setup(zonelist, alloc_flags);
|
|
zlc_active = 1;
|
|
did_zlc_setup = 1;
|
|
}
|
|
|
|
if (zone_reclaim_mode == 0 ||
|
|
!zone_allows_reclaim(preferred_zone, zone))
|
|
goto this_zone_full;
|
|
|
|
/*
|
|
* As we may have just activated ZLC, check if the first
|
|
* eligible zone has failed zone_reclaim recently.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
|
|
!zlc_zone_worth_trying(zonelist, z, allowednodes))
|
|
continue;
|
|
|
|
ret = zone_reclaim(zone, gfp_mask, order);
|
|
switch (ret) {
|
|
case ZONE_RECLAIM_NOSCAN:
|
|
/* did not scan */
|
|
continue;
|
|
case ZONE_RECLAIM_FULL:
|
|
/* scanned but unreclaimable */
|
|
continue;
|
|
default:
|
|
/* did we reclaim enough */
|
|
if (zone_watermark_ok(zone, order, mark,
|
|
classzone_idx, alloc_flags))
|
|
goto try_this_zone;
|
|
|
|
/*
|
|
* Failed to reclaim enough to meet watermark.
|
|
* Only mark the zone full if checking the min
|
|
* watermark or if we failed to reclaim just
|
|
* 1<<order pages or else the page allocator
|
|
* fastpath will prematurely mark zones full
|
|
* when the watermark is between the low and
|
|
* min watermarks.
|
|
*/
|
|
if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
|
|
ret == ZONE_RECLAIM_SOME)
|
|
goto this_zone_full;
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
try_this_zone:
|
|
page = buffered_rmqueue(preferred_zone, zone, order,
|
|
gfp_mask, migratetype);
|
|
if (page)
|
|
break;
|
|
this_zone_full:
|
|
if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
|
|
zlc_mark_zone_full(zonelist, z);
|
|
}
|
|
|
|
if (page) {
|
|
/*
|
|
* page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
|
|
* necessary to allocate the page. The expectation is
|
|
* that the caller is taking steps that will free more
|
|
* memory. The caller should avoid the page being used
|
|
* for !PFMEMALLOC purposes.
|
|
*/
|
|
page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* The first pass makes sure allocations are spread fairly within the
|
|
* local node. However, the local node might have free pages left
|
|
* after the fairness batches are exhausted, and remote zones haven't
|
|
* even been considered yet. Try once more without fairness, and
|
|
* include remote zones now, before entering the slowpath and waking
|
|
* kswapd: prefer spilling to a remote zone over swapping locally.
|
|
*/
|
|
if (alloc_flags & ALLOC_FAIR) {
|
|
alloc_flags &= ~ALLOC_FAIR;
|
|
if (nr_fair_skipped) {
|
|
zonelist_rescan = true;
|
|
reset_alloc_batches(preferred_zone);
|
|
}
|
|
if (nr_online_nodes > 1)
|
|
zonelist_rescan = true;
|
|
}
|
|
|
|
if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
|
|
/* Disable zlc cache for second zonelist scan */
|
|
zlc_active = 0;
|
|
zonelist_rescan = true;
|
|
}
|
|
|
|
if (zonelist_rescan)
|
|
goto zonelist_scan;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Large machines with many possible nodes should not always dump per-node
|
|
* meminfo in irq context.
|
|
*/
|
|
static inline bool should_suppress_show_mem(void)
|
|
{
|
|
bool ret = false;
|
|
|
|
#if NODES_SHIFT > 8
|
|
ret = in_interrupt();
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static DEFINE_RATELIMIT_STATE(nopage_rs,
|
|
DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
|
|
void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
|
|
{
|
|
unsigned int filter = SHOW_MEM_FILTER_NODES;
|
|
|
|
if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
|
|
debug_guardpage_minorder() > 0)
|
|
return;
|
|
|
|
/*
|
|
* This documents exceptions given to allocations in certain
|
|
* contexts that are allowed to allocate outside current's set
|
|
* of allowed nodes.
|
|
*/
|
|
if (!(gfp_mask & __GFP_NOMEMALLOC))
|
|
if (test_thread_flag(TIF_MEMDIE) ||
|
|
(current->flags & (PF_MEMALLOC | PF_EXITING)))
|
|
filter &= ~SHOW_MEM_FILTER_NODES;
|
|
if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
|
|
filter &= ~SHOW_MEM_FILTER_NODES;
|
|
|
|
if (fmt) {
|
|
struct va_format vaf;
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
|
|
vaf.fmt = fmt;
|
|
vaf.va = &args;
|
|
|
|
pr_warn("%pV", &vaf);
|
|
|
|
va_end(args);
|
|
}
|
|
|
|
pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
|
|
current->comm, order, gfp_mask);
|
|
|
|
dump_stack();
|
|
if (!should_suppress_show_mem())
|
|
show_mem(filter);
|
|
}
|
|
|
|
static inline int
|
|
should_alloc_retry(gfp_t gfp_mask, unsigned int order,
|
|
unsigned long did_some_progress,
|
|
unsigned long pages_reclaimed)
|
|
{
|
|
/* Do not loop if specifically requested */
|
|
if (gfp_mask & __GFP_NORETRY)
|
|
return 0;
|
|
|
|
/* Always retry if specifically requested */
|
|
if (gfp_mask & __GFP_NOFAIL)
|
|
return 1;
|
|
|
|
/*
|
|
* Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
|
|
* making forward progress without invoking OOM. Suspend also disables
|
|
* storage devices so kswapd will not help. Bail if we are suspending.
|
|
*/
|
|
if (!did_some_progress && pm_suspended_storage())
|
|
return 0;
|
|
|
|
/*
|
|
* In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
|
|
* means __GFP_NOFAIL, but that may not be true in other
|
|
* implementations.
|
|
*/
|
|
if (order <= PAGE_ALLOC_COSTLY_ORDER)
|
|
return 1;
|
|
|
|
/*
|
|
* For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
|
|
* specified, then we retry until we no longer reclaim any pages
|
|
* (above), or we've reclaimed an order of pages at least as
|
|
* large as the allocation's order. In both cases, if the
|
|
* allocation still fails, we stop retrying.
|
|
*/
|
|
if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline struct page *
|
|
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, enum zone_type high_zoneidx,
|
|
nodemask_t *nodemask, struct zone *preferred_zone,
|
|
int classzone_idx, int migratetype, unsigned long *did_some_progress)
|
|
{
|
|
struct page *page;
|
|
|
|
*did_some_progress = 0;
|
|
|
|
if (oom_killer_disabled)
|
|
return NULL;
|
|
|
|
/*
|
|
* Acquire the per-zone oom lock for each zone. If that
|
|
* fails, somebody else is making progress for us.
|
|
*/
|
|
if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
|
|
*did_some_progress = 1;
|
|
schedule_timeout_uninterruptible(1);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* PM-freezer should be notified that there might be an OOM killer on
|
|
* its way to kill and wake somebody up. This is too early and we might
|
|
* end up not killing anything but false positives are acceptable.
|
|
* See freeze_processes.
|
|
*/
|
|
note_oom_kill();
|
|
|
|
/*
|
|
* Go through the zonelist yet one more time, keep very high watermark
|
|
* here, this is only to catch a parallel oom killing, we must fail if
|
|
* we're still under heavy pressure.
|
|
*/
|
|
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
|
|
order, zonelist, high_zoneidx,
|
|
ALLOC_WMARK_HIGH|ALLOC_CPUSET,
|
|
preferred_zone, classzone_idx, migratetype);
|
|
if (page)
|
|
goto out;
|
|
|
|
if (!(gfp_mask & __GFP_NOFAIL)) {
|
|
/* Coredumps can quickly deplete all memory reserves */
|
|
if (current->flags & PF_DUMPCORE)
|
|
goto out;
|
|
/* The OOM killer will not help higher order allocs */
|
|
if (order > PAGE_ALLOC_COSTLY_ORDER)
|
|
goto out;
|
|
/* The OOM killer does not needlessly kill tasks for lowmem */
|
|
if (high_zoneidx < ZONE_NORMAL)
|
|
goto out;
|
|
/* The OOM killer does not compensate for light reclaim */
|
|
if (!(gfp_mask & __GFP_FS))
|
|
goto out;
|
|
/*
|
|
* GFP_THISNODE contains __GFP_NORETRY and we never hit this.
|
|
* Sanity check for bare calls of __GFP_THISNODE, not real OOM.
|
|
* The caller should handle page allocation failure by itself if
|
|
* it specifies __GFP_THISNODE.
|
|
* Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
|
|
*/
|
|
if (gfp_mask & __GFP_THISNODE)
|
|
goto out;
|
|
}
|
|
/* Exhausted what can be done so it's blamo time */
|
|
out_of_memory(zonelist, gfp_mask, order, nodemask, false);
|
|
*did_some_progress = 1;
|
|
out:
|
|
oom_zonelist_unlock(zonelist, gfp_mask);
|
|
return page;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
/* Try memory compaction for high-order allocations before reclaim */
|
|
static struct page *
|
|
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, enum zone_type high_zoneidx,
|
|
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
|
|
int classzone_idx, int migratetype, enum migrate_mode mode,
|
|
int *contended_compaction, bool *deferred_compaction)
|
|
{
|
|
unsigned long compact_result;
|
|
struct page *page;
|
|
|
|
if (!order)
|
|
return NULL;
|
|
|
|
current->flags |= PF_MEMALLOC;
|
|
compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
|
|
nodemask, mode,
|
|
contended_compaction,
|
|
alloc_flags, classzone_idx);
|
|
current->flags &= ~PF_MEMALLOC;
|
|
|
|
switch (compact_result) {
|
|
case COMPACT_DEFERRED:
|
|
*deferred_compaction = true;
|
|
/* fall-through */
|
|
case COMPACT_SKIPPED:
|
|
return NULL;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* At least in one zone compaction wasn't deferred or skipped, so let's
|
|
* count a compaction stall
|
|
*/
|
|
count_vm_event(COMPACTSTALL);
|
|
|
|
page = get_page_from_freelist(gfp_mask, nodemask,
|
|
order, zonelist, high_zoneidx,
|
|
alloc_flags & ~ALLOC_NO_WATERMARKS,
|
|
preferred_zone, classzone_idx, migratetype);
|
|
|
|
if (page) {
|
|
struct zone *zone = page_zone(page);
|
|
|
|
zone->compact_blockskip_flush = false;
|
|
compaction_defer_reset(zone, order, true);
|
|
count_vm_event(COMPACTSUCCESS);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* It's bad if compaction run occurs and fails. The most likely reason
|
|
* is that pages exist, but not enough to satisfy watermarks.
|
|
*/
|
|
count_vm_event(COMPACTFAIL);
|
|
|
|
cond_resched();
|
|
|
|
return NULL;
|
|
}
|
|
#else
|
|
static inline struct page *
|
|
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, enum zone_type high_zoneidx,
|
|
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
|
|
int classzone_idx, int migratetype, enum migrate_mode mode,
|
|
int *contended_compaction, bool *deferred_compaction)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_COMPACTION */
|
|
|
|
/* Perform direct synchronous page reclaim */
|
|
static int
|
|
__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
|
|
nodemask_t *nodemask)
|
|
{
|
|
struct reclaim_state reclaim_state;
|
|
int progress;
|
|
|
|
cond_resched();
|
|
|
|
/* We now go into synchronous reclaim */
|
|
cpuset_memory_pressure_bump();
|
|
current->flags |= PF_MEMALLOC;
|
|
lockdep_set_current_reclaim_state(gfp_mask);
|
|
reclaim_state.reclaimed_slab = 0;
|
|
current->reclaim_state = &reclaim_state;
|
|
|
|
progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
|
|
|
|
current->reclaim_state = NULL;
|
|
lockdep_clear_current_reclaim_state();
|
|
current->flags &= ~PF_MEMALLOC;
|
|
|
|
cond_resched();
|
|
|
|
return progress;
|
|
}
|
|
|
|
/* The really slow allocator path where we enter direct reclaim */
|
|
static inline struct page *
|
|
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, enum zone_type high_zoneidx,
|
|
nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
|
|
int classzone_idx, int migratetype, unsigned long *did_some_progress)
|
|
{
|
|
struct page *page = NULL;
|
|
bool drained = false;
|
|
|
|
*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
|
|
nodemask);
|
|
if (unlikely(!(*did_some_progress)))
|
|
return NULL;
|
|
|
|
/* After successful reclaim, reconsider all zones for allocation */
|
|
if (IS_ENABLED(CONFIG_NUMA))
|
|
zlc_clear_zones_full(zonelist);
|
|
|
|
retry:
|
|
page = get_page_from_freelist(gfp_mask, nodemask, order,
|
|
zonelist, high_zoneidx,
|
|
alloc_flags & ~ALLOC_NO_WATERMARKS,
|
|
preferred_zone, classzone_idx,
|
|
migratetype);
|
|
|
|
/*
|
|
* If an allocation failed after direct reclaim, it could be because
|
|
* pages are pinned on the per-cpu lists. Drain them and try again
|
|
*/
|
|
if (!page && !drained) {
|
|
drain_all_pages(NULL);
|
|
drained = true;
|
|
goto retry;
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* This is called in the allocator slow-path if the allocation request is of
|
|
* sufficient urgency to ignore watermarks and take other desperate measures
|
|
*/
|
|
static inline struct page *
|
|
__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, enum zone_type high_zoneidx,
|
|
nodemask_t *nodemask, struct zone *preferred_zone,
|
|
int classzone_idx, int migratetype)
|
|
{
|
|
struct page *page;
|
|
|
|
do {
|
|
page = get_page_from_freelist(gfp_mask, nodemask, order,
|
|
zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
|
|
preferred_zone, classzone_idx, migratetype);
|
|
|
|
if (!page && gfp_mask & __GFP_NOFAIL)
|
|
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
|
|
} while (!page && (gfp_mask & __GFP_NOFAIL));
|
|
|
|
return page;
|
|
}
|
|
|
|
static void wake_all_kswapds(unsigned int order,
|
|
struct zonelist *zonelist,
|
|
enum zone_type high_zoneidx,
|
|
struct zone *preferred_zone,
|
|
nodemask_t *nodemask)
|
|
{
|
|
struct zoneref *z;
|
|
struct zone *zone;
|
|
|
|
for_each_zone_zonelist_nodemask(zone, z, zonelist,
|
|
high_zoneidx, nodemask)
|
|
wakeup_kswapd(zone, order, zone_idx(preferred_zone));
|
|
}
|
|
|
|
static inline int
|
|
gfp_to_alloc_flags(gfp_t gfp_mask)
|
|
{
|
|
int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
|
|
const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
|
|
|
|
/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
|
|
BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
|
|
|
|
/*
|
|
* The caller may dip into page reserves a bit more if the caller
|
|
* cannot run direct reclaim, or if the caller has realtime scheduling
|
|
* policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
|
|
* set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
|
|
*/
|
|
alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
|
|
|
|
if (atomic) {
|
|
/*
|
|
* Not worth trying to allocate harder for __GFP_NOMEMALLOC even
|
|
* if it can't schedule.
|
|
*/
|
|
if (!(gfp_mask & __GFP_NOMEMALLOC))
|
|
alloc_flags |= ALLOC_HARDER;
|
|
/*
|
|
* Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
|
|
* comment for __cpuset_node_allowed().
|
|
*/
|
|
alloc_flags &= ~ALLOC_CPUSET;
|
|
} else if (unlikely(rt_task(current)) && !in_interrupt())
|
|
alloc_flags |= ALLOC_HARDER;
|
|
|
|
if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
|
|
if (gfp_mask & __GFP_MEMALLOC)
|
|
alloc_flags |= ALLOC_NO_WATERMARKS;
|
|
else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
|
|
alloc_flags |= ALLOC_NO_WATERMARKS;
|
|
else if (!in_interrupt() &&
|
|
((current->flags & PF_MEMALLOC) ||
|
|
unlikely(test_thread_flag(TIF_MEMDIE))))
|
|
alloc_flags |= ALLOC_NO_WATERMARKS;
|
|
}
|
|
#ifdef CONFIG_CMA
|
|
if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
|
|
alloc_flags |= ALLOC_CMA;
|
|
#endif
|
|
return alloc_flags;
|
|
}
|
|
|
|
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
|
|
{
|
|
return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
|
|
}
|
|
|
|
static inline struct page *
|
|
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, enum zone_type high_zoneidx,
|
|
nodemask_t *nodemask, struct zone *preferred_zone,
|
|
int classzone_idx, int migratetype)
|
|
{
|
|
const gfp_t wait = gfp_mask & __GFP_WAIT;
|
|
struct page *page = NULL;
|
|
int alloc_flags;
|
|
unsigned long pages_reclaimed = 0;
|
|
unsigned long did_some_progress;
|
|
enum migrate_mode migration_mode = MIGRATE_ASYNC;
|
|
bool deferred_compaction = false;
|
|
int contended_compaction = COMPACT_CONTENDED_NONE;
|
|
|
|
/*
|
|
* In the slowpath, we sanity check order to avoid ever trying to
|
|
* reclaim >= MAX_ORDER areas which will never succeed. Callers may
|
|
* be using allocators in order of preference for an area that is
|
|
* too large.
|
|
*/
|
|
if (order >= MAX_ORDER) {
|
|
WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
|
|
* __GFP_NOWARN set) should not cause reclaim since the subsystem
|
|
* (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
|
|
* using a larger set of nodes after it has established that the
|
|
* allowed per node queues are empty and that nodes are
|
|
* over allocated.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_NUMA) &&
|
|
(gfp_mask & GFP_THISNODE) == GFP_THISNODE)
|
|
goto nopage;
|
|
|
|
retry:
|
|
if (!(gfp_mask & __GFP_NO_KSWAPD))
|
|
wake_all_kswapds(order, zonelist, high_zoneidx,
|
|
preferred_zone, nodemask);
|
|
|
|
/*
|
|
* OK, we're below the kswapd watermark and have kicked background
|
|
* reclaim. Now things get more complex, so set up alloc_flags according
|
|
* to how we want to proceed.
|
|
*/
|
|
alloc_flags = gfp_to_alloc_flags(gfp_mask);
|
|
|
|
/*
|
|
* Find the true preferred zone if the allocation is unconstrained by
|
|
* cpusets.
|
|
*/
|
|
if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
|
|
struct zoneref *preferred_zoneref;
|
|
preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
|
|
NULL, &preferred_zone);
|
|
classzone_idx = zonelist_zone_idx(preferred_zoneref);
|
|
}
|
|
|
|
/* This is the last chance, in general, before the goto nopage. */
|
|
page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
|
|
high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
|
|
preferred_zone, classzone_idx, migratetype);
|
|
if (page)
|
|
goto got_pg;
|
|
|
|
/* Allocate without watermarks if the context allows */
|
|
if (alloc_flags & ALLOC_NO_WATERMARKS) {
|
|
/*
|
|
* Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
|
|
* the allocation is high priority and these type of
|
|
* allocations are system rather than user orientated
|
|
*/
|
|
zonelist = node_zonelist(numa_node_id(), gfp_mask);
|
|
|
|
page = __alloc_pages_high_priority(gfp_mask, order,
|
|
zonelist, high_zoneidx, nodemask,
|
|
preferred_zone, classzone_idx, migratetype);
|
|
if (page) {
|
|
goto got_pg;
|
|
}
|
|
}
|
|
|
|
/* Atomic allocations - we can't balance anything */
|
|
if (!wait) {
|
|
/*
|
|
* All existing users of the deprecated __GFP_NOFAIL are
|
|
* blockable, so warn of any new users that actually allow this
|
|
* type of allocation to fail.
|
|
*/
|
|
WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
|
|
goto nopage;
|
|
}
|
|
|
|
/* Avoid recursion of direct reclaim */
|
|
if (current->flags & PF_MEMALLOC)
|
|
goto nopage;
|
|
|
|
/* Avoid allocations with no watermarks from looping endlessly */
|
|
if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
|
|
goto nopage;
|
|
|
|
/*
|
|
* Try direct compaction. The first pass is asynchronous. Subsequent
|
|
* attempts after direct reclaim are synchronous
|
|
*/
|
|
page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
|
|
high_zoneidx, nodemask, alloc_flags,
|
|
preferred_zone,
|
|
classzone_idx, migratetype,
|
|
migration_mode, &contended_compaction,
|
|
&deferred_compaction);
|
|
if (page)
|
|
goto got_pg;
|
|
|
|
/* Checks for THP-specific high-order allocations */
|
|
if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
|
|
/*
|
|
* If compaction is deferred for high-order allocations, it is
|
|
* because sync compaction recently failed. If this is the case
|
|
* and the caller requested a THP allocation, we do not want
|
|
* to heavily disrupt the system, so we fail the allocation
|
|
* instead of entering direct reclaim.
|
|
*/
|
|
if (deferred_compaction)
|
|
goto nopage;
|
|
|
|
/*
|
|
* In all zones where compaction was attempted (and not
|
|
* deferred or skipped), lock contention has been detected.
|
|
* For THP allocation we do not want to disrupt the others
|
|
* so we fallback to base pages instead.
|
|
*/
|
|
if (contended_compaction == COMPACT_CONTENDED_LOCK)
|
|
goto nopage;
|
|
|
|
/*
|
|
* If compaction was aborted due to need_resched(), we do not
|
|
* want to further increase allocation latency, unless it is
|
|
* khugepaged trying to collapse.
|
|
*/
|
|
if (contended_compaction == COMPACT_CONTENDED_SCHED
|
|
&& !(current->flags & PF_KTHREAD))
|
|
goto nopage;
|
|
}
|
|
|
|
/*
|
|
* It can become very expensive to allocate transparent hugepages at
|
|
* fault, so use asynchronous memory compaction for THP unless it is
|
|
* khugepaged trying to collapse.
|
|
*/
|
|
if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
|
|
(current->flags & PF_KTHREAD))
|
|
migration_mode = MIGRATE_SYNC_LIGHT;
|
|
|
|
/* Try direct reclaim and then allocating */
|
|
page = __alloc_pages_direct_reclaim(gfp_mask, order,
|
|
zonelist, high_zoneidx,
|
|
nodemask,
|
|
alloc_flags, preferred_zone,
|
|
classzone_idx, migratetype,
|
|
&did_some_progress);
|
|
if (page)
|
|
goto got_pg;
|
|
|
|
/* Check if we should retry the allocation */
|
|
pages_reclaimed += did_some_progress;
|
|
if (should_alloc_retry(gfp_mask, order, did_some_progress,
|
|
pages_reclaimed)) {
|
|
/*
|
|
* If we fail to make progress by freeing individual
|
|
* pages, but the allocation wants us to keep going,
|
|
* start OOM killing tasks.
|
|
*/
|
|
if (!did_some_progress) {
|
|
page = __alloc_pages_may_oom(gfp_mask, order, zonelist,
|
|
high_zoneidx, nodemask,
|
|
preferred_zone, classzone_idx,
|
|
migratetype,&did_some_progress);
|
|
if (page)
|
|
goto got_pg;
|
|
if (!did_some_progress)
|
|
goto nopage;
|
|
}
|
|
/* Wait for some write requests to complete then retry */
|
|
wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
|
|
goto retry;
|
|
} else {
|
|
/*
|
|
* High-order allocations do not necessarily loop after
|
|
* direct reclaim and reclaim/compaction depends on compaction
|
|
* being called after reclaim so call directly if necessary
|
|
*/
|
|
page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
|
|
high_zoneidx, nodemask, alloc_flags,
|
|
preferred_zone,
|
|
classzone_idx, migratetype,
|
|
migration_mode, &contended_compaction,
|
|
&deferred_compaction);
|
|
if (page)
|
|
goto got_pg;
|
|
}
|
|
|
|
nopage:
|
|
warn_alloc_failed(gfp_mask, order, NULL);
|
|
return page;
|
|
got_pg:
|
|
if (kmemcheck_enabled)
|
|
kmemcheck_pagealloc_alloc(page, order, gfp_mask);
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* This is the 'heart' of the zoned buddy allocator.
|
|
*/
|
|
struct page *
|
|
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
|
|
struct zonelist *zonelist, nodemask_t *nodemask)
|
|
{
|
|
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
|
|
struct zone *preferred_zone;
|
|
struct zoneref *preferred_zoneref;
|
|
struct page *page = NULL;
|
|
int migratetype = gfpflags_to_migratetype(gfp_mask);
|
|
unsigned int cpuset_mems_cookie;
|
|
int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
|
|
int classzone_idx;
|
|
|
|
gfp_mask &= gfp_allowed_mask;
|
|
|
|
lockdep_trace_alloc(gfp_mask);
|
|
|
|
might_sleep_if(gfp_mask & __GFP_WAIT);
|
|
|
|
if (should_fail_alloc_page(gfp_mask, order))
|
|
return NULL;
|
|
|
|
/*
|
|
* Check the zones suitable for the gfp_mask contain at least one
|
|
* valid zone. It's possible to have an empty zonelist as a result
|
|
* of GFP_THISNODE and a memoryless node
|
|
*/
|
|
if (unlikely(!zonelist->_zonerefs->zone))
|
|
return NULL;
|
|
|
|
if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
|
|
alloc_flags |= ALLOC_CMA;
|
|
|
|
retry_cpuset:
|
|
cpuset_mems_cookie = read_mems_allowed_begin();
|
|
|
|
/* The preferred zone is used for statistics later */
|
|
preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
|
|
nodemask ? : &cpuset_current_mems_allowed,
|
|
&preferred_zone);
|
|
if (!preferred_zone)
|
|
goto out;
|
|
classzone_idx = zonelist_zone_idx(preferred_zoneref);
|
|
|
|
/* First allocation attempt */
|
|
page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
|
|
zonelist, high_zoneidx, alloc_flags,
|
|
preferred_zone, classzone_idx, migratetype);
|
|
if (unlikely(!page)) {
|
|
/*
|
|
* Runtime PM, block IO and its error handling path
|
|
* can deadlock because I/O on the device might not
|
|
* complete.
|
|
*/
|
|
gfp_mask = memalloc_noio_flags(gfp_mask);
|
|
page = __alloc_pages_slowpath(gfp_mask, order,
|
|
zonelist, high_zoneidx, nodemask,
|
|
preferred_zone, classzone_idx, migratetype);
|
|
}
|
|
|
|
trace_mm_page_alloc(page, order, gfp_mask, migratetype);
|
|
|
|
out:
|
|
/*
|
|
* When updating a task's mems_allowed, it is possible to race with
|
|
* parallel threads in such a way that an allocation can fail while
|
|
* the mask is being updated. If a page allocation is about to fail,
|
|
* check if the cpuset changed during allocation and if so, retry.
|
|
*/
|
|
if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
|
|
goto retry_cpuset;
|
|
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(__alloc_pages_nodemask);
|
|
|
|
/*
|
|
* Common helper functions.
|
|
*/
|
|
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
struct page *page;
|
|
|
|
/*
|
|
* __get_free_pages() returns a 32-bit address, which cannot represent
|
|
* a highmem page
|
|
*/
|
|
VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
|
|
|
|
page = alloc_pages(gfp_mask, order);
|
|
if (!page)
|
|
return 0;
|
|
return (unsigned long) page_address(page);
|
|
}
|
|
EXPORT_SYMBOL(__get_free_pages);
|
|
|
|
unsigned long get_zeroed_page(gfp_t gfp_mask)
|
|
{
|
|
return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
|
|
}
|
|
EXPORT_SYMBOL(get_zeroed_page);
|
|
|
|
void __free_pages(struct page *page, unsigned int order)
|
|
{
|
|
if (put_page_testzero(page)) {
|
|
if (order == 0)
|
|
free_hot_cold_page(page, false);
|
|
else
|
|
__free_pages_ok(page, order);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(__free_pages);
|
|
|
|
void free_pages(unsigned long addr, unsigned int order)
|
|
{
|
|
if (addr != 0) {
|
|
VM_BUG_ON(!virt_addr_valid((void *)addr));
|
|
__free_pages(virt_to_page((void *)addr), order);
|
|
}
|
|
}
|
|
|
|
EXPORT_SYMBOL(free_pages);
|
|
|
|
/*
|
|
* alloc_kmem_pages charges newly allocated pages to the kmem resource counter
|
|
* of the current memory cgroup.
|
|
*
|
|
* It should be used when the caller would like to use kmalloc, but since the
|
|
* allocation is large, it has to fall back to the page allocator.
|
|
*/
|
|
struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
struct page *page;
|
|
struct mem_cgroup *memcg = NULL;
|
|
|
|
if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
|
|
return NULL;
|
|
page = alloc_pages(gfp_mask, order);
|
|
memcg_kmem_commit_charge(page, memcg, order);
|
|
return page;
|
|
}
|
|
|
|
struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
struct page *page;
|
|
struct mem_cgroup *memcg = NULL;
|
|
|
|
if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
|
|
return NULL;
|
|
page = alloc_pages_node(nid, gfp_mask, order);
|
|
memcg_kmem_commit_charge(page, memcg, order);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* __free_kmem_pages and free_kmem_pages will free pages allocated with
|
|
* alloc_kmem_pages.
|
|
*/
|
|
void __free_kmem_pages(struct page *page, unsigned int order)
|
|
{
|
|
memcg_kmem_uncharge_pages(page, order);
|
|
__free_pages(page, order);
|
|
}
|
|
|
|
void free_kmem_pages(unsigned long addr, unsigned int order)
|
|
{
|
|
if (addr != 0) {
|
|
VM_BUG_ON(!virt_addr_valid((void *)addr));
|
|
__free_kmem_pages(virt_to_page((void *)addr), order);
|
|
}
|
|
}
|
|
|
|
static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
|
|
{
|
|
if (addr) {
|
|
unsigned long alloc_end = addr + (PAGE_SIZE << order);
|
|
unsigned long used = addr + PAGE_ALIGN(size);
|
|
|
|
split_page(virt_to_page((void *)addr), order);
|
|
while (used < alloc_end) {
|
|
free_page(used);
|
|
used += PAGE_SIZE;
|
|
}
|
|
}
|
|
return (void *)addr;
|
|
}
|
|
|
|
/**
|
|
* alloc_pages_exact - allocate an exact number physically-contiguous pages.
|
|
* @size: the number of bytes to allocate
|
|
* @gfp_mask: GFP flags for the allocation
|
|
*
|
|
* This function is similar to alloc_pages(), except that it allocates the
|
|
* minimum number of pages to satisfy the request. alloc_pages() can only
|
|
* allocate memory in power-of-two pages.
|
|
*
|
|
* This function is also limited by MAX_ORDER.
|
|
*
|
|
* Memory allocated by this function must be released by free_pages_exact().
|
|
*/
|
|
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
|
|
{
|
|
unsigned int order = get_order(size);
|
|
unsigned long addr;
|
|
|
|
addr = __get_free_pages(gfp_mask, order);
|
|
return make_alloc_exact(addr, order, size);
|
|
}
|
|
EXPORT_SYMBOL(alloc_pages_exact);
|
|
|
|
/**
|
|
* alloc_pages_exact_nid - allocate an exact number of physically-contiguous
|
|
* pages on a node.
|
|
* @nid: the preferred node ID where memory should be allocated
|
|
* @size: the number of bytes to allocate
|
|
* @gfp_mask: GFP flags for the allocation
|
|
*
|
|
* Like alloc_pages_exact(), but try to allocate on node nid first before falling
|
|
* back.
|
|
* Note this is not alloc_pages_exact_node() which allocates on a specific node,
|
|
* but is not exact.
|
|
*/
|
|
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
|
|
{
|
|
unsigned order = get_order(size);
|
|
struct page *p = alloc_pages_node(nid, gfp_mask, order);
|
|
if (!p)
|
|
return NULL;
|
|
return make_alloc_exact((unsigned long)page_address(p), order, size);
|
|
}
|
|
|
|
/**
|
|
* free_pages_exact - release memory allocated via alloc_pages_exact()
|
|
* @virt: the value returned by alloc_pages_exact.
|
|
* @size: size of allocation, same value as passed to alloc_pages_exact().
|
|
*
|
|
* Release the memory allocated by a previous call to alloc_pages_exact.
|
|
*/
|
|
void free_pages_exact(void *virt, size_t size)
|
|
{
|
|
unsigned long addr = (unsigned long)virt;
|
|
unsigned long end = addr + PAGE_ALIGN(size);
|
|
|
|
while (addr < end) {
|
|
free_page(addr);
|
|
addr += PAGE_SIZE;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(free_pages_exact);
|
|
|
|
/**
|
|
* nr_free_zone_pages - count number of pages beyond high watermark
|
|
* @offset: The zone index of the highest zone
|
|
*
|
|
* nr_free_zone_pages() counts the number of counts pages which are beyond the
|
|
* high watermark within all zones at or below a given zone index. For each
|
|
* zone, the number of pages is calculated as:
|
|
* managed_pages - high_pages
|
|
*/
|
|
static unsigned long nr_free_zone_pages(int offset)
|
|
{
|
|
struct zoneref *z;
|
|
struct zone *zone;
|
|
|
|
/* Just pick one node, since fallback list is circular */
|
|
unsigned long sum = 0;
|
|
|
|
struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
|
|
|
|
for_each_zone_zonelist(zone, z, zonelist, offset) {
|
|
unsigned long size = zone->managed_pages;
|
|
unsigned long high = high_wmark_pages(zone);
|
|
if (size > high)
|
|
sum += size - high;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
/**
|
|
* nr_free_buffer_pages - count number of pages beyond high watermark
|
|
*
|
|
* nr_free_buffer_pages() counts the number of pages which are beyond the high
|
|
* watermark within ZONE_DMA and ZONE_NORMAL.
|
|
*/
|
|
unsigned long nr_free_buffer_pages(void)
|
|
{
|
|
return nr_free_zone_pages(gfp_zone(GFP_USER));
|
|
}
|
|
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
|
|
|
|
/**
|
|
* nr_free_pagecache_pages - count number of pages beyond high watermark
|
|
*
|
|
* nr_free_pagecache_pages() counts the number of pages which are beyond the
|
|
* high watermark within all zones.
|
|
*/
|
|
unsigned long nr_free_pagecache_pages(void)
|
|
{
|
|
return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
|
|
}
|
|
|
|
static inline void show_node(struct zone *zone)
|
|
{
|
|
if (IS_ENABLED(CONFIG_NUMA))
|
|
printk("Node %d ", zone_to_nid(zone));
|
|
}
|
|
|
|
void si_meminfo(struct sysinfo *val)
|
|
{
|
|
val->totalram = totalram_pages;
|
|
val->sharedram = global_page_state(NR_SHMEM);
|
|
val->freeram = global_page_state(NR_FREE_PAGES);
|
|
val->bufferram = nr_blockdev_pages();
|
|
val->totalhigh = totalhigh_pages;
|
|
val->freehigh = nr_free_highpages();
|
|
val->mem_unit = PAGE_SIZE;
|
|
}
|
|
|
|
EXPORT_SYMBOL(si_meminfo);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
void si_meminfo_node(struct sysinfo *val, int nid)
|
|
{
|
|
int zone_type; /* needs to be signed */
|
|
unsigned long managed_pages = 0;
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
|
|
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
|
|
managed_pages += pgdat->node_zones[zone_type].managed_pages;
|
|
val->totalram = managed_pages;
|
|
val->sharedram = node_page_state(nid, NR_SHMEM);
|
|
val->freeram = node_page_state(nid, NR_FREE_PAGES);
|
|
#ifdef CONFIG_HIGHMEM
|
|
val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
|
|
val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
|
|
NR_FREE_PAGES);
|
|
#else
|
|
val->totalhigh = 0;
|
|
val->freehigh = 0;
|
|
#endif
|
|
val->mem_unit = PAGE_SIZE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Determine whether the node should be displayed or not, depending on whether
|
|
* SHOW_MEM_FILTER_NODES was passed to show_free_areas().
|
|
*/
|
|
bool skip_free_areas_node(unsigned int flags, int nid)
|
|
{
|
|
bool ret = false;
|
|
unsigned int cpuset_mems_cookie;
|
|
|
|
if (!(flags & SHOW_MEM_FILTER_NODES))
|
|
goto out;
|
|
|
|
do {
|
|
cpuset_mems_cookie = read_mems_allowed_begin();
|
|
ret = !node_isset(nid, cpuset_current_mems_allowed);
|
|
} while (read_mems_allowed_retry(cpuset_mems_cookie));
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#define K(x) ((x) << (PAGE_SHIFT-10))
|
|
|
|
static void show_migration_types(unsigned char type)
|
|
{
|
|
static const char types[MIGRATE_TYPES] = {
|
|
[MIGRATE_UNMOVABLE] = 'U',
|
|
[MIGRATE_RECLAIMABLE] = 'E',
|
|
[MIGRATE_MOVABLE] = 'M',
|
|
[MIGRATE_RESERVE] = 'R',
|
|
#ifdef CONFIG_CMA
|
|
[MIGRATE_CMA] = 'C',
|
|
#endif
|
|
#ifdef CONFIG_MEMORY_ISOLATION
|
|
[MIGRATE_ISOLATE] = 'I',
|
|
#endif
|
|
};
|
|
char tmp[MIGRATE_TYPES + 1];
|
|
char *p = tmp;
|
|
int i;
|
|
|
|
for (i = 0; i < MIGRATE_TYPES; i++) {
|
|
if (type & (1 << i))
|
|
*p++ = types[i];
|
|
}
|
|
|
|
*p = '\0';
|
|
printk("(%s) ", tmp);
|
|
}
|
|
|
|
/*
|
|
* Show free area list (used inside shift_scroll-lock stuff)
|
|
* We also calculate the percentage fragmentation. We do this by counting the
|
|
* memory on each free list with the exception of the first item on the list.
|
|
* Suppresses nodes that are not allowed by current's cpuset if
|
|
* SHOW_MEM_FILTER_NODES is passed.
|
|
*/
|
|
void show_free_areas(unsigned int filter)
|
|
{
|
|
int cpu;
|
|
struct zone *zone;
|
|
|
|
for_each_populated_zone(zone) {
|
|
if (skip_free_areas_node(filter, zone_to_nid(zone)))
|
|
continue;
|
|
show_node(zone);
|
|
printk("%s per-cpu:\n", zone->name);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct per_cpu_pageset *pageset;
|
|
|
|
pageset = per_cpu_ptr(zone->pageset, cpu);
|
|
|
|
printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
|
|
cpu, pageset->pcp.high,
|
|
pageset->pcp.batch, pageset->pcp.count);
|
|
}
|
|
}
|
|
|
|
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
|
|
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
|
|
" unevictable:%lu"
|
|
" dirty:%lu writeback:%lu unstable:%lu\n"
|
|
" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
|
|
" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
|
|
" free_cma:%lu\n",
|
|
global_page_state(NR_ACTIVE_ANON),
|
|
global_page_state(NR_INACTIVE_ANON),
|
|
global_page_state(NR_ISOLATED_ANON),
|
|
global_page_state(NR_ACTIVE_FILE),
|
|
global_page_state(NR_INACTIVE_FILE),
|
|
global_page_state(NR_ISOLATED_FILE),
|
|
global_page_state(NR_UNEVICTABLE),
|
|
global_page_state(NR_FILE_DIRTY),
|
|
global_page_state(NR_WRITEBACK),
|
|
global_page_state(NR_UNSTABLE_NFS),
|
|
global_page_state(NR_FREE_PAGES),
|
|
global_page_state(NR_SLAB_RECLAIMABLE),
|
|
global_page_state(NR_SLAB_UNRECLAIMABLE),
|
|
global_page_state(NR_FILE_MAPPED),
|
|
global_page_state(NR_SHMEM),
|
|
global_page_state(NR_PAGETABLE),
|
|
global_page_state(NR_BOUNCE),
|
|
global_page_state(NR_FREE_CMA_PAGES));
|
|
|
|
for_each_populated_zone(zone) {
|
|
int i;
|
|
|
|
if (skip_free_areas_node(filter, zone_to_nid(zone)))
|
|
continue;
|
|
show_node(zone);
|
|
printk("%s"
|
|
" free:%lukB"
|
|
" min:%lukB"
|
|
" low:%lukB"
|
|
" high:%lukB"
|
|
" active_anon:%lukB"
|
|
" inactive_anon:%lukB"
|
|
" active_file:%lukB"
|
|
" inactive_file:%lukB"
|
|
" unevictable:%lukB"
|
|
" isolated(anon):%lukB"
|
|
" isolated(file):%lukB"
|
|
" present:%lukB"
|
|
" managed:%lukB"
|
|
" mlocked:%lukB"
|
|
" dirty:%lukB"
|
|
" writeback:%lukB"
|
|
" mapped:%lukB"
|
|
" shmem:%lukB"
|
|
" slab_reclaimable:%lukB"
|
|
" slab_unreclaimable:%lukB"
|
|
" kernel_stack:%lukB"
|
|
" pagetables:%lukB"
|
|
" unstable:%lukB"
|
|
" bounce:%lukB"
|
|
" free_cma:%lukB"
|
|
" writeback_tmp:%lukB"
|
|
" pages_scanned:%lu"
|
|
" all_unreclaimable? %s"
|
|
"\n",
|
|
zone->name,
|
|
K(zone_page_state(zone, NR_FREE_PAGES)),
|
|
K(min_wmark_pages(zone)),
|
|
K(low_wmark_pages(zone)),
|
|
K(high_wmark_pages(zone)),
|
|
K(zone_page_state(zone, NR_ACTIVE_ANON)),
|
|
K(zone_page_state(zone, NR_INACTIVE_ANON)),
|
|
K(zone_page_state(zone, NR_ACTIVE_FILE)),
|
|
K(zone_page_state(zone, NR_INACTIVE_FILE)),
|
|
K(zone_page_state(zone, NR_UNEVICTABLE)),
|
|
K(zone_page_state(zone, NR_ISOLATED_ANON)),
|
|
K(zone_page_state(zone, NR_ISOLATED_FILE)),
|
|
K(zone->present_pages),
|
|
K(zone->managed_pages),
|
|
K(zone_page_state(zone, NR_MLOCK)),
|
|
K(zone_page_state(zone, NR_FILE_DIRTY)),
|
|
K(zone_page_state(zone, NR_WRITEBACK)),
|
|
K(zone_page_state(zone, NR_FILE_MAPPED)),
|
|
K(zone_page_state(zone, NR_SHMEM)),
|
|
K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
|
|
K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
|
|
zone_page_state(zone, NR_KERNEL_STACK) *
|
|
THREAD_SIZE / 1024,
|
|
K(zone_page_state(zone, NR_PAGETABLE)),
|
|
K(zone_page_state(zone, NR_UNSTABLE_NFS)),
|
|
K(zone_page_state(zone, NR_BOUNCE)),
|
|
K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
|
|
K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
|
|
K(zone_page_state(zone, NR_PAGES_SCANNED)),
|
|
(!zone_reclaimable(zone) ? "yes" : "no")
|
|
);
|
|
printk("lowmem_reserve[]:");
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
printk(" %ld", zone->lowmem_reserve[i]);
|
|
printk("\n");
|
|
}
|
|
|
|
for_each_populated_zone(zone) {
|
|
unsigned long nr[MAX_ORDER], flags, order, total = 0;
|
|
unsigned char types[MAX_ORDER];
|
|
|
|
if (skip_free_areas_node(filter, zone_to_nid(zone)))
|
|
continue;
|
|
show_node(zone);
|
|
printk("%s: ", zone->name);
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
for (order = 0; order < MAX_ORDER; order++) {
|
|
struct free_area *area = &zone->free_area[order];
|
|
int type;
|
|
|
|
nr[order] = area->nr_free;
|
|
total += nr[order] << order;
|
|
|
|
types[order] = 0;
|
|
for (type = 0; type < MIGRATE_TYPES; type++) {
|
|
if (!list_empty(&area->free_list[type]))
|
|
types[order] |= 1 << type;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
for (order = 0; order < MAX_ORDER; order++) {
|
|
printk("%lu*%lukB ", nr[order], K(1UL) << order);
|
|
if (nr[order])
|
|
show_migration_types(types[order]);
|
|
}
|
|
printk("= %lukB\n", K(total));
|
|
}
|
|
|
|
hugetlb_show_meminfo();
|
|
|
|
printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
|
|
|
|
show_swap_cache_info();
|
|
}
|
|
|
|
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
|
|
{
|
|
zoneref->zone = zone;
|
|
zoneref->zone_idx = zone_idx(zone);
|
|
}
|
|
|
|
/*
|
|
* Builds allocation fallback zone lists.
|
|
*
|
|
* Add all populated zones of a node to the zonelist.
|
|
*/
|
|
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
|
|
int nr_zones)
|
|
{
|
|
struct zone *zone;
|
|
enum zone_type zone_type = MAX_NR_ZONES;
|
|
|
|
do {
|
|
zone_type--;
|
|
zone = pgdat->node_zones + zone_type;
|
|
if (populated_zone(zone)) {
|
|
zoneref_set_zone(zone,
|
|
&zonelist->_zonerefs[nr_zones++]);
|
|
check_highest_zone(zone_type);
|
|
}
|
|
} while (zone_type);
|
|
|
|
return nr_zones;
|
|
}
|
|
|
|
|
|
/*
|
|
* zonelist_order:
|
|
* 0 = automatic detection of better ordering.
|
|
* 1 = order by ([node] distance, -zonetype)
|
|
* 2 = order by (-zonetype, [node] distance)
|
|
*
|
|
* If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
|
|
* the same zonelist. So only NUMA can configure this param.
|
|
*/
|
|
#define ZONELIST_ORDER_DEFAULT 0
|
|
#define ZONELIST_ORDER_NODE 1
|
|
#define ZONELIST_ORDER_ZONE 2
|
|
|
|
/* zonelist order in the kernel.
|
|
* set_zonelist_order() will set this to NODE or ZONE.
|
|
*/
|
|
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
|
|
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
|
|
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/* The value user specified ....changed by config */
|
|
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
|
|
/* string for sysctl */
|
|
#define NUMA_ZONELIST_ORDER_LEN 16
|
|
char numa_zonelist_order[16] = "default";
|
|
|
|
/*
|
|
* interface for configure zonelist ordering.
|
|
* command line option "numa_zonelist_order"
|
|
* = "[dD]efault - default, automatic configuration.
|
|
* = "[nN]ode - order by node locality, then by zone within node
|
|
* = "[zZ]one - order by zone, then by locality within zone
|
|
*/
|
|
|
|
static int __parse_numa_zonelist_order(char *s)
|
|
{
|
|
if (*s == 'd' || *s == 'D') {
|
|
user_zonelist_order = ZONELIST_ORDER_DEFAULT;
|
|
} else if (*s == 'n' || *s == 'N') {
|
|
user_zonelist_order = ZONELIST_ORDER_NODE;
|
|
} else if (*s == 'z' || *s == 'Z') {
|
|
user_zonelist_order = ZONELIST_ORDER_ZONE;
|
|
} else {
|
|
printk(KERN_WARNING
|
|
"Ignoring invalid numa_zonelist_order value: "
|
|
"%s\n", s);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static __init int setup_numa_zonelist_order(char *s)
|
|
{
|
|
int ret;
|
|
|
|
if (!s)
|
|
return 0;
|
|
|
|
ret = __parse_numa_zonelist_order(s);
|
|
if (ret == 0)
|
|
strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
|
|
|
|
return ret;
|
|
}
|
|
early_param("numa_zonelist_order", setup_numa_zonelist_order);
|
|
|
|
/*
|
|
* sysctl handler for numa_zonelist_order
|
|
*/
|
|
int numa_zonelist_order_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length,
|
|
loff_t *ppos)
|
|
{
|
|
char saved_string[NUMA_ZONELIST_ORDER_LEN];
|
|
int ret;
|
|
static DEFINE_MUTEX(zl_order_mutex);
|
|
|
|
mutex_lock(&zl_order_mutex);
|
|
if (write) {
|
|
if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
strcpy(saved_string, (char *)table->data);
|
|
}
|
|
ret = proc_dostring(table, write, buffer, length, ppos);
|
|
if (ret)
|
|
goto out;
|
|
if (write) {
|
|
int oldval = user_zonelist_order;
|
|
|
|
ret = __parse_numa_zonelist_order((char *)table->data);
|
|
if (ret) {
|
|
/*
|
|
* bogus value. restore saved string
|
|
*/
|
|
strncpy((char *)table->data, saved_string,
|
|
NUMA_ZONELIST_ORDER_LEN);
|
|
user_zonelist_order = oldval;
|
|
} else if (oldval != user_zonelist_order) {
|
|
mutex_lock(&zonelists_mutex);
|
|
build_all_zonelists(NULL, NULL);
|
|
mutex_unlock(&zonelists_mutex);
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(&zl_order_mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
#define MAX_NODE_LOAD (nr_online_nodes)
|
|
static int node_load[MAX_NUMNODES];
|
|
|
|
/**
|
|
* find_next_best_node - find the next node that should appear in a given node's fallback list
|
|
* @node: node whose fallback list we're appending
|
|
* @used_node_mask: nodemask_t of already used nodes
|
|
*
|
|
* We use a number of factors to determine which is the next node that should
|
|
* appear on a given node's fallback list. The node should not have appeared
|
|
* already in @node's fallback list, and it should be the next closest node
|
|
* according to the distance array (which contains arbitrary distance values
|
|
* from each node to each node in the system), and should also prefer nodes
|
|
* with no CPUs, since presumably they'll have very little allocation pressure
|
|
* on them otherwise.
|
|
* It returns -1 if no node is found.
|
|
*/
|
|
static int find_next_best_node(int node, nodemask_t *used_node_mask)
|
|
{
|
|
int n, val;
|
|
int min_val = INT_MAX;
|
|
int best_node = NUMA_NO_NODE;
|
|
const struct cpumask *tmp = cpumask_of_node(0);
|
|
|
|
/* Use the local node if we haven't already */
|
|
if (!node_isset(node, *used_node_mask)) {
|
|
node_set(node, *used_node_mask);
|
|
return node;
|
|
}
|
|
|
|
for_each_node_state(n, N_MEMORY) {
|
|
|
|
/* Don't want a node to appear more than once */
|
|
if (node_isset(n, *used_node_mask))
|
|
continue;
|
|
|
|
/* Use the distance array to find the distance */
|
|
val = node_distance(node, n);
|
|
|
|
/* Penalize nodes under us ("prefer the next node") */
|
|
val += (n < node);
|
|
|
|
/* Give preference to headless and unused nodes */
|
|
tmp = cpumask_of_node(n);
|
|
if (!cpumask_empty(tmp))
|
|
val += PENALTY_FOR_NODE_WITH_CPUS;
|
|
|
|
/* Slight preference for less loaded node */
|
|
val *= (MAX_NODE_LOAD*MAX_NUMNODES);
|
|
val += node_load[n];
|
|
|
|
if (val < min_val) {
|
|
min_val = val;
|
|
best_node = n;
|
|
}
|
|
}
|
|
|
|
if (best_node >= 0)
|
|
node_set(best_node, *used_node_mask);
|
|
|
|
return best_node;
|
|
}
|
|
|
|
|
|
/*
|
|
* Build zonelists ordered by node and zones within node.
|
|
* This results in maximum locality--normal zone overflows into local
|
|
* DMA zone, if any--but risks exhausting DMA zone.
|
|
*/
|
|
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
|
|
{
|
|
int j;
|
|
struct zonelist *zonelist;
|
|
|
|
zonelist = &pgdat->node_zonelists[0];
|
|
for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
|
|
;
|
|
j = build_zonelists_node(NODE_DATA(node), zonelist, j);
|
|
zonelist->_zonerefs[j].zone = NULL;
|
|
zonelist->_zonerefs[j].zone_idx = 0;
|
|
}
|
|
|
|
/*
|
|
* Build gfp_thisnode zonelists
|
|
*/
|
|
static void build_thisnode_zonelists(pg_data_t *pgdat)
|
|
{
|
|
int j;
|
|
struct zonelist *zonelist;
|
|
|
|
zonelist = &pgdat->node_zonelists[1];
|
|
j = build_zonelists_node(pgdat, zonelist, 0);
|
|
zonelist->_zonerefs[j].zone = NULL;
|
|
zonelist->_zonerefs[j].zone_idx = 0;
|
|
}
|
|
|
|
/*
|
|
* Build zonelists ordered by zone and nodes within zones.
|
|
* This results in conserving DMA zone[s] until all Normal memory is
|
|
* exhausted, but results in overflowing to remote node while memory
|
|
* may still exist in local DMA zone.
|
|
*/
|
|
static int node_order[MAX_NUMNODES];
|
|
|
|
static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
|
|
{
|
|
int pos, j, node;
|
|
int zone_type; /* needs to be signed */
|
|
struct zone *z;
|
|
struct zonelist *zonelist;
|
|
|
|
zonelist = &pgdat->node_zonelists[0];
|
|
pos = 0;
|
|
for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
|
|
for (j = 0; j < nr_nodes; j++) {
|
|
node = node_order[j];
|
|
z = &NODE_DATA(node)->node_zones[zone_type];
|
|
if (populated_zone(z)) {
|
|
zoneref_set_zone(z,
|
|
&zonelist->_zonerefs[pos++]);
|
|
check_highest_zone(zone_type);
|
|
}
|
|
}
|
|
}
|
|
zonelist->_zonerefs[pos].zone = NULL;
|
|
zonelist->_zonerefs[pos].zone_idx = 0;
|
|
}
|
|
|
|
#if defined(CONFIG_64BIT)
|
|
/*
|
|
* Devices that require DMA32/DMA are relatively rare and do not justify a
|
|
* penalty to every machine in case the specialised case applies. Default
|
|
* to Node-ordering on 64-bit NUMA machines
|
|
*/
|
|
static int default_zonelist_order(void)
|
|
{
|
|
return ZONELIST_ORDER_NODE;
|
|
}
|
|
#else
|
|
/*
|
|
* On 32-bit, the Normal zone needs to be preserved for allocations accessible
|
|
* by the kernel. If processes running on node 0 deplete the low memory zone
|
|
* then reclaim will occur more frequency increasing stalls and potentially
|
|
* be easier to OOM if a large percentage of the zone is under writeback or
|
|
* dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
|
|
* Hence, default to zone ordering on 32-bit.
|
|
*/
|
|
static int default_zonelist_order(void)
|
|
{
|
|
return ZONELIST_ORDER_ZONE;
|
|
}
|
|
#endif /* CONFIG_64BIT */
|
|
|
|
static void set_zonelist_order(void)
|
|
{
|
|
if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
|
|
current_zonelist_order = default_zonelist_order();
|
|
else
|
|
current_zonelist_order = user_zonelist_order;
|
|
}
|
|
|
|
static void build_zonelists(pg_data_t *pgdat)
|
|
{
|
|
int j, node, load;
|
|
enum zone_type i;
|
|
nodemask_t used_mask;
|
|
int local_node, prev_node;
|
|
struct zonelist *zonelist;
|
|
int order = current_zonelist_order;
|
|
|
|
/* initialize zonelists */
|
|
for (i = 0; i < MAX_ZONELISTS; i++) {
|
|
zonelist = pgdat->node_zonelists + i;
|
|
zonelist->_zonerefs[0].zone = NULL;
|
|
zonelist->_zonerefs[0].zone_idx = 0;
|
|
}
|
|
|
|
/* NUMA-aware ordering of nodes */
|
|
local_node = pgdat->node_id;
|
|
load = nr_online_nodes;
|
|
prev_node = local_node;
|
|
nodes_clear(used_mask);
|
|
|
|
memset(node_order, 0, sizeof(node_order));
|
|
j = 0;
|
|
|
|
while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
|
|
/*
|
|
* We don't want to pressure a particular node.
|
|
* So adding penalty to the first node in same
|
|
* distance group to make it round-robin.
|
|
*/
|
|
if (node_distance(local_node, node) !=
|
|
node_distance(local_node, prev_node))
|
|
node_load[node] = load;
|
|
|
|
prev_node = node;
|
|
load--;
|
|
if (order == ZONELIST_ORDER_NODE)
|
|
build_zonelists_in_node_order(pgdat, node);
|
|
else
|
|
node_order[j++] = node; /* remember order */
|
|
}
|
|
|
|
if (order == ZONELIST_ORDER_ZONE) {
|
|
/* calculate node order -- i.e., DMA last! */
|
|
build_zonelists_in_zone_order(pgdat, j);
|
|
}
|
|
|
|
build_thisnode_zonelists(pgdat);
|
|
}
|
|
|
|
/* Construct the zonelist performance cache - see further mmzone.h */
|
|
static void build_zonelist_cache(pg_data_t *pgdat)
|
|
{
|
|
struct zonelist *zonelist;
|
|
struct zonelist_cache *zlc;
|
|
struct zoneref *z;
|
|
|
|
zonelist = &pgdat->node_zonelists[0];
|
|
zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
|
|
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
|
|
for (z = zonelist->_zonerefs; z->zone; z++)
|
|
zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
|
|
/*
|
|
* Return node id of node used for "local" allocations.
|
|
* I.e., first node id of first zone in arg node's generic zonelist.
|
|
* Used for initializing percpu 'numa_mem', which is used primarily
|
|
* for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
|
|
*/
|
|
int local_memory_node(int node)
|
|
{
|
|
struct zone *zone;
|
|
|
|
(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
|
|
gfp_zone(GFP_KERNEL),
|
|
NULL,
|
|
&zone);
|
|
return zone->node;
|
|
}
|
|
#endif
|
|
|
|
#else /* CONFIG_NUMA */
|
|
|
|
static void set_zonelist_order(void)
|
|
{
|
|
current_zonelist_order = ZONELIST_ORDER_ZONE;
|
|
}
|
|
|
|
static void build_zonelists(pg_data_t *pgdat)
|
|
{
|
|
int node, local_node;
|
|
enum zone_type j;
|
|
struct zonelist *zonelist;
|
|
|
|
local_node = pgdat->node_id;
|
|
|
|
zonelist = &pgdat->node_zonelists[0];
|
|
j = build_zonelists_node(pgdat, zonelist, 0);
|
|
|
|
/*
|
|
* Now we build the zonelist so that it contains the zones
|
|
* of all the other nodes.
|
|
* We don't want to pressure a particular node, so when
|
|
* building the zones for node N, we make sure that the
|
|
* zones coming right after the local ones are those from
|
|
* node N+1 (modulo N)
|
|
*/
|
|
for (node = local_node + 1; node < MAX_NUMNODES; node++) {
|
|
if (!node_online(node))
|
|
continue;
|
|
j = build_zonelists_node(NODE_DATA(node), zonelist, j);
|
|
}
|
|
for (node = 0; node < local_node; node++) {
|
|
if (!node_online(node))
|
|
continue;
|
|
j = build_zonelists_node(NODE_DATA(node), zonelist, j);
|
|
}
|
|
|
|
zonelist->_zonerefs[j].zone = NULL;
|
|
zonelist->_zonerefs[j].zone_idx = 0;
|
|
}
|
|
|
|
/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
|
|
static void build_zonelist_cache(pg_data_t *pgdat)
|
|
{
|
|
pgdat->node_zonelists[0].zlcache_ptr = NULL;
|
|
}
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/*
|
|
* Boot pageset table. One per cpu which is going to be used for all
|
|
* zones and all nodes. The parameters will be set in such a way
|
|
* that an item put on a list will immediately be handed over to
|
|
* the buddy list. This is safe since pageset manipulation is done
|
|
* with interrupts disabled.
|
|
*
|
|
* The boot_pagesets must be kept even after bootup is complete for
|
|
* unused processors and/or zones. They do play a role for bootstrapping
|
|
* hotplugged processors.
|
|
*
|
|
* zoneinfo_show() and maybe other functions do
|
|
* not check if the processor is online before following the pageset pointer.
|
|
* Other parts of the kernel may not check if the zone is available.
|
|
*/
|
|
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
|
|
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
|
|
static void setup_zone_pageset(struct zone *zone);
|
|
|
|
/*
|
|
* Global mutex to protect against size modification of zonelists
|
|
* as well as to serialize pageset setup for the new populated zone.
|
|
*/
|
|
DEFINE_MUTEX(zonelists_mutex);
|
|
|
|
/* return values int ....just for stop_machine() */
|
|
static int __build_all_zonelists(void *data)
|
|
{
|
|
int nid;
|
|
int cpu;
|
|
pg_data_t *self = data;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
memset(node_load, 0, sizeof(node_load));
|
|
#endif
|
|
|
|
if (self && !node_online(self->node_id)) {
|
|
build_zonelists(self);
|
|
build_zonelist_cache(self);
|
|
}
|
|
|
|
for_each_online_node(nid) {
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
|
|
build_zonelists(pgdat);
|
|
build_zonelist_cache(pgdat);
|
|
}
|
|
|
|
/*
|
|
* Initialize the boot_pagesets that are going to be used
|
|
* for bootstrapping processors. The real pagesets for
|
|
* each zone will be allocated later when the per cpu
|
|
* allocator is available.
|
|
*
|
|
* boot_pagesets are used also for bootstrapping offline
|
|
* cpus if the system is already booted because the pagesets
|
|
* are needed to initialize allocators on a specific cpu too.
|
|
* F.e. the percpu allocator needs the page allocator which
|
|
* needs the percpu allocator in order to allocate its pagesets
|
|
* (a chicken-egg dilemma).
|
|
*/
|
|
for_each_possible_cpu(cpu) {
|
|
setup_pageset(&per_cpu(boot_pageset, cpu), 0);
|
|
|
|
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
|
|
/*
|
|
* We now know the "local memory node" for each node--
|
|
* i.e., the node of the first zone in the generic zonelist.
|
|
* Set up numa_mem percpu variable for on-line cpus. During
|
|
* boot, only the boot cpu should be on-line; we'll init the
|
|
* secondary cpus' numa_mem as they come on-line. During
|
|
* node/memory hotplug, we'll fixup all on-line cpus.
|
|
*/
|
|
if (cpu_online(cpu))
|
|
set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
|
|
#endif
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called with zonelists_mutex held always
|
|
* unless system_state == SYSTEM_BOOTING.
|
|
*/
|
|
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
set_zonelist_order();
|
|
|
|
if (system_state == SYSTEM_BOOTING) {
|
|
__build_all_zonelists(NULL);
|
|
mminit_verify_zonelist();
|
|
cpuset_init_current_mems_allowed();
|
|
} else {
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
if (zone)
|
|
setup_zone_pageset(zone);
|
|
#endif
|
|
/* we have to stop all cpus to guarantee there is no user
|
|
of zonelist */
|
|
stop_machine(__build_all_zonelists, pgdat, NULL);
|
|
/* cpuset refresh routine should be here */
|
|
}
|
|
vm_total_pages = nr_free_pagecache_pages();
|
|
/*
|
|
* Disable grouping by mobility if the number of pages in the
|
|
* system is too low to allow the mechanism to work. It would be
|
|
* more accurate, but expensive to check per-zone. This check is
|
|
* made on memory-hotadd so a system can start with mobility
|
|
* disabled and enable it later
|
|
*/
|
|
if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
|
|
page_group_by_mobility_disabled = 1;
|
|
else
|
|
page_group_by_mobility_disabled = 0;
|
|
|
|
pr_info("Built %i zonelists in %s order, mobility grouping %s. "
|
|
"Total pages: %ld\n",
|
|
nr_online_nodes,
|
|
zonelist_order_name[current_zonelist_order],
|
|
page_group_by_mobility_disabled ? "off" : "on",
|
|
vm_total_pages);
|
|
#ifdef CONFIG_NUMA
|
|
pr_info("Policy zone: %s\n", zone_names[policy_zone]);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Helper functions to size the waitqueue hash table.
|
|
* Essentially these want to choose hash table sizes sufficiently
|
|
* large so that collisions trying to wait on pages are rare.
|
|
* But in fact, the number of active page waitqueues on typical
|
|
* systems is ridiculously low, less than 200. So this is even
|
|
* conservative, even though it seems large.
|
|
*
|
|
* The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
|
|
* waitqueues, i.e. the size of the waitq table given the number of pages.
|
|
*/
|
|
#define PAGES_PER_WAITQUEUE 256
|
|
|
|
#ifndef CONFIG_MEMORY_HOTPLUG
|
|
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
|
|
{
|
|
unsigned long size = 1;
|
|
|
|
pages /= PAGES_PER_WAITQUEUE;
|
|
|
|
while (size < pages)
|
|
size <<= 1;
|
|
|
|
/*
|
|
* Once we have dozens or even hundreds of threads sleeping
|
|
* on IO we've got bigger problems than wait queue collision.
|
|
* Limit the size of the wait table to a reasonable size.
|
|
*/
|
|
size = min(size, 4096UL);
|
|
|
|
return max(size, 4UL);
|
|
}
|
|
#else
|
|
/*
|
|
* A zone's size might be changed by hot-add, so it is not possible to determine
|
|
* a suitable size for its wait_table. So we use the maximum size now.
|
|
*
|
|
* The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
|
|
*
|
|
* i386 (preemption config) : 4096 x 16 = 64Kbyte.
|
|
* ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
|
|
* ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
|
|
*
|
|
* The maximum entries are prepared when a zone's memory is (512K + 256) pages
|
|
* or more by the traditional way. (See above). It equals:
|
|
*
|
|
* i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
|
|
* ia64(16K page size) : = ( 8G + 4M)byte.
|
|
* powerpc (64K page size) : = (32G +16M)byte.
|
|
*/
|
|
static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
|
|
{
|
|
return 4096UL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This is an integer logarithm so that shifts can be used later
|
|
* to extract the more random high bits from the multiplicative
|
|
* hash function before the remainder is taken.
|
|
*/
|
|
static inline unsigned long wait_table_bits(unsigned long size)
|
|
{
|
|
return ffz(~size);
|
|
}
|
|
|
|
/*
|
|
* Check if a pageblock contains reserved pages
|
|
*/
|
|
static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
|
|
if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mark a number of pageblocks as MIGRATE_RESERVE. The number
|
|
* of blocks reserved is based on min_wmark_pages(zone). The memory within
|
|
* the reserve will tend to store contiguous free pages. Setting min_free_kbytes
|
|
* higher will lead to a bigger reserve which will get freed as contiguous
|
|
* blocks as reclaim kicks in
|
|
*/
|
|
static void setup_zone_migrate_reserve(struct zone *zone)
|
|
{
|
|
unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
|
|
struct page *page;
|
|
unsigned long block_migratetype;
|
|
int reserve;
|
|
int old_reserve;
|
|
|
|
/*
|
|
* Get the start pfn, end pfn and the number of blocks to reserve
|
|
* We have to be careful to be aligned to pageblock_nr_pages to
|
|
* make sure that we always check pfn_valid for the first page in
|
|
* the block.
|
|
*/
|
|
start_pfn = zone->zone_start_pfn;
|
|
end_pfn = zone_end_pfn(zone);
|
|
start_pfn = roundup(start_pfn, pageblock_nr_pages);
|
|
reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
|
|
pageblock_order;
|
|
|
|
/*
|
|
* Reserve blocks are generally in place to help high-order atomic
|
|
* allocations that are short-lived. A min_free_kbytes value that
|
|
* would result in more than 2 reserve blocks for atomic allocations
|
|
* is assumed to be in place to help anti-fragmentation for the
|
|
* future allocation of hugepages at runtime.
|
|
*/
|
|
reserve = min(2, reserve);
|
|
old_reserve = zone->nr_migrate_reserve_block;
|
|
|
|
/* When memory hot-add, we almost always need to do nothing */
|
|
if (reserve == old_reserve)
|
|
return;
|
|
zone->nr_migrate_reserve_block = reserve;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
page = pfn_to_page(pfn);
|
|
|
|
/* Watch out for overlapping nodes */
|
|
if (page_to_nid(page) != zone_to_nid(zone))
|
|
continue;
|
|
|
|
block_migratetype = get_pageblock_migratetype(page);
|
|
|
|
/* Only test what is necessary when the reserves are not met */
|
|
if (reserve > 0) {
|
|
/*
|
|
* Blocks with reserved pages will never free, skip
|
|
* them.
|
|
*/
|
|
block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
|
|
if (pageblock_is_reserved(pfn, block_end_pfn))
|
|
continue;
|
|
|
|
/* If this block is reserved, account for it */
|
|
if (block_migratetype == MIGRATE_RESERVE) {
|
|
reserve--;
|
|
continue;
|
|
}
|
|
|
|
/* Suitable for reserving if this block is movable */
|
|
if (block_migratetype == MIGRATE_MOVABLE) {
|
|
set_pageblock_migratetype(page,
|
|
MIGRATE_RESERVE);
|
|
move_freepages_block(zone, page,
|
|
MIGRATE_RESERVE);
|
|
reserve--;
|
|
continue;
|
|
}
|
|
} else if (!old_reserve) {
|
|
/*
|
|
* At boot time we don't need to scan the whole zone
|
|
* for turning off MIGRATE_RESERVE.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the reserve is met and this is a previous reserved block,
|
|
* take it back
|
|
*/
|
|
if (block_migratetype == MIGRATE_RESERVE) {
|
|
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
|
|
move_freepages_block(zone, page, MIGRATE_MOVABLE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initially all pages are reserved - free ones are freed
|
|
* up by free_all_bootmem() once the early boot process is
|
|
* done. Non-atomic initialization, single-pass.
|
|
*/
|
|
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
|
|
unsigned long start_pfn, enum memmap_context context)
|
|
{
|
|
struct page *page;
|
|
unsigned long end_pfn = start_pfn + size;
|
|
unsigned long pfn;
|
|
struct zone *z;
|
|
|
|
if (highest_memmap_pfn < end_pfn - 1)
|
|
highest_memmap_pfn = end_pfn - 1;
|
|
|
|
z = &NODE_DATA(nid)->node_zones[zone];
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
|
|
/*
|
|
* There can be holes in boot-time mem_map[]s
|
|
* handed to this function. They do not
|
|
* exist on hotplugged memory.
|
|
*/
|
|
if (context == MEMMAP_EARLY) {
|
|
if (!early_pfn_valid(pfn))
|
|
continue;
|
|
if (!early_pfn_in_nid(pfn, nid))
|
|
continue;
|
|
}
|
|
page = pfn_to_page(pfn);
|
|
set_page_links(page, zone, nid, pfn);
|
|
mminit_verify_page_links(page, zone, nid, pfn);
|
|
init_page_count(page);
|
|
page_mapcount_reset(page);
|
|
page_cpupid_reset_last(page);
|
|
SetPageReserved(page);
|
|
/*
|
|
* Mark the block movable so that blocks are reserved for
|
|
* movable at startup. This will force kernel allocations
|
|
* to reserve their blocks rather than leaking throughout
|
|
* the address space during boot when many long-lived
|
|
* kernel allocations are made. Later some blocks near
|
|
* the start are marked MIGRATE_RESERVE by
|
|
* setup_zone_migrate_reserve()
|
|
*
|
|
* bitmap is created for zone's valid pfn range. but memmap
|
|
* can be created for invalid pages (for alignment)
|
|
* check here not to call set_pageblock_migratetype() against
|
|
* pfn out of zone.
|
|
*/
|
|
if ((z->zone_start_pfn <= pfn)
|
|
&& (pfn < zone_end_pfn(z))
|
|
&& !(pfn & (pageblock_nr_pages - 1)))
|
|
set_pageblock_migratetype(page, MIGRATE_MOVABLE);
|
|
|
|
INIT_LIST_HEAD(&page->lru);
|
|
#ifdef WANT_PAGE_VIRTUAL
|
|
/* The shift won't overflow because ZONE_NORMAL is below 4G. */
|
|
if (!is_highmem_idx(zone))
|
|
set_page_address(page, __va(pfn << PAGE_SHIFT));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void __meminit zone_init_free_lists(struct zone *zone)
|
|
{
|
|
unsigned int order, t;
|
|
for_each_migratetype_order(order, t) {
|
|
INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
|
|
zone->free_area[order].nr_free = 0;
|
|
}
|
|
}
|
|
|
|
#ifndef __HAVE_ARCH_MEMMAP_INIT
|
|
#define memmap_init(size, nid, zone, start_pfn) \
|
|
memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
|
|
#endif
|
|
|
|
static int zone_batchsize(struct zone *zone)
|
|
{
|
|
#ifdef CONFIG_MMU
|
|
int batch;
|
|
|
|
/*
|
|
* The per-cpu-pages pools are set to around 1000th of the
|
|
* size of the zone. But no more than 1/2 of a meg.
|
|
*
|
|
* OK, so we don't know how big the cache is. So guess.
|
|
*/
|
|
batch = zone->managed_pages / 1024;
|
|
if (batch * PAGE_SIZE > 512 * 1024)
|
|
batch = (512 * 1024) / PAGE_SIZE;
|
|
batch /= 4; /* We effectively *= 4 below */
|
|
if (batch < 1)
|
|
batch = 1;
|
|
|
|
/*
|
|
* Clamp the batch to a 2^n - 1 value. Having a power
|
|
* of 2 value was found to be more likely to have
|
|
* suboptimal cache aliasing properties in some cases.
|
|
*
|
|
* For example if 2 tasks are alternately allocating
|
|
* batches of pages, one task can end up with a lot
|
|
* of pages of one half of the possible page colors
|
|
* and the other with pages of the other colors.
|
|
*/
|
|
batch = rounddown_pow_of_two(batch + batch/2) - 1;
|
|
|
|
return batch;
|
|
|
|
#else
|
|
/* The deferral and batching of frees should be suppressed under NOMMU
|
|
* conditions.
|
|
*
|
|
* The problem is that NOMMU needs to be able to allocate large chunks
|
|
* of contiguous memory as there's no hardware page translation to
|
|
* assemble apparent contiguous memory from discontiguous pages.
|
|
*
|
|
* Queueing large contiguous runs of pages for batching, however,
|
|
* causes the pages to actually be freed in smaller chunks. As there
|
|
* can be a significant delay between the individual batches being
|
|
* recycled, this leads to the once large chunks of space being
|
|
* fragmented and becoming unavailable for high-order allocations.
|
|
*/
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* pcp->high and pcp->batch values are related and dependent on one another:
|
|
* ->batch must never be higher then ->high.
|
|
* The following function updates them in a safe manner without read side
|
|
* locking.
|
|
*
|
|
* Any new users of pcp->batch and pcp->high should ensure they can cope with
|
|
* those fields changing asynchronously (acording the the above rule).
|
|
*
|
|
* mutex_is_locked(&pcp_batch_high_lock) required when calling this function
|
|
* outside of boot time (or some other assurance that no concurrent updaters
|
|
* exist).
|
|
*/
|
|
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
|
|
unsigned long batch)
|
|
{
|
|
/* start with a fail safe value for batch */
|
|
pcp->batch = 1;
|
|
smp_wmb();
|
|
|
|
/* Update high, then batch, in order */
|
|
pcp->high = high;
|
|
smp_wmb();
|
|
|
|
pcp->batch = batch;
|
|
}
|
|
|
|
/* a companion to pageset_set_high() */
|
|
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
|
|
{
|
|
pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
|
|
}
|
|
|
|
static void pageset_init(struct per_cpu_pageset *p)
|
|
{
|
|
struct per_cpu_pages *pcp;
|
|
int migratetype;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
pcp = &p->pcp;
|
|
pcp->count = 0;
|
|
for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
|
|
INIT_LIST_HEAD(&pcp->lists[migratetype]);
|
|
}
|
|
|
|
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
|
|
{
|
|
pageset_init(p);
|
|
pageset_set_batch(p, batch);
|
|
}
|
|
|
|
/*
|
|
* pageset_set_high() sets the high water mark for hot per_cpu_pagelist
|
|
* to the value high for the pageset p.
|
|
*/
|
|
static void pageset_set_high(struct per_cpu_pageset *p,
|
|
unsigned long high)
|
|
{
|
|
unsigned long batch = max(1UL, high / 4);
|
|
if ((high / 4) > (PAGE_SHIFT * 8))
|
|
batch = PAGE_SHIFT * 8;
|
|
|
|
pageset_update(&p->pcp, high, batch);
|
|
}
|
|
|
|
static void pageset_set_high_and_batch(struct zone *zone,
|
|
struct per_cpu_pageset *pcp)
|
|
{
|
|
if (percpu_pagelist_fraction)
|
|
pageset_set_high(pcp,
|
|
(zone->managed_pages /
|
|
percpu_pagelist_fraction));
|
|
else
|
|
pageset_set_batch(pcp, zone_batchsize(zone));
|
|
}
|
|
|
|
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
|
|
{
|
|
struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
|
|
|
|
pageset_init(pcp);
|
|
pageset_set_high_and_batch(zone, pcp);
|
|
}
|
|
|
|
static void __meminit setup_zone_pageset(struct zone *zone)
|
|
{
|
|
int cpu;
|
|
zone->pageset = alloc_percpu(struct per_cpu_pageset);
|
|
for_each_possible_cpu(cpu)
|
|
zone_pageset_init(zone, cpu);
|
|
}
|
|
|
|
/*
|
|
* Allocate per cpu pagesets and initialize them.
|
|
* Before this call only boot pagesets were available.
|
|
*/
|
|
void __init setup_per_cpu_pageset(void)
|
|
{
|
|
struct zone *zone;
|
|
|
|
for_each_populated_zone(zone)
|
|
setup_zone_pageset(zone);
|
|
}
|
|
|
|
static noinline __init_refok
|
|
int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
|
|
{
|
|
int i;
|
|
size_t alloc_size;
|
|
|
|
/*
|
|
* The per-page waitqueue mechanism uses hashed waitqueues
|
|
* per zone.
|
|
*/
|
|
zone->wait_table_hash_nr_entries =
|
|
wait_table_hash_nr_entries(zone_size_pages);
|
|
zone->wait_table_bits =
|
|
wait_table_bits(zone->wait_table_hash_nr_entries);
|
|
alloc_size = zone->wait_table_hash_nr_entries
|
|
* sizeof(wait_queue_head_t);
|
|
|
|
if (!slab_is_available()) {
|
|
zone->wait_table = (wait_queue_head_t *)
|
|
memblock_virt_alloc_node_nopanic(
|
|
alloc_size, zone->zone_pgdat->node_id);
|
|
} else {
|
|
/*
|
|
* This case means that a zone whose size was 0 gets new memory
|
|
* via memory hot-add.
|
|
* But it may be the case that a new node was hot-added. In
|
|
* this case vmalloc() will not be able to use this new node's
|
|
* memory - this wait_table must be initialized to use this new
|
|
* node itself as well.
|
|
* To use this new node's memory, further consideration will be
|
|
* necessary.
|
|
*/
|
|
zone->wait_table = vmalloc(alloc_size);
|
|
}
|
|
if (!zone->wait_table)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
|
|
init_waitqueue_head(zone->wait_table + i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __meminit void zone_pcp_init(struct zone *zone)
|
|
{
|
|
/*
|
|
* per cpu subsystem is not up at this point. The following code
|
|
* relies on the ability of the linker to provide the
|
|
* offset of a (static) per cpu variable into the per cpu area.
|
|
*/
|
|
zone->pageset = &boot_pageset;
|
|
|
|
if (populated_zone(zone))
|
|
printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
|
|
zone->name, zone->present_pages,
|
|
zone_batchsize(zone));
|
|
}
|
|
|
|
int __meminit init_currently_empty_zone(struct zone *zone,
|
|
unsigned long zone_start_pfn,
|
|
unsigned long size,
|
|
enum memmap_context context)
|
|
{
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
int ret;
|
|
ret = zone_wait_table_init(zone, size);
|
|
if (ret)
|
|
return ret;
|
|
pgdat->nr_zones = zone_idx(zone) + 1;
|
|
|
|
zone->zone_start_pfn = zone_start_pfn;
|
|
|
|
mminit_dprintk(MMINIT_TRACE, "memmap_init",
|
|
"Initialising map node %d zone %lu pfns %lu -> %lu\n",
|
|
pgdat->node_id,
|
|
(unsigned long)zone_idx(zone),
|
|
zone_start_pfn, (zone_start_pfn + size));
|
|
|
|
zone_init_free_lists(zone);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
|
|
/*
|
|
* Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
|
|
*/
|
|
int __meminit __early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
int nid;
|
|
/*
|
|
* NOTE: The following SMP-unsafe globals are only used early in boot
|
|
* when the kernel is running single-threaded.
|
|
*/
|
|
static unsigned long __meminitdata last_start_pfn, last_end_pfn;
|
|
static int __meminitdata last_nid;
|
|
|
|
if (last_start_pfn <= pfn && pfn < last_end_pfn)
|
|
return last_nid;
|
|
|
|
nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
|
|
if (nid != -1) {
|
|
last_start_pfn = start_pfn;
|
|
last_end_pfn = end_pfn;
|
|
last_nid = nid;
|
|
}
|
|
|
|
return nid;
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
|
|
|
|
int __meminit early_pfn_to_nid(unsigned long pfn)
|
|
{
|
|
int nid;
|
|
|
|
nid = __early_pfn_to_nid(pfn);
|
|
if (nid >= 0)
|
|
return nid;
|
|
/* just returns 0 */
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NODES_SPAN_OTHER_NODES
|
|
bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
|
|
{
|
|
int nid;
|
|
|
|
nid = __early_pfn_to_nid(pfn);
|
|
if (nid >= 0 && nid != node)
|
|
return false;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
|
|
* @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
|
|
* @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
|
|
*
|
|
* If an architecture guarantees that all ranges registered contain no holes
|
|
* and may be freed, this this function may be used instead of calling
|
|
* memblock_free_early_nid() manually.
|
|
*/
|
|
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
int i, this_nid;
|
|
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
|
|
start_pfn = min(start_pfn, max_low_pfn);
|
|
end_pfn = min(end_pfn, max_low_pfn);
|
|
|
|
if (start_pfn < end_pfn)
|
|
memblock_free_early_nid(PFN_PHYS(start_pfn),
|
|
(end_pfn - start_pfn) << PAGE_SHIFT,
|
|
this_nid);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sparse_memory_present_with_active_regions - Call memory_present for each active range
|
|
* @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
|
|
*
|
|
* If an architecture guarantees that all ranges registered contain no holes and may
|
|
* be freed, this function may be used instead of calling memory_present() manually.
|
|
*/
|
|
void __init sparse_memory_present_with_active_regions(int nid)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
int i, this_nid;
|
|
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
|
|
memory_present(this_nid, start_pfn, end_pfn);
|
|
}
|
|
|
|
/**
|
|
* get_pfn_range_for_nid - Return the start and end page frames for a node
|
|
* @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
|
|
* @start_pfn: Passed by reference. On return, it will have the node start_pfn.
|
|
* @end_pfn: Passed by reference. On return, it will have the node end_pfn.
|
|
*
|
|
* It returns the start and end page frame of a node based on information
|
|
* provided by memblock_set_node(). If called for a node
|
|
* with no available memory, a warning is printed and the start and end
|
|
* PFNs will be 0.
|
|
*/
|
|
void __meminit get_pfn_range_for_nid(unsigned int nid,
|
|
unsigned long *start_pfn, unsigned long *end_pfn)
|
|
{
|
|
unsigned long this_start_pfn, this_end_pfn;
|
|
int i;
|
|
|
|
*start_pfn = -1UL;
|
|
*end_pfn = 0;
|
|
|
|
for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
|
|
*start_pfn = min(*start_pfn, this_start_pfn);
|
|
*end_pfn = max(*end_pfn, this_end_pfn);
|
|
}
|
|
|
|
if (*start_pfn == -1UL)
|
|
*start_pfn = 0;
|
|
}
|
|
|
|
/*
|
|
* This finds a zone that can be used for ZONE_MOVABLE pages. The
|
|
* assumption is made that zones within a node are ordered in monotonic
|
|
* increasing memory addresses so that the "highest" populated zone is used
|
|
*/
|
|
static void __init find_usable_zone_for_movable(void)
|
|
{
|
|
int zone_index;
|
|
for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
|
|
if (zone_index == ZONE_MOVABLE)
|
|
continue;
|
|
|
|
if (arch_zone_highest_possible_pfn[zone_index] >
|
|
arch_zone_lowest_possible_pfn[zone_index])
|
|
break;
|
|
}
|
|
|
|
VM_BUG_ON(zone_index == -1);
|
|
movable_zone = zone_index;
|
|
}
|
|
|
|
/*
|
|
* The zone ranges provided by the architecture do not include ZONE_MOVABLE
|
|
* because it is sized independent of architecture. Unlike the other zones,
|
|
* the starting point for ZONE_MOVABLE is not fixed. It may be different
|
|
* in each node depending on the size of each node and how evenly kernelcore
|
|
* is distributed. This helper function adjusts the zone ranges
|
|
* provided by the architecture for a given node by using the end of the
|
|
* highest usable zone for ZONE_MOVABLE. This preserves the assumption that
|
|
* zones within a node are in order of monotonic increases memory addresses
|
|
*/
|
|
static void __meminit adjust_zone_range_for_zone_movable(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long node_start_pfn,
|
|
unsigned long node_end_pfn,
|
|
unsigned long *zone_start_pfn,
|
|
unsigned long *zone_end_pfn)
|
|
{
|
|
/* Only adjust if ZONE_MOVABLE is on this node */
|
|
if (zone_movable_pfn[nid]) {
|
|
/* Size ZONE_MOVABLE */
|
|
if (zone_type == ZONE_MOVABLE) {
|
|
*zone_start_pfn = zone_movable_pfn[nid];
|
|
*zone_end_pfn = min(node_end_pfn,
|
|
arch_zone_highest_possible_pfn[movable_zone]);
|
|
|
|
/* Adjust for ZONE_MOVABLE starting within this range */
|
|
} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
|
|
*zone_end_pfn > zone_movable_pfn[nid]) {
|
|
*zone_end_pfn = zone_movable_pfn[nid];
|
|
|
|
/* Check if this whole range is within ZONE_MOVABLE */
|
|
} else if (*zone_start_pfn >= zone_movable_pfn[nid])
|
|
*zone_start_pfn = *zone_end_pfn;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the number of pages a zone spans in a node, including holes
|
|
* present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
|
|
*/
|
|
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long node_start_pfn,
|
|
unsigned long node_end_pfn,
|
|
unsigned long *ignored)
|
|
{
|
|
unsigned long zone_start_pfn, zone_end_pfn;
|
|
|
|
/* Get the start and end of the zone */
|
|
zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
|
|
zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
|
|
adjust_zone_range_for_zone_movable(nid, zone_type,
|
|
node_start_pfn, node_end_pfn,
|
|
&zone_start_pfn, &zone_end_pfn);
|
|
|
|
/* Check that this node has pages within the zone's required range */
|
|
if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
|
|
return 0;
|
|
|
|
/* Move the zone boundaries inside the node if necessary */
|
|
zone_end_pfn = min(zone_end_pfn, node_end_pfn);
|
|
zone_start_pfn = max(zone_start_pfn, node_start_pfn);
|
|
|
|
/* Return the spanned pages */
|
|
return zone_end_pfn - zone_start_pfn;
|
|
}
|
|
|
|
/*
|
|
* Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
|
|
* then all holes in the requested range will be accounted for.
|
|
*/
|
|
unsigned long __meminit __absent_pages_in_range(int nid,
|
|
unsigned long range_start_pfn,
|
|
unsigned long range_end_pfn)
|
|
{
|
|
unsigned long nr_absent = range_end_pfn - range_start_pfn;
|
|
unsigned long start_pfn, end_pfn;
|
|
int i;
|
|
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
|
|
start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
|
|
end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
|
|
nr_absent -= end_pfn - start_pfn;
|
|
}
|
|
return nr_absent;
|
|
}
|
|
|
|
/**
|
|
* absent_pages_in_range - Return number of page frames in holes within a range
|
|
* @start_pfn: The start PFN to start searching for holes
|
|
* @end_pfn: The end PFN to stop searching for holes
|
|
*
|
|
* It returns the number of pages frames in memory holes within a range.
|
|
*/
|
|
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
|
|
}
|
|
|
|
/* Return the number of page frames in holes in a zone on a node */
|
|
static unsigned long __meminit zone_absent_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long node_start_pfn,
|
|
unsigned long node_end_pfn,
|
|
unsigned long *ignored)
|
|
{
|
|
unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
|
|
unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
|
|
unsigned long zone_start_pfn, zone_end_pfn;
|
|
|
|
zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
|
|
zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
|
|
|
|
adjust_zone_range_for_zone_movable(nid, zone_type,
|
|
node_start_pfn, node_end_pfn,
|
|
&zone_start_pfn, &zone_end_pfn);
|
|
return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
|
|
}
|
|
|
|
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long node_start_pfn,
|
|
unsigned long node_end_pfn,
|
|
unsigned long *zones_size)
|
|
{
|
|
return zones_size[zone_type];
|
|
}
|
|
|
|
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
|
|
unsigned long zone_type,
|
|
unsigned long node_start_pfn,
|
|
unsigned long node_end_pfn,
|
|
unsigned long *zholes_size)
|
|
{
|
|
if (!zholes_size)
|
|
return 0;
|
|
|
|
return zholes_size[zone_type];
|
|
}
|
|
|
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
|
|
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
|
|
unsigned long node_start_pfn,
|
|
unsigned long node_end_pfn,
|
|
unsigned long *zones_size,
|
|
unsigned long *zholes_size)
|
|
{
|
|
unsigned long realtotalpages, totalpages = 0;
|
|
enum zone_type i;
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
|
|
node_start_pfn,
|
|
node_end_pfn,
|
|
zones_size);
|
|
pgdat->node_spanned_pages = totalpages;
|
|
|
|
realtotalpages = totalpages;
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
realtotalpages -=
|
|
zone_absent_pages_in_node(pgdat->node_id, i,
|
|
node_start_pfn, node_end_pfn,
|
|
zholes_size);
|
|
pgdat->node_present_pages = realtotalpages;
|
|
printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
|
|
realtotalpages);
|
|
}
|
|
|
|
#ifndef CONFIG_SPARSEMEM
|
|
/*
|
|
* Calculate the size of the zone->blockflags rounded to an unsigned long
|
|
* Start by making sure zonesize is a multiple of pageblock_order by rounding
|
|
* up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
|
|
* round what is now in bits to nearest long in bits, then return it in
|
|
* bytes.
|
|
*/
|
|
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
|
|
{
|
|
unsigned long usemapsize;
|
|
|
|
zonesize += zone_start_pfn & (pageblock_nr_pages-1);
|
|
usemapsize = roundup(zonesize, pageblock_nr_pages);
|
|
usemapsize = usemapsize >> pageblock_order;
|
|
usemapsize *= NR_PAGEBLOCK_BITS;
|
|
usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
|
|
|
|
return usemapsize / 8;
|
|
}
|
|
|
|
static void __init setup_usemap(struct pglist_data *pgdat,
|
|
struct zone *zone,
|
|
unsigned long zone_start_pfn,
|
|
unsigned long zonesize)
|
|
{
|
|
unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
|
|
zone->pageblock_flags = NULL;
|
|
if (usemapsize)
|
|
zone->pageblock_flags =
|
|
memblock_virt_alloc_node_nopanic(usemapsize,
|
|
pgdat->node_id);
|
|
}
|
|
#else
|
|
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
|
|
unsigned long zone_start_pfn, unsigned long zonesize) {}
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
|
|
|
|
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
|
|
void __paginginit set_pageblock_order(void)
|
|
{
|
|
unsigned int order;
|
|
|
|
/* Check that pageblock_nr_pages has not already been setup */
|
|
if (pageblock_order)
|
|
return;
|
|
|
|
if (HPAGE_SHIFT > PAGE_SHIFT)
|
|
order = HUGETLB_PAGE_ORDER;
|
|
else
|
|
order = MAX_ORDER - 1;
|
|
|
|
/*
|
|
* Assume the largest contiguous order of interest is a huge page.
|
|
* This value may be variable depending on boot parameters on IA64 and
|
|
* powerpc.
|
|
*/
|
|
pageblock_order = order;
|
|
}
|
|
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
|
|
|
|
/*
|
|
* When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
|
|
* is unused as pageblock_order is set at compile-time. See
|
|
* include/linux/pageblock-flags.h for the values of pageblock_order based on
|
|
* the kernel config
|
|
*/
|
|
void __paginginit set_pageblock_order(void)
|
|
{
|
|
}
|
|
|
|
#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
|
|
|
|
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
|
|
unsigned long present_pages)
|
|
{
|
|
unsigned long pages = spanned_pages;
|
|
|
|
/*
|
|
* Provide a more accurate estimation if there are holes within
|
|
* the zone and SPARSEMEM is in use. If there are holes within the
|
|
* zone, each populated memory region may cost us one or two extra
|
|
* memmap pages due to alignment because memmap pages for each
|
|
* populated regions may not naturally algined on page boundary.
|
|
* So the (present_pages >> 4) heuristic is a tradeoff for that.
|
|
*/
|
|
if (spanned_pages > present_pages + (present_pages >> 4) &&
|
|
IS_ENABLED(CONFIG_SPARSEMEM))
|
|
pages = present_pages;
|
|
|
|
return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Set up the zone data structures:
|
|
* - mark all pages reserved
|
|
* - mark all memory queues empty
|
|
* - clear the memory bitmaps
|
|
*
|
|
* NOTE: pgdat should get zeroed by caller.
|
|
*/
|
|
static void __paginginit free_area_init_core(struct pglist_data *pgdat,
|
|
unsigned long node_start_pfn, unsigned long node_end_pfn,
|
|
unsigned long *zones_size, unsigned long *zholes_size)
|
|
{
|
|
enum zone_type j;
|
|
int nid = pgdat->node_id;
|
|
unsigned long zone_start_pfn = pgdat->node_start_pfn;
|
|
int ret;
|
|
|
|
pgdat_resize_init(pgdat);
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
spin_lock_init(&pgdat->numabalancing_migrate_lock);
|
|
pgdat->numabalancing_migrate_nr_pages = 0;
|
|
pgdat->numabalancing_migrate_next_window = jiffies;
|
|
#endif
|
|
init_waitqueue_head(&pgdat->kswapd_wait);
|
|
init_waitqueue_head(&pgdat->pfmemalloc_wait);
|
|
pgdat_page_ext_init(pgdat);
|
|
|
|
for (j = 0; j < MAX_NR_ZONES; j++) {
|
|
struct zone *zone = pgdat->node_zones + j;
|
|
unsigned long size, realsize, freesize, memmap_pages;
|
|
|
|
size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
|
|
node_end_pfn, zones_size);
|
|
realsize = freesize = size - zone_absent_pages_in_node(nid, j,
|
|
node_start_pfn,
|
|
node_end_pfn,
|
|
zholes_size);
|
|
|
|
/*
|
|
* Adjust freesize so that it accounts for how much memory
|
|
* is used by this zone for memmap. This affects the watermark
|
|
* and per-cpu initialisations
|
|
*/
|
|
memmap_pages = calc_memmap_size(size, realsize);
|
|
if (!is_highmem_idx(j)) {
|
|
if (freesize >= memmap_pages) {
|
|
freesize -= memmap_pages;
|
|
if (memmap_pages)
|
|
printk(KERN_DEBUG
|
|
" %s zone: %lu pages used for memmap\n",
|
|
zone_names[j], memmap_pages);
|
|
} else
|
|
printk(KERN_WARNING
|
|
" %s zone: %lu pages exceeds freesize %lu\n",
|
|
zone_names[j], memmap_pages, freesize);
|
|
}
|
|
|
|
/* Account for reserved pages */
|
|
if (j == 0 && freesize > dma_reserve) {
|
|
freesize -= dma_reserve;
|
|
printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
|
|
zone_names[0], dma_reserve);
|
|
}
|
|
|
|
if (!is_highmem_idx(j))
|
|
nr_kernel_pages += freesize;
|
|
/* Charge for highmem memmap if there are enough kernel pages */
|
|
else if (nr_kernel_pages > memmap_pages * 2)
|
|
nr_kernel_pages -= memmap_pages;
|
|
nr_all_pages += freesize;
|
|
|
|
zone->spanned_pages = size;
|
|
zone->present_pages = realsize;
|
|
/*
|
|
* Set an approximate value for lowmem here, it will be adjusted
|
|
* when the bootmem allocator frees pages into the buddy system.
|
|
* And all highmem pages will be managed by the buddy system.
|
|
*/
|
|
zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
|
|
#ifdef CONFIG_NUMA
|
|
zone->node = nid;
|
|
zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
|
|
/ 100;
|
|
zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
|
|
#endif
|
|
zone->name = zone_names[j];
|
|
spin_lock_init(&zone->lock);
|
|
spin_lock_init(&zone->lru_lock);
|
|
zone_seqlock_init(zone);
|
|
zone->zone_pgdat = pgdat;
|
|
zone_pcp_init(zone);
|
|
|
|
/* For bootup, initialized properly in watermark setup */
|
|
mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
|
|
|
|
lruvec_init(&zone->lruvec);
|
|
if (!size)
|
|
continue;
|
|
|
|
set_pageblock_order();
|
|
setup_usemap(pgdat, zone, zone_start_pfn, size);
|
|
ret = init_currently_empty_zone(zone, zone_start_pfn,
|
|
size, MEMMAP_EARLY);
|
|
BUG_ON(ret);
|
|
memmap_init(size, nid, j, zone_start_pfn);
|
|
zone_start_pfn += size;
|
|
}
|
|
}
|
|
|
|
static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
|
|
{
|
|
/* Skip empty nodes */
|
|
if (!pgdat->node_spanned_pages)
|
|
return;
|
|
|
|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
|
|
/* ia64 gets its own node_mem_map, before this, without bootmem */
|
|
if (!pgdat->node_mem_map) {
|
|
unsigned long size, start, end;
|
|
struct page *map;
|
|
|
|
/*
|
|
* The zone's endpoints aren't required to be MAX_ORDER
|
|
* aligned but the node_mem_map endpoints must be in order
|
|
* for the buddy allocator to function correctly.
|
|
*/
|
|
start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
|
|
end = pgdat_end_pfn(pgdat);
|
|
end = ALIGN(end, MAX_ORDER_NR_PAGES);
|
|
size = (end - start) * sizeof(struct page);
|
|
map = alloc_remap(pgdat->node_id, size);
|
|
if (!map)
|
|
map = memblock_virt_alloc_node_nopanic(size,
|
|
pgdat->node_id);
|
|
pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
|
|
}
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
/*
|
|
* With no DISCONTIG, the global mem_map is just set as node 0's
|
|
*/
|
|
if (pgdat == NODE_DATA(0)) {
|
|
mem_map = NODE_DATA(0)->node_mem_map;
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
|
|
mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
|
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
}
|
|
#endif
|
|
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
|
|
}
|
|
|
|
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
|
|
unsigned long node_start_pfn, unsigned long *zholes_size)
|
|
{
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
unsigned long start_pfn = 0;
|
|
unsigned long end_pfn = 0;
|
|
|
|
/* pg_data_t should be reset to zero when it's allocated */
|
|
WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
|
|
|
|
pgdat->node_id = nid;
|
|
pgdat->node_start_pfn = node_start_pfn;
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
|
|
printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
|
|
(u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
|
|
#endif
|
|
calculate_node_totalpages(pgdat, start_pfn, end_pfn,
|
|
zones_size, zholes_size);
|
|
|
|
alloc_node_mem_map(pgdat);
|
|
#ifdef CONFIG_FLAT_NODE_MEM_MAP
|
|
printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
|
|
nid, (unsigned long)pgdat,
|
|
(unsigned long)pgdat->node_mem_map);
|
|
#endif
|
|
|
|
free_area_init_core(pgdat, start_pfn, end_pfn,
|
|
zones_size, zholes_size);
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
|
|
#if MAX_NUMNODES > 1
|
|
/*
|
|
* Figure out the number of possible node ids.
|
|
*/
|
|
void __init setup_nr_node_ids(void)
|
|
{
|
|
unsigned int node;
|
|
unsigned int highest = 0;
|
|
|
|
for_each_node_mask(node, node_possible_map)
|
|
highest = node;
|
|
nr_node_ids = highest + 1;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* node_map_pfn_alignment - determine the maximum internode alignment
|
|
*
|
|
* This function should be called after node map is populated and sorted.
|
|
* It calculates the maximum power of two alignment which can distinguish
|
|
* all the nodes.
|
|
*
|
|
* For example, if all nodes are 1GiB and aligned to 1GiB, the return value
|
|
* would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
|
|
* nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
|
|
* shifted, 1GiB is enough and this function will indicate so.
|
|
*
|
|
* This is used to test whether pfn -> nid mapping of the chosen memory
|
|
* model has fine enough granularity to avoid incorrect mapping for the
|
|
* populated node map.
|
|
*
|
|
* Returns the determined alignment in pfn's. 0 if there is no alignment
|
|
* requirement (single node).
|
|
*/
|
|
unsigned long __init node_map_pfn_alignment(void)
|
|
{
|
|
unsigned long accl_mask = 0, last_end = 0;
|
|
unsigned long start, end, mask;
|
|
int last_nid = -1;
|
|
int i, nid;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
|
|
if (!start || last_nid < 0 || last_nid == nid) {
|
|
last_nid = nid;
|
|
last_end = end;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Start with a mask granular enough to pin-point to the
|
|
* start pfn and tick off bits one-by-one until it becomes
|
|
* too coarse to separate the current node from the last.
|
|
*/
|
|
mask = ~((1 << __ffs(start)) - 1);
|
|
while (mask && last_end <= (start & (mask << 1)))
|
|
mask <<= 1;
|
|
|
|
/* accumulate all internode masks */
|
|
accl_mask |= mask;
|
|
}
|
|
|
|
/* convert mask to number of pages */
|
|
return ~accl_mask + 1;
|
|
}
|
|
|
|
/* Find the lowest pfn for a node */
|
|
static unsigned long __init find_min_pfn_for_node(int nid)
|
|
{
|
|
unsigned long min_pfn = ULONG_MAX;
|
|
unsigned long start_pfn;
|
|
int i;
|
|
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
|
|
min_pfn = min(min_pfn, start_pfn);
|
|
|
|
if (min_pfn == ULONG_MAX) {
|
|
printk(KERN_WARNING
|
|
"Could not find start_pfn for node %d\n", nid);
|
|
return 0;
|
|
}
|
|
|
|
return min_pfn;
|
|
}
|
|
|
|
/**
|
|
* find_min_pfn_with_active_regions - Find the minimum PFN registered
|
|
*
|
|
* It returns the minimum PFN based on information provided via
|
|
* memblock_set_node().
|
|
*/
|
|
unsigned long __init find_min_pfn_with_active_regions(void)
|
|
{
|
|
return find_min_pfn_for_node(MAX_NUMNODES);
|
|
}
|
|
|
|
/*
|
|
* early_calculate_totalpages()
|
|
* Sum pages in active regions for movable zone.
|
|
* Populate N_MEMORY for calculating usable_nodes.
|
|
*/
|
|
static unsigned long __init early_calculate_totalpages(void)
|
|
{
|
|
unsigned long totalpages = 0;
|
|
unsigned long start_pfn, end_pfn;
|
|
int i, nid;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
|
|
unsigned long pages = end_pfn - start_pfn;
|
|
|
|
totalpages += pages;
|
|
if (pages)
|
|
node_set_state(nid, N_MEMORY);
|
|
}
|
|
return totalpages;
|
|
}
|
|
|
|
/*
|
|
* Find the PFN the Movable zone begins in each node. Kernel memory
|
|
* is spread evenly between nodes as long as the nodes have enough
|
|
* memory. When they don't, some nodes will have more kernelcore than
|
|
* others
|
|
*/
|
|
static void __init find_zone_movable_pfns_for_nodes(void)
|
|
{
|
|
int i, nid;
|
|
unsigned long usable_startpfn;
|
|
unsigned long kernelcore_node, kernelcore_remaining;
|
|
/* save the state before borrow the nodemask */
|
|
nodemask_t saved_node_state = node_states[N_MEMORY];
|
|
unsigned long totalpages = early_calculate_totalpages();
|
|
int usable_nodes = nodes_weight(node_states[N_MEMORY]);
|
|
struct memblock_region *r;
|
|
|
|
/* Need to find movable_zone earlier when movable_node is specified. */
|
|
find_usable_zone_for_movable();
|
|
|
|
/*
|
|
* If movable_node is specified, ignore kernelcore and movablecore
|
|
* options.
|
|
*/
|
|
if (movable_node_is_enabled()) {
|
|
for_each_memblock(memory, r) {
|
|
if (!memblock_is_hotpluggable(r))
|
|
continue;
|
|
|
|
nid = r->nid;
|
|
|
|
usable_startpfn = PFN_DOWN(r->base);
|
|
zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
|
|
min(usable_startpfn, zone_movable_pfn[nid]) :
|
|
usable_startpfn;
|
|
}
|
|
|
|
goto out2;
|
|
}
|
|
|
|
/*
|
|
* If movablecore=nn[KMG] was specified, calculate what size of
|
|
* kernelcore that corresponds so that memory usable for
|
|
* any allocation type is evenly spread. If both kernelcore
|
|
* and movablecore are specified, then the value of kernelcore
|
|
* will be used for required_kernelcore if it's greater than
|
|
* what movablecore would have allowed.
|
|
*/
|
|
if (required_movablecore) {
|
|
unsigned long corepages;
|
|
|
|
/*
|
|
* Round-up so that ZONE_MOVABLE is at least as large as what
|
|
* was requested by the user
|
|
*/
|
|
required_movablecore =
|
|
roundup(required_movablecore, MAX_ORDER_NR_PAGES);
|
|
corepages = totalpages - required_movablecore;
|
|
|
|
required_kernelcore = max(required_kernelcore, corepages);
|
|
}
|
|
|
|
/* If kernelcore was not specified, there is no ZONE_MOVABLE */
|
|
if (!required_kernelcore)
|
|
goto out;
|
|
|
|
/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
|
|
usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
|
|
|
|
restart:
|
|
/* Spread kernelcore memory as evenly as possible throughout nodes */
|
|
kernelcore_node = required_kernelcore / usable_nodes;
|
|
for_each_node_state(nid, N_MEMORY) {
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
/*
|
|
* Recalculate kernelcore_node if the division per node
|
|
* now exceeds what is necessary to satisfy the requested
|
|
* amount of memory for the kernel
|
|
*/
|
|
if (required_kernelcore < kernelcore_node)
|
|
kernelcore_node = required_kernelcore / usable_nodes;
|
|
|
|
/*
|
|
* As the map is walked, we track how much memory is usable
|
|
* by the kernel using kernelcore_remaining. When it is
|
|
* 0, the rest of the node is usable by ZONE_MOVABLE
|
|
*/
|
|
kernelcore_remaining = kernelcore_node;
|
|
|
|
/* Go through each range of PFNs within this node */
|
|
for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
|
|
unsigned long size_pages;
|
|
|
|
start_pfn = max(start_pfn, zone_movable_pfn[nid]);
|
|
if (start_pfn >= end_pfn)
|
|
continue;
|
|
|
|
/* Account for what is only usable for kernelcore */
|
|
if (start_pfn < usable_startpfn) {
|
|
unsigned long kernel_pages;
|
|
kernel_pages = min(end_pfn, usable_startpfn)
|
|
- start_pfn;
|
|
|
|
kernelcore_remaining -= min(kernel_pages,
|
|
kernelcore_remaining);
|
|
required_kernelcore -= min(kernel_pages,
|
|
required_kernelcore);
|
|
|
|
/* Continue if range is now fully accounted */
|
|
if (end_pfn <= usable_startpfn) {
|
|
|
|
/*
|
|
* Push zone_movable_pfn to the end so
|
|
* that if we have to rebalance
|
|
* kernelcore across nodes, we will
|
|
* not double account here
|
|
*/
|
|
zone_movable_pfn[nid] = end_pfn;
|
|
continue;
|
|
}
|
|
start_pfn = usable_startpfn;
|
|
}
|
|
|
|
/*
|
|
* The usable PFN range for ZONE_MOVABLE is from
|
|
* start_pfn->end_pfn. Calculate size_pages as the
|
|
* number of pages used as kernelcore
|
|
*/
|
|
size_pages = end_pfn - start_pfn;
|
|
if (size_pages > kernelcore_remaining)
|
|
size_pages = kernelcore_remaining;
|
|
zone_movable_pfn[nid] = start_pfn + size_pages;
|
|
|
|
/*
|
|
* Some kernelcore has been met, update counts and
|
|
* break if the kernelcore for this node has been
|
|
* satisfied
|
|
*/
|
|
required_kernelcore -= min(required_kernelcore,
|
|
size_pages);
|
|
kernelcore_remaining -= size_pages;
|
|
if (!kernelcore_remaining)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If there is still required_kernelcore, we do another pass with one
|
|
* less node in the count. This will push zone_movable_pfn[nid] further
|
|
* along on the nodes that still have memory until kernelcore is
|
|
* satisfied
|
|
*/
|
|
usable_nodes--;
|
|
if (usable_nodes && required_kernelcore > usable_nodes)
|
|
goto restart;
|
|
|
|
out2:
|
|
/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
|
|
for (nid = 0; nid < MAX_NUMNODES; nid++)
|
|
zone_movable_pfn[nid] =
|
|
roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
|
|
|
|
out:
|
|
/* restore the node_state */
|
|
node_states[N_MEMORY] = saved_node_state;
|
|
}
|
|
|
|
/* Any regular or high memory on that node ? */
|
|
static void check_for_memory(pg_data_t *pgdat, int nid)
|
|
{
|
|
enum zone_type zone_type;
|
|
|
|
if (N_MEMORY == N_NORMAL_MEMORY)
|
|
return;
|
|
|
|
for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
|
|
struct zone *zone = &pgdat->node_zones[zone_type];
|
|
if (populated_zone(zone)) {
|
|
node_set_state(nid, N_HIGH_MEMORY);
|
|
if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
|
|
zone_type <= ZONE_NORMAL)
|
|
node_set_state(nid, N_NORMAL_MEMORY);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* free_area_init_nodes - Initialise all pg_data_t and zone data
|
|
* @max_zone_pfn: an array of max PFNs for each zone
|
|
*
|
|
* This will call free_area_init_node() for each active node in the system.
|
|
* Using the page ranges provided by memblock_set_node(), the size of each
|
|
* zone in each node and their holes is calculated. If the maximum PFN
|
|
* between two adjacent zones match, it is assumed that the zone is empty.
|
|
* For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
|
|
* that arch_max_dma32_pfn has no pages. It is also assumed that a zone
|
|
* starts where the previous one ended. For example, ZONE_DMA32 starts
|
|
* at arch_max_dma_pfn.
|
|
*/
|
|
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
|
|
{
|
|
unsigned long start_pfn, end_pfn;
|
|
int i, nid;
|
|
|
|
/* Record where the zone boundaries are */
|
|
memset(arch_zone_lowest_possible_pfn, 0,
|
|
sizeof(arch_zone_lowest_possible_pfn));
|
|
memset(arch_zone_highest_possible_pfn, 0,
|
|
sizeof(arch_zone_highest_possible_pfn));
|
|
arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
|
|
arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
|
|
for (i = 1; i < MAX_NR_ZONES; i++) {
|
|
if (i == ZONE_MOVABLE)
|
|
continue;
|
|
arch_zone_lowest_possible_pfn[i] =
|
|
arch_zone_highest_possible_pfn[i-1];
|
|
arch_zone_highest_possible_pfn[i] =
|
|
max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
|
|
}
|
|
arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
|
|
arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
|
|
|
|
/* Find the PFNs that ZONE_MOVABLE begins at in each node */
|
|
memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
|
|
find_zone_movable_pfns_for_nodes();
|
|
|
|
/* Print out the zone ranges */
|
|
pr_info("Zone ranges:\n");
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
if (i == ZONE_MOVABLE)
|
|
continue;
|
|
pr_info(" %-8s ", zone_names[i]);
|
|
if (arch_zone_lowest_possible_pfn[i] ==
|
|
arch_zone_highest_possible_pfn[i])
|
|
pr_cont("empty\n");
|
|
else
|
|
pr_cont("[mem %0#10lx-%0#10lx]\n",
|
|
arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
|
|
(arch_zone_highest_possible_pfn[i]
|
|
<< PAGE_SHIFT) - 1);
|
|
}
|
|
|
|
/* Print out the PFNs ZONE_MOVABLE begins at in each node */
|
|
pr_info("Movable zone start for each node\n");
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
if (zone_movable_pfn[i])
|
|
pr_info(" Node %d: %#010lx\n", i,
|
|
zone_movable_pfn[i] << PAGE_SHIFT);
|
|
}
|
|
|
|
/* Print out the early node map */
|
|
pr_info("Early memory node ranges\n");
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
|
|
pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
|
|
start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
|
|
|
|
/* Initialise every node */
|
|
mminit_verify_pageflags_layout();
|
|
setup_nr_node_ids();
|
|
for_each_online_node(nid) {
|
|
pg_data_t *pgdat = NODE_DATA(nid);
|
|
free_area_init_node(nid, NULL,
|
|
find_min_pfn_for_node(nid), NULL);
|
|
|
|
/* Any memory on that node */
|
|
if (pgdat->node_present_pages)
|
|
node_set_state(nid, N_MEMORY);
|
|
check_for_memory(pgdat, nid);
|
|
}
|
|
}
|
|
|
|
static int __init cmdline_parse_core(char *p, unsigned long *core)
|
|
{
|
|
unsigned long long coremem;
|
|
if (!p)
|
|
return -EINVAL;
|
|
|
|
coremem = memparse(p, &p);
|
|
*core = coremem >> PAGE_SHIFT;
|
|
|
|
/* Paranoid check that UL is enough for the coremem value */
|
|
WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* kernelcore=size sets the amount of memory for use for allocations that
|
|
* cannot be reclaimed or migrated.
|
|
*/
|
|
static int __init cmdline_parse_kernelcore(char *p)
|
|
{
|
|
return cmdline_parse_core(p, &required_kernelcore);
|
|
}
|
|
|
|
/*
|
|
* movablecore=size sets the amount of memory for use for allocations that
|
|
* can be reclaimed or migrated.
|
|
*/
|
|
static int __init cmdline_parse_movablecore(char *p)
|
|
{
|
|
return cmdline_parse_core(p, &required_movablecore);
|
|
}
|
|
|
|
early_param("kernelcore", cmdline_parse_kernelcore);
|
|
early_param("movablecore", cmdline_parse_movablecore);
|
|
|
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
|
|
void adjust_managed_page_count(struct page *page, long count)
|
|
{
|
|
spin_lock(&managed_page_count_lock);
|
|
page_zone(page)->managed_pages += count;
|
|
totalram_pages += count;
|
|
#ifdef CONFIG_HIGHMEM
|
|
if (PageHighMem(page))
|
|
totalhigh_pages += count;
|
|
#endif
|
|
spin_unlock(&managed_page_count_lock);
|
|
}
|
|
EXPORT_SYMBOL(adjust_managed_page_count);
|
|
|
|
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
|
|
{
|
|
void *pos;
|
|
unsigned long pages = 0;
|
|
|
|
start = (void *)PAGE_ALIGN((unsigned long)start);
|
|
end = (void *)((unsigned long)end & PAGE_MASK);
|
|
for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
|
|
if ((unsigned int)poison <= 0xFF)
|
|
memset(pos, poison, PAGE_SIZE);
|
|
free_reserved_page(virt_to_page(pos));
|
|
}
|
|
|
|
if (pages && s)
|
|
pr_info("Freeing %s memory: %ldK (%p - %p)\n",
|
|
s, pages << (PAGE_SHIFT - 10), start, end);
|
|
|
|
return pages;
|
|
}
|
|
EXPORT_SYMBOL(free_reserved_area);
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
void free_highmem_page(struct page *page)
|
|
{
|
|
__free_reserved_page(page);
|
|
totalram_pages++;
|
|
page_zone(page)->managed_pages++;
|
|
totalhigh_pages++;
|
|
}
|
|
#endif
|
|
|
|
|
|
void __init mem_init_print_info(const char *str)
|
|
{
|
|
unsigned long physpages, codesize, datasize, rosize, bss_size;
|
|
unsigned long init_code_size, init_data_size;
|
|
|
|
physpages = get_num_physpages();
|
|
codesize = _etext - _stext;
|
|
datasize = _edata - _sdata;
|
|
rosize = __end_rodata - __start_rodata;
|
|
bss_size = __bss_stop - __bss_start;
|
|
init_data_size = __init_end - __init_begin;
|
|
init_code_size = _einittext - _sinittext;
|
|
|
|
/*
|
|
* Detect special cases and adjust section sizes accordingly:
|
|
* 1) .init.* may be embedded into .data sections
|
|
* 2) .init.text.* may be out of [__init_begin, __init_end],
|
|
* please refer to arch/tile/kernel/vmlinux.lds.S.
|
|
* 3) .rodata.* may be embedded into .text or .data sections.
|
|
*/
|
|
#define adj_init_size(start, end, size, pos, adj) \
|
|
do { \
|
|
if (start <= pos && pos < end && size > adj) \
|
|
size -= adj; \
|
|
} while (0)
|
|
|
|
adj_init_size(__init_begin, __init_end, init_data_size,
|
|
_sinittext, init_code_size);
|
|
adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
|
|
adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
|
|
adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
|
|
adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
|
|
|
|
#undef adj_init_size
|
|
|
|
pr_info("Memory: %luK/%luK available "
|
|
"(%luK kernel code, %luK rwdata, %luK rodata, "
|
|
"%luK init, %luK bss, %luK reserved, %luK cma-reserved"
|
|
#ifdef CONFIG_HIGHMEM
|
|
", %luK highmem"
|
|
#endif
|
|
"%s%s)\n",
|
|
nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
|
|
codesize >> 10, datasize >> 10, rosize >> 10,
|
|
(init_data_size + init_code_size) >> 10, bss_size >> 10,
|
|
(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
|
|
totalcma_pages << (PAGE_SHIFT-10),
|
|
#ifdef CONFIG_HIGHMEM
|
|
totalhigh_pages << (PAGE_SHIFT-10),
|
|
#endif
|
|
str ? ", " : "", str ? str : "");
|
|
}
|
|
|
|
/**
|
|
* set_dma_reserve - set the specified number of pages reserved in the first zone
|
|
* @new_dma_reserve: The number of pages to mark reserved
|
|
*
|
|
* The per-cpu batchsize and zone watermarks are determined by present_pages.
|
|
* In the DMA zone, a significant percentage may be consumed by kernel image
|
|
* and other unfreeable allocations which can skew the watermarks badly. This
|
|
* function may optionally be used to account for unfreeable pages in the
|
|
* first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
|
|
* smaller per-cpu batchsize.
|
|
*/
|
|
void __init set_dma_reserve(unsigned long new_dma_reserve)
|
|
{
|
|
dma_reserve = new_dma_reserve;
|
|
}
|
|
|
|
void __init free_area_init(unsigned long *zones_size)
|
|
{
|
|
free_area_init_node(0, zones_size,
|
|
__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
|
|
}
|
|
|
|
static int page_alloc_cpu_notify(struct notifier_block *self,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
int cpu = (unsigned long)hcpu;
|
|
|
|
if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
|
|
lru_add_drain_cpu(cpu);
|
|
drain_pages(cpu);
|
|
|
|
/*
|
|
* Spill the event counters of the dead processor
|
|
* into the current processors event counters.
|
|
* This artificially elevates the count of the current
|
|
* processor.
|
|
*/
|
|
vm_events_fold_cpu(cpu);
|
|
|
|
/*
|
|
* Zero the differential counters of the dead processor
|
|
* so that the vm statistics are consistent.
|
|
*
|
|
* This is only okay since the processor is dead and cannot
|
|
* race with what we are doing.
|
|
*/
|
|
cpu_vm_stats_fold(cpu);
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
void __init page_alloc_init(void)
|
|
{
|
|
hotcpu_notifier(page_alloc_cpu_notify, 0);
|
|
}
|
|
|
|
/*
|
|
* calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
|
|
* or min_free_kbytes changes.
|
|
*/
|
|
static void calculate_totalreserve_pages(void)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
unsigned long reserve_pages = 0;
|
|
enum zone_type i, j;
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
for (i = 0; i < MAX_NR_ZONES; i++) {
|
|
struct zone *zone = pgdat->node_zones + i;
|
|
long max = 0;
|
|
|
|
/* Find valid and maximum lowmem_reserve in the zone */
|
|
for (j = i; j < MAX_NR_ZONES; j++) {
|
|
if (zone->lowmem_reserve[j] > max)
|
|
max = zone->lowmem_reserve[j];
|
|
}
|
|
|
|
/* we treat the high watermark as reserved pages. */
|
|
max += high_wmark_pages(zone);
|
|
|
|
if (max > zone->managed_pages)
|
|
max = zone->managed_pages;
|
|
reserve_pages += max;
|
|
/*
|
|
* Lowmem reserves are not available to
|
|
* GFP_HIGHUSER page cache allocations and
|
|
* kswapd tries to balance zones to their high
|
|
* watermark. As a result, neither should be
|
|
* regarded as dirtyable memory, to prevent a
|
|
* situation where reclaim has to clean pages
|
|
* in order to balance the zones.
|
|
*/
|
|
zone->dirty_balance_reserve = max;
|
|
}
|
|
}
|
|
dirty_balance_reserve = reserve_pages;
|
|
totalreserve_pages = reserve_pages;
|
|
}
|
|
|
|
/*
|
|
* setup_per_zone_lowmem_reserve - called whenever
|
|
* sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
|
|
* has a correct pages reserved value, so an adequate number of
|
|
* pages are left in the zone after a successful __alloc_pages().
|
|
*/
|
|
static void setup_per_zone_lowmem_reserve(void)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
enum zone_type j, idx;
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
for (j = 0; j < MAX_NR_ZONES; j++) {
|
|
struct zone *zone = pgdat->node_zones + j;
|
|
unsigned long managed_pages = zone->managed_pages;
|
|
|
|
zone->lowmem_reserve[j] = 0;
|
|
|
|
idx = j;
|
|
while (idx) {
|
|
struct zone *lower_zone;
|
|
|
|
idx--;
|
|
|
|
if (sysctl_lowmem_reserve_ratio[idx] < 1)
|
|
sysctl_lowmem_reserve_ratio[idx] = 1;
|
|
|
|
lower_zone = pgdat->node_zones + idx;
|
|
lower_zone->lowmem_reserve[j] = managed_pages /
|
|
sysctl_lowmem_reserve_ratio[idx];
|
|
managed_pages += lower_zone->managed_pages;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* update totalreserve_pages */
|
|
calculate_totalreserve_pages();
|
|
}
|
|
|
|
static void __setup_per_zone_wmarks(void)
|
|
{
|
|
unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
|
|
unsigned long lowmem_pages = 0;
|
|
struct zone *zone;
|
|
unsigned long flags;
|
|
|
|
/* Calculate total number of !ZONE_HIGHMEM pages */
|
|
for_each_zone(zone) {
|
|
if (!is_highmem(zone))
|
|
lowmem_pages += zone->managed_pages;
|
|
}
|
|
|
|
for_each_zone(zone) {
|
|
u64 tmp;
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
tmp = (u64)pages_min * zone->managed_pages;
|
|
do_div(tmp, lowmem_pages);
|
|
if (is_highmem(zone)) {
|
|
/*
|
|
* __GFP_HIGH and PF_MEMALLOC allocations usually don't
|
|
* need highmem pages, so cap pages_min to a small
|
|
* value here.
|
|
*
|
|
* The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
|
|
* deltas controls asynch page reclaim, and so should
|
|
* not be capped for highmem.
|
|
*/
|
|
unsigned long min_pages;
|
|
|
|
min_pages = zone->managed_pages / 1024;
|
|
min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
|
|
zone->watermark[WMARK_MIN] = min_pages;
|
|
} else {
|
|
/*
|
|
* If it's a lowmem zone, reserve a number of pages
|
|
* proportionate to the zone's size.
|
|
*/
|
|
zone->watermark[WMARK_MIN] = tmp;
|
|
}
|
|
|
|
zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
|
|
zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
|
|
|
|
__mod_zone_page_state(zone, NR_ALLOC_BATCH,
|
|
high_wmark_pages(zone) - low_wmark_pages(zone) -
|
|
atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
|
|
|
|
setup_zone_migrate_reserve(zone);
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
}
|
|
|
|
/* update totalreserve_pages */
|
|
calculate_totalreserve_pages();
|
|
}
|
|
|
|
/**
|
|
* setup_per_zone_wmarks - called when min_free_kbytes changes
|
|
* or when memory is hot-{added|removed}
|
|
*
|
|
* Ensures that the watermark[min,low,high] values for each zone are set
|
|
* correctly with respect to min_free_kbytes.
|
|
*/
|
|
void setup_per_zone_wmarks(void)
|
|
{
|
|
mutex_lock(&zonelists_mutex);
|
|
__setup_per_zone_wmarks();
|
|
mutex_unlock(&zonelists_mutex);
|
|
}
|
|
|
|
/*
|
|
* The inactive anon list should be small enough that the VM never has to
|
|
* do too much work, but large enough that each inactive page has a chance
|
|
* to be referenced again before it is swapped out.
|
|
*
|
|
* The inactive_anon ratio is the target ratio of ACTIVE_ANON to
|
|
* INACTIVE_ANON pages on this zone's LRU, maintained by the
|
|
* pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
|
|
* the anonymous pages are kept on the inactive list.
|
|
*
|
|
* total target max
|
|
* memory ratio inactive anon
|
|
* -------------------------------------
|
|
* 10MB 1 5MB
|
|
* 100MB 1 50MB
|
|
* 1GB 3 250MB
|
|
* 10GB 10 0.9GB
|
|
* 100GB 31 3GB
|
|
* 1TB 101 10GB
|
|
* 10TB 320 32GB
|
|
*/
|
|
static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
|
|
{
|
|
unsigned int gb, ratio;
|
|
|
|
/* Zone size in gigabytes */
|
|
gb = zone->managed_pages >> (30 - PAGE_SHIFT);
|
|
if (gb)
|
|
ratio = int_sqrt(10 * gb);
|
|
else
|
|
ratio = 1;
|
|
|
|
zone->inactive_ratio = ratio;
|
|
}
|
|
|
|
static void __meminit setup_per_zone_inactive_ratio(void)
|
|
{
|
|
struct zone *zone;
|
|
|
|
for_each_zone(zone)
|
|
calculate_zone_inactive_ratio(zone);
|
|
}
|
|
|
|
/*
|
|
* Initialise min_free_kbytes.
|
|
*
|
|
* For small machines we want it small (128k min). For large machines
|
|
* we want it large (64MB max). But it is not linear, because network
|
|
* bandwidth does not increase linearly with machine size. We use
|
|
*
|
|
* min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
|
|
* min_free_kbytes = sqrt(lowmem_kbytes * 16)
|
|
*
|
|
* which yields
|
|
*
|
|
* 16MB: 512k
|
|
* 32MB: 724k
|
|
* 64MB: 1024k
|
|
* 128MB: 1448k
|
|
* 256MB: 2048k
|
|
* 512MB: 2896k
|
|
* 1024MB: 4096k
|
|
* 2048MB: 5792k
|
|
* 4096MB: 8192k
|
|
* 8192MB: 11584k
|
|
* 16384MB: 16384k
|
|
*/
|
|
int __meminit init_per_zone_wmark_min(void)
|
|
{
|
|
unsigned long lowmem_kbytes;
|
|
int new_min_free_kbytes;
|
|
|
|
lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
|
|
new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
|
|
|
|
if (new_min_free_kbytes > user_min_free_kbytes) {
|
|
min_free_kbytes = new_min_free_kbytes;
|
|
if (min_free_kbytes < 128)
|
|
min_free_kbytes = 128;
|
|
if (min_free_kbytes > 65536)
|
|
min_free_kbytes = 65536;
|
|
} else {
|
|
pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
|
|
new_min_free_kbytes, user_min_free_kbytes);
|
|
}
|
|
setup_per_zone_wmarks();
|
|
refresh_zone_stat_thresholds();
|
|
setup_per_zone_lowmem_reserve();
|
|
setup_per_zone_inactive_ratio();
|
|
return 0;
|
|
}
|
|
module_init(init_per_zone_wmark_min)
|
|
|
|
/*
|
|
* min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
|
|
* that we can call two helper functions whenever min_free_kbytes
|
|
* changes.
|
|
*/
|
|
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
int rc;
|
|
|
|
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (write) {
|
|
user_min_free_kbytes = min_free_kbytes;
|
|
setup_per_zone_wmarks();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
struct zone *zone;
|
|
int rc;
|
|
|
|
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for_each_zone(zone)
|
|
zone->min_unmapped_pages = (zone->managed_pages *
|
|
sysctl_min_unmapped_ratio) / 100;
|
|
return 0;
|
|
}
|
|
|
|
int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
struct zone *zone;
|
|
int rc;
|
|
|
|
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for_each_zone(zone)
|
|
zone->min_slab_pages = (zone->managed_pages *
|
|
sysctl_min_slab_ratio) / 100;
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* lowmem_reserve_ratio_sysctl_handler - just a wrapper around
|
|
* proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
|
|
* whenever sysctl_lowmem_reserve_ratio changes.
|
|
*
|
|
* The reserve ratio obviously has absolutely no relation with the
|
|
* minimum watermarks. The lowmem reserve ratio can only make sense
|
|
* if in function of the boot time zone sizes.
|
|
*/
|
|
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
setup_per_zone_lowmem_reserve();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* percpu_pagelist_fraction - changes the pcp->high for each zone on each
|
|
* cpu. It is the fraction of total pages in each zone that a hot per cpu
|
|
* pagelist can have before it gets flushed back to buddy allocator.
|
|
*/
|
|
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
struct zone *zone;
|
|
int old_percpu_pagelist_fraction;
|
|
int ret;
|
|
|
|
mutex_lock(&pcp_batch_high_lock);
|
|
old_percpu_pagelist_fraction = percpu_pagelist_fraction;
|
|
|
|
ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
if (!write || ret < 0)
|
|
goto out;
|
|
|
|
/* Sanity checking to avoid pcp imbalance */
|
|
if (percpu_pagelist_fraction &&
|
|
percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
|
|
percpu_pagelist_fraction = old_percpu_pagelist_fraction;
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* No change? */
|
|
if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
|
|
goto out;
|
|
|
|
for_each_populated_zone(zone) {
|
|
unsigned int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
pageset_set_high_and_batch(zone,
|
|
per_cpu_ptr(zone->pageset, cpu));
|
|
}
|
|
out:
|
|
mutex_unlock(&pcp_batch_high_lock);
|
|
return ret;
|
|
}
|
|
|
|
int hashdist = HASHDIST_DEFAULT;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int __init set_hashdist(char *str)
|
|
{
|
|
if (!str)
|
|
return 0;
|
|
hashdist = simple_strtoul(str, &str, 0);
|
|
return 1;
|
|
}
|
|
__setup("hashdist=", set_hashdist);
|
|
#endif
|
|
|
|
/*
|
|
* allocate a large system hash table from bootmem
|
|
* - it is assumed that the hash table must contain an exact power-of-2
|
|
* quantity of entries
|
|
* - limit is the number of hash buckets, not the total allocation size
|
|
*/
|
|
void *__init alloc_large_system_hash(const char *tablename,
|
|
unsigned long bucketsize,
|
|
unsigned long numentries,
|
|
int scale,
|
|
int flags,
|
|
unsigned int *_hash_shift,
|
|
unsigned int *_hash_mask,
|
|
unsigned long low_limit,
|
|
unsigned long high_limit)
|
|
{
|
|
unsigned long long max = high_limit;
|
|
unsigned long log2qty, size;
|
|
void *table = NULL;
|
|
|
|
/* allow the kernel cmdline to have a say */
|
|
if (!numentries) {
|
|
/* round applicable memory size up to nearest megabyte */
|
|
numentries = nr_kernel_pages;
|
|
|
|
/* It isn't necessary when PAGE_SIZE >= 1MB */
|
|
if (PAGE_SHIFT < 20)
|
|
numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
|
|
|
|
/* limit to 1 bucket per 2^scale bytes of low memory */
|
|
if (scale > PAGE_SHIFT)
|
|
numentries >>= (scale - PAGE_SHIFT);
|
|
else
|
|
numentries <<= (PAGE_SHIFT - scale);
|
|
|
|
/* Make sure we've got at least a 0-order allocation.. */
|
|
if (unlikely(flags & HASH_SMALL)) {
|
|
/* Makes no sense without HASH_EARLY */
|
|
WARN_ON(!(flags & HASH_EARLY));
|
|
if (!(numentries >> *_hash_shift)) {
|
|
numentries = 1UL << *_hash_shift;
|
|
BUG_ON(!numentries);
|
|
}
|
|
} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
|
|
numentries = PAGE_SIZE / bucketsize;
|
|
}
|
|
numentries = roundup_pow_of_two(numentries);
|
|
|
|
/* limit allocation size to 1/16 total memory by default */
|
|
if (max == 0) {
|
|
max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
|
|
do_div(max, bucketsize);
|
|
}
|
|
max = min(max, 0x80000000ULL);
|
|
|
|
if (numentries < low_limit)
|
|
numentries = low_limit;
|
|
if (numentries > max)
|
|
numentries = max;
|
|
|
|
log2qty = ilog2(numentries);
|
|
|
|
do {
|
|
size = bucketsize << log2qty;
|
|
if (flags & HASH_EARLY)
|
|
table = memblock_virt_alloc_nopanic(size, 0);
|
|
else if (hashdist)
|
|
table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
|
|
else {
|
|
/*
|
|
* If bucketsize is not a power-of-two, we may free
|
|
* some pages at the end of hash table which
|
|
* alloc_pages_exact() automatically does
|
|
*/
|
|
if (get_order(size) < MAX_ORDER) {
|
|
table = alloc_pages_exact(size, GFP_ATOMIC);
|
|
kmemleak_alloc(table, size, 1, GFP_ATOMIC);
|
|
}
|
|
}
|
|
} while (!table && size > PAGE_SIZE && --log2qty);
|
|
|
|
if (!table)
|
|
panic("Failed to allocate %s hash table\n", tablename);
|
|
|
|
printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
|
|
tablename,
|
|
(1UL << log2qty),
|
|
ilog2(size) - PAGE_SHIFT,
|
|
size);
|
|
|
|
if (_hash_shift)
|
|
*_hash_shift = log2qty;
|
|
if (_hash_mask)
|
|
*_hash_mask = (1 << log2qty) - 1;
|
|
|
|
return table;
|
|
}
|
|
|
|
/* Return a pointer to the bitmap storing bits affecting a block of pages */
|
|
static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
|
|
unsigned long pfn)
|
|
{
|
|
#ifdef CONFIG_SPARSEMEM
|
|
return __pfn_to_section(pfn)->pageblock_flags;
|
|
#else
|
|
return zone->pageblock_flags;
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
}
|
|
|
|
static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
|
|
{
|
|
#ifdef CONFIG_SPARSEMEM
|
|
pfn &= (PAGES_PER_SECTION-1);
|
|
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
|
|
#else
|
|
pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
|
|
return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
|
|
#endif /* CONFIG_SPARSEMEM */
|
|
}
|
|
|
|
/**
|
|
* get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
|
|
* @page: The page within the block of interest
|
|
* @pfn: The target page frame number
|
|
* @end_bitidx: The last bit of interest to retrieve
|
|
* @mask: mask of bits that the caller is interested in
|
|
*
|
|
* Return: pageblock_bits flags
|
|
*/
|
|
unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
|
|
unsigned long end_bitidx,
|
|
unsigned long mask)
|
|
{
|
|
struct zone *zone;
|
|
unsigned long *bitmap;
|
|
unsigned long bitidx, word_bitidx;
|
|
unsigned long word;
|
|
|
|
zone = page_zone(page);
|
|
bitmap = get_pageblock_bitmap(zone, pfn);
|
|
bitidx = pfn_to_bitidx(zone, pfn);
|
|
word_bitidx = bitidx / BITS_PER_LONG;
|
|
bitidx &= (BITS_PER_LONG-1);
|
|
|
|
word = bitmap[word_bitidx];
|
|
bitidx += end_bitidx;
|
|
return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
|
|
}
|
|
|
|
/**
|
|
* set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
|
|
* @page: The page within the block of interest
|
|
* @flags: The flags to set
|
|
* @pfn: The target page frame number
|
|
* @end_bitidx: The last bit of interest
|
|
* @mask: mask of bits that the caller is interested in
|
|
*/
|
|
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
|
|
unsigned long pfn,
|
|
unsigned long end_bitidx,
|
|
unsigned long mask)
|
|
{
|
|
struct zone *zone;
|
|
unsigned long *bitmap;
|
|
unsigned long bitidx, word_bitidx;
|
|
unsigned long old_word, word;
|
|
|
|
BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
|
|
|
|
zone = page_zone(page);
|
|
bitmap = get_pageblock_bitmap(zone, pfn);
|
|
bitidx = pfn_to_bitidx(zone, pfn);
|
|
word_bitidx = bitidx / BITS_PER_LONG;
|
|
bitidx &= (BITS_PER_LONG-1);
|
|
|
|
VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
|
|
|
|
bitidx += end_bitidx;
|
|
mask <<= (BITS_PER_LONG - bitidx - 1);
|
|
flags <<= (BITS_PER_LONG - bitidx - 1);
|
|
|
|
word = ACCESS_ONCE(bitmap[word_bitidx]);
|
|
for (;;) {
|
|
old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
|
|
if (word == old_word)
|
|
break;
|
|
word = old_word;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function checks whether pageblock includes unmovable pages or not.
|
|
* If @count is not zero, it is okay to include less @count unmovable pages
|
|
*
|
|
* PageLRU check without isolation or lru_lock could race so that
|
|
* MIGRATE_MOVABLE block might include unmovable pages. It means you can't
|
|
* expect this function should be exact.
|
|
*/
|
|
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
|
|
bool skip_hwpoisoned_pages)
|
|
{
|
|
unsigned long pfn, iter, found;
|
|
int mt;
|
|
|
|
/*
|
|
* For avoiding noise data, lru_add_drain_all() should be called
|
|
* If ZONE_MOVABLE, the zone never contains unmovable pages
|
|
*/
|
|
if (zone_idx(zone) == ZONE_MOVABLE)
|
|
return false;
|
|
mt = get_pageblock_migratetype(page);
|
|
if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
|
|
return false;
|
|
|
|
pfn = page_to_pfn(page);
|
|
for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
|
|
unsigned long check = pfn + iter;
|
|
|
|
if (!pfn_valid_within(check))
|
|
continue;
|
|
|
|
page = pfn_to_page(check);
|
|
|
|
/*
|
|
* Hugepages are not in LRU lists, but they're movable.
|
|
* We need not scan over tail pages bacause we don't
|
|
* handle each tail page individually in migration.
|
|
*/
|
|
if (PageHuge(page)) {
|
|
iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We can't use page_count without pin a page
|
|
* because another CPU can free compound page.
|
|
* This check already skips compound tails of THP
|
|
* because their page->_count is zero at all time.
|
|
*/
|
|
if (!atomic_read(&page->_count)) {
|
|
if (PageBuddy(page))
|
|
iter += (1 << page_order(page)) - 1;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The HWPoisoned page may be not in buddy system, and
|
|
* page_count() is not 0.
|
|
*/
|
|
if (skip_hwpoisoned_pages && PageHWPoison(page))
|
|
continue;
|
|
|
|
if (!PageLRU(page))
|
|
found++;
|
|
/*
|
|
* If there are RECLAIMABLE pages, we need to check
|
|
* it. But now, memory offline itself doesn't call
|
|
* shrink_node_slabs() and it still to be fixed.
|
|
*/
|
|
/*
|
|
* If the page is not RAM, page_count()should be 0.
|
|
* we don't need more check. This is an _used_ not-movable page.
|
|
*
|
|
* The problematic thing here is PG_reserved pages. PG_reserved
|
|
* is set to both of a memory hole page and a _used_ kernel
|
|
* page at boot.
|
|
*/
|
|
if (found > count)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool is_pageblock_removable_nolock(struct page *page)
|
|
{
|
|
struct zone *zone;
|
|
unsigned long pfn;
|
|
|
|
/*
|
|
* We have to be careful here because we are iterating over memory
|
|
* sections which are not zone aware so we might end up outside of
|
|
* the zone but still within the section.
|
|
* We have to take care about the node as well. If the node is offline
|
|
* its NODE_DATA will be NULL - see page_zone.
|
|
*/
|
|
if (!node_online(page_to_nid(page)))
|
|
return false;
|
|
|
|
zone = page_zone(page);
|
|
pfn = page_to_pfn(page);
|
|
if (!zone_spans_pfn(zone, pfn))
|
|
return false;
|
|
|
|
return !has_unmovable_pages(zone, page, 0, true);
|
|
}
|
|
|
|
#ifdef CONFIG_CMA
|
|
|
|
static unsigned long pfn_max_align_down(unsigned long pfn)
|
|
{
|
|
return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
|
|
pageblock_nr_pages) - 1);
|
|
}
|
|
|
|
static unsigned long pfn_max_align_up(unsigned long pfn)
|
|
{
|
|
return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
|
|
pageblock_nr_pages));
|
|
}
|
|
|
|
/* [start, end) must belong to a single zone. */
|
|
static int __alloc_contig_migrate_range(struct compact_control *cc,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
/* This function is based on compact_zone() from compaction.c. */
|
|
unsigned long nr_reclaimed;
|
|
unsigned long pfn = start;
|
|
unsigned int tries = 0;
|
|
int ret = 0;
|
|
|
|
migrate_prep();
|
|
|
|
while (pfn < end || !list_empty(&cc->migratepages)) {
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
|
|
if (list_empty(&cc->migratepages)) {
|
|
cc->nr_migratepages = 0;
|
|
pfn = isolate_migratepages_range(cc, pfn, end);
|
|
if (!pfn) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
tries = 0;
|
|
} else if (++tries == 5) {
|
|
ret = ret < 0 ? ret : -EBUSY;
|
|
break;
|
|
}
|
|
|
|
nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
|
|
&cc->migratepages);
|
|
cc->nr_migratepages -= nr_reclaimed;
|
|
|
|
ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
|
|
NULL, 0, cc->mode, MR_CMA);
|
|
}
|
|
if (ret < 0) {
|
|
putback_movable_pages(&cc->migratepages);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* alloc_contig_range() -- tries to allocate given range of pages
|
|
* @start: start PFN to allocate
|
|
* @end: one-past-the-last PFN to allocate
|
|
* @migratetype: migratetype of the underlaying pageblocks (either
|
|
* #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
|
|
* in range must have the same migratetype and it must
|
|
* be either of the two.
|
|
*
|
|
* The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
|
|
* aligned, however it's the caller's responsibility to guarantee that
|
|
* we are the only thread that changes migrate type of pageblocks the
|
|
* pages fall in.
|
|
*
|
|
* The PFN range must belong to a single zone.
|
|
*
|
|
* Returns zero on success or negative error code. On success all
|
|
* pages which PFN is in [start, end) are allocated for the caller and
|
|
* need to be freed with free_contig_range().
|
|
*/
|
|
int alloc_contig_range(unsigned long start, unsigned long end,
|
|
unsigned migratetype)
|
|
{
|
|
unsigned long outer_start, outer_end;
|
|
int ret = 0, order;
|
|
|
|
struct compact_control cc = {
|
|
.nr_migratepages = 0,
|
|
.order = -1,
|
|
.zone = page_zone(pfn_to_page(start)),
|
|
.mode = MIGRATE_SYNC,
|
|
.ignore_skip_hint = true,
|
|
};
|
|
INIT_LIST_HEAD(&cc.migratepages);
|
|
|
|
/*
|
|
* What we do here is we mark all pageblocks in range as
|
|
* MIGRATE_ISOLATE. Because pageblock and max order pages may
|
|
* have different sizes, and due to the way page allocator
|
|
* work, we align the range to biggest of the two pages so
|
|
* that page allocator won't try to merge buddies from
|
|
* different pageblocks and change MIGRATE_ISOLATE to some
|
|
* other migration type.
|
|
*
|
|
* Once the pageblocks are marked as MIGRATE_ISOLATE, we
|
|
* migrate the pages from an unaligned range (ie. pages that
|
|
* we are interested in). This will put all the pages in
|
|
* range back to page allocator as MIGRATE_ISOLATE.
|
|
*
|
|
* When this is done, we take the pages in range from page
|
|
* allocator removing them from the buddy system. This way
|
|
* page allocator will never consider using them.
|
|
*
|
|
* This lets us mark the pageblocks back as
|
|
* MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
|
|
* aligned range but not in the unaligned, original range are
|
|
* put back to page allocator so that buddy can use them.
|
|
*/
|
|
|
|
ret = start_isolate_page_range(pfn_max_align_down(start),
|
|
pfn_max_align_up(end), migratetype,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = __alloc_contig_migrate_range(&cc, start, end);
|
|
if (ret)
|
|
goto done;
|
|
|
|
/*
|
|
* Pages from [start, end) are within a MAX_ORDER_NR_PAGES
|
|
* aligned blocks that are marked as MIGRATE_ISOLATE. What's
|
|
* more, all pages in [start, end) are free in page allocator.
|
|
* What we are going to do is to allocate all pages from
|
|
* [start, end) (that is remove them from page allocator).
|
|
*
|
|
* The only problem is that pages at the beginning and at the
|
|
* end of interesting range may be not aligned with pages that
|
|
* page allocator holds, ie. they can be part of higher order
|
|
* pages. Because of this, we reserve the bigger range and
|
|
* once this is done free the pages we are not interested in.
|
|
*
|
|
* We don't have to hold zone->lock here because the pages are
|
|
* isolated thus they won't get removed from buddy.
|
|
*/
|
|
|
|
lru_add_drain_all();
|
|
drain_all_pages(cc.zone);
|
|
|
|
order = 0;
|
|
outer_start = start;
|
|
while (!PageBuddy(pfn_to_page(outer_start))) {
|
|
if (++order >= MAX_ORDER) {
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
outer_start &= ~0UL << order;
|
|
}
|
|
|
|
/* Make sure the range is really isolated. */
|
|
if (test_pages_isolated(outer_start, end, false)) {
|
|
pr_info("%s: [%lx, %lx) PFNs busy\n",
|
|
__func__, outer_start, end);
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
/* Grab isolated pages from freelists. */
|
|
outer_end = isolate_freepages_range(&cc, outer_start, end);
|
|
if (!outer_end) {
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
/* Free head and tail (if any) */
|
|
if (start != outer_start)
|
|
free_contig_range(outer_start, start - outer_start);
|
|
if (end != outer_end)
|
|
free_contig_range(end, outer_end - end);
|
|
|
|
done:
|
|
undo_isolate_page_range(pfn_max_align_down(start),
|
|
pfn_max_align_up(end), migratetype);
|
|
return ret;
|
|
}
|
|
|
|
void free_contig_range(unsigned long pfn, unsigned nr_pages)
|
|
{
|
|
unsigned int count = 0;
|
|
|
|
for (; nr_pages--; pfn++) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
count += page_count(page) != 1;
|
|
__free_page(page);
|
|
}
|
|
WARN(count != 0, "%d pages are still in use!\n", count);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* The zone indicated has a new number of managed_pages; batch sizes and percpu
|
|
* page high values need to be recalulated.
|
|
*/
|
|
void __meminit zone_pcp_update(struct zone *zone)
|
|
{
|
|
unsigned cpu;
|
|
mutex_lock(&pcp_batch_high_lock);
|
|
for_each_possible_cpu(cpu)
|
|
pageset_set_high_and_batch(zone,
|
|
per_cpu_ptr(zone->pageset, cpu));
|
|
mutex_unlock(&pcp_batch_high_lock);
|
|
}
|
|
#endif
|
|
|
|
void zone_pcp_reset(struct zone *zone)
|
|
{
|
|
unsigned long flags;
|
|
int cpu;
|
|
struct per_cpu_pageset *pset;
|
|
|
|
/* avoid races with drain_pages() */
|
|
local_irq_save(flags);
|
|
if (zone->pageset != &boot_pageset) {
|
|
for_each_online_cpu(cpu) {
|
|
pset = per_cpu_ptr(zone->pageset, cpu);
|
|
drain_zonestat(zone, pset);
|
|
}
|
|
free_percpu(zone->pageset);
|
|
zone->pageset = &boot_pageset;
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
/*
|
|
* All pages in the range must be isolated before calling this.
|
|
*/
|
|
void
|
|
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
struct page *page;
|
|
struct zone *zone;
|
|
unsigned int order, i;
|
|
unsigned long pfn;
|
|
unsigned long flags;
|
|
/* find the first valid pfn */
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn++)
|
|
if (pfn_valid(pfn))
|
|
break;
|
|
if (pfn == end_pfn)
|
|
return;
|
|
zone = page_zone(pfn_to_page(pfn));
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
pfn = start_pfn;
|
|
while (pfn < end_pfn) {
|
|
if (!pfn_valid(pfn)) {
|
|
pfn++;
|
|
continue;
|
|
}
|
|
page = pfn_to_page(pfn);
|
|
/*
|
|
* The HWPoisoned page may be not in buddy system, and
|
|
* page_count() is not 0.
|
|
*/
|
|
if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
|
|
pfn++;
|
|
SetPageReserved(page);
|
|
continue;
|
|
}
|
|
|
|
BUG_ON(page_count(page));
|
|
BUG_ON(!PageBuddy(page));
|
|
order = page_order(page);
|
|
#ifdef CONFIG_DEBUG_VM
|
|
printk(KERN_INFO "remove from free list %lx %d %lx\n",
|
|
pfn, 1 << order, end_pfn);
|
|
#endif
|
|
list_del(&page->lru);
|
|
rmv_page_order(page);
|
|
zone->free_area[order].nr_free--;
|
|
for (i = 0; i < (1 << order); i++)
|
|
SetPageReserved((page+i));
|
|
pfn += (1 << order);
|
|
}
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
bool is_free_buddy_page(struct page *page)
|
|
{
|
|
struct zone *zone = page_zone(page);
|
|
unsigned long pfn = page_to_pfn(page);
|
|
unsigned long flags;
|
|
unsigned int order;
|
|
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
for (order = 0; order < MAX_ORDER; order++) {
|
|
struct page *page_head = page - (pfn & ((1 << order) - 1));
|
|
|
|
if (PageBuddy(page_head) && page_order(page_head) >= order)
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
|
|
return order < MAX_ORDER;
|
|
}
|
|
#endif
|