linux/drivers/serial/bfin_sport_uart.c
Sonic Zhang f4d10ca895 serial: bfin_sport_uart: zero sport_uart_port if allocated dynamically
Need to initialize the SPORT state rather than using random memory.

Signed-off-by: Sonic Zhang <sonic.zhang@analog.com>
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-05-21 09:34:28 -07:00

934 lines
23 KiB
C

/*
* Blackfin On-Chip Sport Emulated UART Driver
*
* Copyright 2006-2009 Analog Devices Inc.
*
* Enter bugs at http://blackfin.uclinux.org/
*
* Licensed under the GPL-2 or later.
*/
/*
* This driver and the hardware supported are in term of EE-191 of ADI.
* http://www.analog.com/UploadedFiles/Application_Notes/399447663EE191.pdf
* This application note describe how to implement a UART on a Sharc DSP,
* but this driver is implemented on Blackfin Processor.
* Transmit Frame Sync is not used by this driver to transfer data out.
*/
/* #define DEBUG */
#define DRV_NAME "bfin-sport-uart"
#define DEVICE_NAME "ttySS"
#define pr_fmt(fmt) DRV_NAME ": " fmt
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/sysrq.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial_core.h>
#include <asm/delay.h>
#include <asm/portmux.h>
#include "bfin_sport_uart.h"
struct sport_uart_port {
struct uart_port port;
int err_irq;
unsigned short csize;
unsigned short rxmask;
unsigned short txmask1;
unsigned short txmask2;
unsigned char stopb;
/* unsigned char parib; */
#ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS
int cts_pin;
int rts_pin;
#endif
};
static void sport_uart_tx_chars(struct sport_uart_port *up);
static void sport_stop_tx(struct uart_port *port);
static inline void tx_one_byte(struct sport_uart_port *up, unsigned int value)
{
pr_debug("%s value:%x, mask1=0x%x, mask2=0x%x\n", __func__, value,
up->txmask1, up->txmask2);
/* Place Start and Stop bits */
__asm__ __volatile__ (
"%[val] <<= 1;"
"%[val] = %[val] & %[mask1];"
"%[val] = %[val] | %[mask2];"
: [val]"+d"(value)
: [mask1]"d"(up->txmask1), [mask2]"d"(up->txmask2)
: "ASTAT"
);
pr_debug("%s value:%x\n", __func__, value);
SPORT_PUT_TX(up, value);
}
static inline unsigned char rx_one_byte(struct sport_uart_port *up)
{
unsigned int value;
unsigned char extract;
u32 tmp_mask1, tmp_mask2, tmp_shift, tmp;
if ((up->csize + up->stopb) > 7)
value = SPORT_GET_RX32(up);
else
value = SPORT_GET_RX(up);
pr_debug("%s value:%x, cs=%d, mask=0x%x\n", __func__, value,
up->csize, up->rxmask);
/* Extract data */
__asm__ __volatile__ (
"%[extr] = 0;"
"%[mask1] = %[rxmask];"
"%[mask2] = 0x0200(Z);"
"%[shift] = 0;"
"LSETUP(.Lloop_s, .Lloop_e) LC0 = %[lc];"
".Lloop_s:"
"%[tmp] = extract(%[val], %[mask1].L)(Z);"
"%[tmp] <<= %[shift];"
"%[extr] = %[extr] | %[tmp];"
"%[mask1] = %[mask1] - %[mask2];"
".Lloop_e:"
"%[shift] += 1;"
: [extr]"=&d"(extract), [shift]"=&d"(tmp_shift), [tmp]"=&d"(tmp),
[mask1]"=&d"(tmp_mask1), [mask2]"=&d"(tmp_mask2)
: [val]"d"(value), [rxmask]"d"(up->rxmask), [lc]"a"(up->csize)
: "ASTAT", "LB0", "LC0", "LT0"
);
pr_debug(" extract:%x\n", extract);
return extract;
}
static int sport_uart_setup(struct sport_uart_port *up, int size, int baud_rate)
{
int tclkdiv, rclkdiv;
unsigned int sclk = get_sclk();
/* Set TCR1 and TCR2, TFSR is not enabled for uart */
SPORT_PUT_TCR1(up, (ITFS | TLSBIT | ITCLK));
SPORT_PUT_TCR2(up, size + 1);
pr_debug("%s TCR1:%x, TCR2:%x\n", __func__, SPORT_GET_TCR1(up), SPORT_GET_TCR2(up));
/* Set RCR1 and RCR2 */
SPORT_PUT_RCR1(up, (RCKFE | LARFS | LRFS | RFSR | IRCLK));
SPORT_PUT_RCR2(up, (size + 1) * 2 - 1);
pr_debug("%s RCR1:%x, RCR2:%x\n", __func__, SPORT_GET_RCR1(up), SPORT_GET_RCR2(up));
tclkdiv = sclk / (2 * baud_rate) - 1;
rclkdiv = sclk / (2 * baud_rate * 2) - 1;
SPORT_PUT_TCLKDIV(up, tclkdiv);
SPORT_PUT_RCLKDIV(up, rclkdiv);
SSYNC();
pr_debug("%s sclk:%d, baud_rate:%d, tclkdiv:%d, rclkdiv:%d\n",
__func__, sclk, baud_rate, tclkdiv, rclkdiv);
return 0;
}
static irqreturn_t sport_uart_rx_irq(int irq, void *dev_id)
{
struct sport_uart_port *up = dev_id;
struct tty_struct *tty = up->port.state->port.tty;
unsigned int ch;
spin_lock(&up->port.lock);
while (SPORT_GET_STAT(up) & RXNE) {
ch = rx_one_byte(up);
up->port.icount.rx++;
if (!uart_handle_sysrq_char(&up->port, ch))
tty_insert_flip_char(tty, ch, TTY_NORMAL);
}
tty_flip_buffer_push(tty);
spin_unlock(&up->port.lock);
return IRQ_HANDLED;
}
static irqreturn_t sport_uart_tx_irq(int irq, void *dev_id)
{
struct sport_uart_port *up = dev_id;
spin_lock(&up->port.lock);
sport_uart_tx_chars(up);
spin_unlock(&up->port.lock);
return IRQ_HANDLED;
}
static irqreturn_t sport_uart_err_irq(int irq, void *dev_id)
{
struct sport_uart_port *up = dev_id;
struct tty_struct *tty = up->port.state->port.tty;
unsigned int stat = SPORT_GET_STAT(up);
spin_lock(&up->port.lock);
/* Overflow in RX FIFO */
if (stat & ROVF) {
up->port.icount.overrun++;
tty_insert_flip_char(tty, 0, TTY_OVERRUN);
SPORT_PUT_STAT(up, ROVF); /* Clear ROVF bit */
}
/* These should not happen */
if (stat & (TOVF | TUVF | RUVF)) {
pr_err("SPORT Error:%s %s %s\n",
(stat & TOVF) ? "TX overflow" : "",
(stat & TUVF) ? "TX underflow" : "",
(stat & RUVF) ? "RX underflow" : "");
SPORT_PUT_TCR1(up, SPORT_GET_TCR1(up) & ~TSPEN);
SPORT_PUT_RCR1(up, SPORT_GET_RCR1(up) & ~RSPEN);
}
SSYNC();
spin_unlock(&up->port.lock);
return IRQ_HANDLED;
}
#ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS
static unsigned int sport_get_mctrl(struct uart_port *port)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
if (up->cts_pin < 0)
return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
/* CTS PIN is negative assertive. */
if (SPORT_UART_GET_CTS(up))
return TIOCM_CTS | TIOCM_DSR | TIOCM_CAR;
else
return TIOCM_DSR | TIOCM_CAR;
}
static void sport_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
if (up->rts_pin < 0)
return;
/* RTS PIN is negative assertive. */
if (mctrl & TIOCM_RTS)
SPORT_UART_ENABLE_RTS(up);
else
SPORT_UART_DISABLE_RTS(up);
}
/*
* Handle any change of modem status signal.
*/
static irqreturn_t sport_mctrl_cts_int(int irq, void *dev_id)
{
struct sport_uart_port *up = (struct sport_uart_port *)dev_id;
unsigned int status;
status = sport_get_mctrl(&up->port);
uart_handle_cts_change(&up->port, status & TIOCM_CTS);
return IRQ_HANDLED;
}
#else
static unsigned int sport_get_mctrl(struct uart_port *port)
{
pr_debug("%s enter\n", __func__);
return TIOCM_CTS | TIOCM_CD | TIOCM_DSR;
}
static void sport_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
pr_debug("%s enter\n", __func__);
}
#endif
/* Reqeust IRQ, Setup clock */
static int sport_startup(struct uart_port *port)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
int ret;
pr_debug("%s enter\n", __func__);
ret = request_irq(up->port.irq, sport_uart_rx_irq, 0,
"SPORT_UART_RX", up);
if (ret) {
dev_err(port->dev, "unable to request SPORT RX interrupt\n");
return ret;
}
ret = request_irq(up->port.irq+1, sport_uart_tx_irq, 0,
"SPORT_UART_TX", up);
if (ret) {
dev_err(port->dev, "unable to request SPORT TX interrupt\n");
goto fail1;
}
ret = request_irq(up->err_irq, sport_uart_err_irq, 0,
"SPORT_UART_STATUS", up);
if (ret) {
dev_err(port->dev, "unable to request SPORT status interrupt\n");
goto fail2;
}
#ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS
if (up->cts_pin >= 0) {
if (request_irq(gpio_to_irq(up->cts_pin),
sport_mctrl_cts_int,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING |
IRQF_DISABLED, "BFIN_SPORT_UART_CTS", up)) {
up->cts_pin = -1;
dev_info(port->dev, "Unable to attach BlackFin UART \
over SPORT CTS interrupt. So, disable it.\n");
}
}
if (up->rts_pin >= 0)
gpio_direction_output(up->rts_pin, 0);
#endif
return 0;
fail2:
free_irq(up->port.irq+1, up);
fail1:
free_irq(up->port.irq, up);
return ret;
}
static void sport_uart_tx_chars(struct sport_uart_port *up)
{
struct circ_buf *xmit = &up->port.state->xmit;
if (SPORT_GET_STAT(up) & TXF)
return;
if (up->port.x_char) {
tx_one_byte(up, up->port.x_char);
up->port.icount.tx++;
up->port.x_char = 0;
return;
}
if (uart_circ_empty(xmit) || uart_tx_stopped(&up->port)) {
/* The waiting loop to stop SPORT TX from TX interrupt is
* too long. This may block SPORT RX interrupts and cause
* RX FIFO overflow. So, do stop sport TX only after the last
* char in TX FIFO is moved into the shift register.
*/
if (SPORT_GET_STAT(up) & TXHRE)
sport_stop_tx(&up->port);
return;
}
while(!(SPORT_GET_STAT(up) & TXF) && !uart_circ_empty(xmit)) {
tx_one_byte(up, xmit->buf[xmit->tail]);
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE -1);
up->port.icount.tx++;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&up->port);
}
static unsigned int sport_tx_empty(struct uart_port *port)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
unsigned int stat;
stat = SPORT_GET_STAT(up);
pr_debug("%s stat:%04x\n", __func__, stat);
if (stat & TXHRE) {
return TIOCSER_TEMT;
} else
return 0;
}
static void sport_stop_tx(struct uart_port *port)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
pr_debug("%s enter\n", __func__);
/* Although the hold register is empty, last byte is still in shift
* register and not sent out yet. So, put a dummy data into TX FIFO.
* Then, sport tx stops when last byte is shift out and the dummy
* data is moved into the shift register.
*/
SPORT_PUT_TX(up, 0xffff);
while (!(SPORT_GET_STAT(up) & TXHRE))
cpu_relax();
SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) & ~TSPEN));
SSYNC();
return;
}
static void sport_start_tx(struct uart_port *port)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
pr_debug("%s enter\n", __func__);
/* Write data into SPORT FIFO before enable SPROT to transmit */
sport_uart_tx_chars(up);
/* Enable transmit, then an interrupt will generated */
SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) | TSPEN));
SSYNC();
pr_debug("%s exit\n", __func__);
}
static void sport_stop_rx(struct uart_port *port)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
pr_debug("%s enter\n", __func__);
/* Disable sport to stop rx */
SPORT_PUT_RCR1(up, (SPORT_GET_RCR1(up) & ~RSPEN));
SSYNC();
}
static void sport_enable_ms(struct uart_port *port)
{
pr_debug("%s enter\n", __func__);
}
static void sport_break_ctl(struct uart_port *port, int break_state)
{
pr_debug("%s enter\n", __func__);
}
static void sport_shutdown(struct uart_port *port)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
dev_dbg(port->dev, "%s enter\n", __func__);
/* Disable sport */
SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) & ~TSPEN));
SPORT_PUT_RCR1(up, (SPORT_GET_RCR1(up) & ~RSPEN));
SSYNC();
free_irq(up->port.irq, up);
free_irq(up->port.irq+1, up);
free_irq(up->err_irq, up);
#ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS
if (up->cts_pin >= 0)
free_irq(gpio_to_irq(up->cts_pin), up);
#endif
}
static const char *sport_type(struct uart_port *port)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
pr_debug("%s enter\n", __func__);
return up->port.type == PORT_BFIN_SPORT ? "BFIN-SPORT-UART" : NULL;
}
static void sport_release_port(struct uart_port *port)
{
pr_debug("%s enter\n", __func__);
}
static int sport_request_port(struct uart_port *port)
{
pr_debug("%s enter\n", __func__);
return 0;
}
static void sport_config_port(struct uart_port *port, int flags)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
pr_debug("%s enter\n", __func__);
up->port.type = PORT_BFIN_SPORT;
}
static int sport_verify_port(struct uart_port *port, struct serial_struct *ser)
{
pr_debug("%s enter\n", __func__);
return 0;
}
static void sport_set_termios(struct uart_port *port,
struct ktermios *termios, struct ktermios *old)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
unsigned long flags;
int i;
pr_debug("%s enter, c_cflag:%08x\n", __func__, termios->c_cflag);
switch (termios->c_cflag & CSIZE) {
case CS8:
up->csize = 8;
break;
case CS7:
up->csize = 7;
break;
case CS6:
up->csize = 6;
break;
case CS5:
up->csize = 5;
break;
default:
pr_warning("requested word length not supported\n");
}
if (termios->c_cflag & CSTOPB) {
up->stopb = 1;
}
if (termios->c_cflag & PARENB) {
pr_warning("PAREN bits is not supported yet\n");
/* up->parib = 1; */
}
spin_lock_irqsave(&up->port.lock, flags);
port->read_status_mask = OE;
if (termios->c_iflag & INPCK)
port->read_status_mask |= (FE | PE);
if (termios->c_iflag & (BRKINT | PARMRK))
port->read_status_mask |= BI;
/*
* Characters to ignore
*/
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= FE | PE;
if (termios->c_iflag & IGNBRK) {
port->ignore_status_mask |= BI;
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= OE;
}
/* RX extract mask */
up->rxmask = 0x01 | (((up->csize + up->stopb) * 2 - 1) << 0x8);
/* TX masks, 8 bit data and 1 bit stop for example:
* mask1 = b#0111111110
* mask2 = b#1000000000
*/
for (i = 0, up->txmask1 = 0; i < up->csize; i++)
up->txmask1 |= (1<<i);
up->txmask2 = (1<<i);
if (up->stopb) {
++i;
up->txmask2 |= (1<<i);
}
up->txmask1 <<= 1;
up->txmask2 <<= 1;
/* uart baud rate */
port->uartclk = uart_get_baud_rate(port, termios, old, 0, get_sclk()/16);
/* Disable UART */
SPORT_PUT_TCR1(up, SPORT_GET_TCR1(up) & ~TSPEN);
SPORT_PUT_RCR1(up, SPORT_GET_RCR1(up) & ~RSPEN);
sport_uart_setup(up, up->csize + up->stopb, port->uartclk);
/* driver TX line high after config, one dummy data is
* necessary to stop sport after shift one byte
*/
SPORT_PUT_TX(up, 0xffff);
SPORT_PUT_TX(up, 0xffff);
SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) | TSPEN));
SSYNC();
while (!(SPORT_GET_STAT(up) & TXHRE))
cpu_relax();
SPORT_PUT_TCR1(up, SPORT_GET_TCR1(up) & ~TSPEN);
SSYNC();
/* Port speed changed, update the per-port timeout. */
uart_update_timeout(port, termios->c_cflag, port->uartclk);
/* Enable sport rx */
SPORT_PUT_RCR1(up, SPORT_GET_RCR1(up) | RSPEN);
SSYNC();
spin_unlock_irqrestore(&up->port.lock, flags);
}
struct uart_ops sport_uart_ops = {
.tx_empty = sport_tx_empty,
.set_mctrl = sport_set_mctrl,
.get_mctrl = sport_get_mctrl,
.stop_tx = sport_stop_tx,
.start_tx = sport_start_tx,
.stop_rx = sport_stop_rx,
.enable_ms = sport_enable_ms,
.break_ctl = sport_break_ctl,
.startup = sport_startup,
.shutdown = sport_shutdown,
.set_termios = sport_set_termios,
.type = sport_type,
.release_port = sport_release_port,
.request_port = sport_request_port,
.config_port = sport_config_port,
.verify_port = sport_verify_port,
};
#define BFIN_SPORT_UART_MAX_PORTS 4
static struct sport_uart_port *bfin_sport_uart_ports[BFIN_SPORT_UART_MAX_PORTS];
#ifdef CONFIG_SERIAL_BFIN_SPORT_CONSOLE
#define CLASS_BFIN_SPORT_CONSOLE "bfin-sport-console"
static int __init
sport_uart_console_setup(struct console *co, char *options)
{
struct sport_uart_port *up;
int baud = 57600;
int bits = 8;
int parity = 'n';
# ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS
int flow = 'r';
# else
int flow = 'n';
# endif
/* Check whether an invalid uart number has been specified */
if (co->index < 0 || co->index >= BFIN_SPORT_UART_MAX_PORTS)
return -ENODEV;
up = bfin_sport_uart_ports[co->index];
if (!up)
return -ENODEV;
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
return uart_set_options(&up->port, co, baud, parity, bits, flow);
}
static void sport_uart_console_putchar(struct uart_port *port, int ch)
{
struct sport_uart_port *up = (struct sport_uart_port *)port;
while (SPORT_GET_STAT(up) & TXF)
barrier();
tx_one_byte(up, ch);
}
/*
* Interrupts are disabled on entering
*/
static void
sport_uart_console_write(struct console *co, const char *s, unsigned int count)
{
struct sport_uart_port *up = bfin_sport_uart_ports[co->index];
unsigned long flags;
spin_lock_irqsave(&up->port.lock, flags);
if (SPORT_GET_TCR1(up) & TSPEN)
uart_console_write(&up->port, s, count, sport_uart_console_putchar);
else {
/* dummy data to start sport */
while (SPORT_GET_STAT(up) & TXF)
barrier();
SPORT_PUT_TX(up, 0xffff);
/* Enable transmit, then an interrupt will generated */
SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) | TSPEN));
SSYNC();
uart_console_write(&up->port, s, count, sport_uart_console_putchar);
/* Although the hold register is empty, last byte is still in shift
* register and not sent out yet. So, put a dummy data into TX FIFO.
* Then, sport tx stops when last byte is shift out and the dummy
* data is moved into the shift register.
*/
while (SPORT_GET_STAT(up) & TXF)
barrier();
SPORT_PUT_TX(up, 0xffff);
while (!(SPORT_GET_STAT(up) & TXHRE))
barrier();
/* Stop sport tx transfer */
SPORT_PUT_TCR1(up, (SPORT_GET_TCR1(up) & ~TSPEN));
SSYNC();
}
spin_unlock_irqrestore(&up->port.lock, flags);
}
static struct uart_driver sport_uart_reg;
static struct console sport_uart_console = {
.name = DEVICE_NAME,
.write = sport_uart_console_write,
.device = uart_console_device,
.setup = sport_uart_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &sport_uart_reg,
};
#define SPORT_UART_CONSOLE (&sport_uart_console)
#else
#define SPORT_UART_CONSOLE NULL
#endif /* CONFIG_SERIAL_BFIN_SPORT_CONSOLE */
static struct uart_driver sport_uart_reg = {
.owner = THIS_MODULE,
.driver_name = DRV_NAME,
.dev_name = DEVICE_NAME,
.major = 204,
.minor = 84,
.nr = BFIN_SPORT_UART_MAX_PORTS,
.cons = SPORT_UART_CONSOLE,
};
#ifdef CONFIG_PM
static int sport_uart_suspend(struct device *dev)
{
struct sport_uart_port *sport = dev_get_drvdata(dev);
dev_dbg(dev, "%s enter\n", __func__);
if (sport)
uart_suspend_port(&sport_uart_reg, &sport->port);
return 0;
}
static int sport_uart_resume(struct device *dev)
{
struct sport_uart_port *sport = dev_get_drvdata(dev);
dev_dbg(dev, "%s enter\n", __func__);
if (sport)
uart_resume_port(&sport_uart_reg, &sport->port);
return 0;
}
static struct dev_pm_ops bfin_sport_uart_dev_pm_ops = {
.suspend = sport_uart_suspend,
.resume = sport_uart_resume,
};
#endif
static int __devinit sport_uart_probe(struct platform_device *pdev)
{
struct resource *res;
struct sport_uart_port *sport;
int ret = 0;
dev_dbg(&pdev->dev, "%s enter\n", __func__);
if (pdev->id < 0 || pdev->id >= BFIN_SPORT_UART_MAX_PORTS) {
dev_err(&pdev->dev, "Wrong sport uart platform device id.\n");
return -ENOENT;
}
if (bfin_sport_uart_ports[pdev->id] == NULL) {
bfin_sport_uart_ports[pdev->id] =
kzalloc(sizeof(struct sport_uart_port), GFP_KERNEL);
sport = bfin_sport_uart_ports[pdev->id];
if (!sport) {
dev_err(&pdev->dev,
"Fail to malloc sport_uart_port\n");
return -ENOMEM;
}
ret = peripheral_request_list(
(unsigned short *)pdev->dev.platform_data, DRV_NAME);
if (ret) {
dev_err(&pdev->dev,
"Fail to request SPORT peripherals\n");
goto out_error_free_mem;
}
spin_lock_init(&sport->port.lock);
sport->port.fifosize = SPORT_TX_FIFO_SIZE,
sport->port.ops = &sport_uart_ops;
sport->port.line = pdev->id;
sport->port.iotype = UPIO_MEM;
sport->port.flags = UPF_BOOT_AUTOCONF;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) {
dev_err(&pdev->dev, "Cannot get IORESOURCE_MEM\n");
ret = -ENOENT;
goto out_error_free_peripherals;
}
sport->port.membase = ioremap(res->start,
res->end - res->start);
if (!sport->port.membase) {
dev_err(&pdev->dev, "Cannot map sport IO\n");
ret = -ENXIO;
goto out_error_free_peripherals;
}
sport->port.mapbase = res->start;
sport->port.irq = platform_get_irq(pdev, 0);
if (sport->port.irq < 0) {
dev_err(&pdev->dev, "No sport RX/TX IRQ specified\n");
ret = -ENOENT;
goto out_error_unmap;
}
sport->err_irq = platform_get_irq(pdev, 1);
if (sport->err_irq < 0) {
dev_err(&pdev->dev, "No sport status IRQ specified\n");
ret = -ENOENT;
goto out_error_unmap;
}
#ifdef CONFIG_SERIAL_BFIN_SPORT_CTSRTS
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (res == NULL)
sport->cts_pin = -1;
else
sport->cts_pin = res->start;
res = platform_get_resource(pdev, IORESOURCE_IO, 1);
if (res == NULL)
sport->rts_pin = -1;
else
sport->rts_pin = res->start;
if (sport->rts_pin >= 0)
gpio_request(sport->rts_pin, DRV_NAME);
#endif
}
#ifdef CONFIG_SERIAL_BFIN_SPORT_CONSOLE
if (!is_early_platform_device(pdev)) {
#endif
sport = bfin_sport_uart_ports[pdev->id];
sport->port.dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, sport);
ret = uart_add_one_port(&sport_uart_reg, &sport->port);
#ifdef CONFIG_SERIAL_BFIN_SPORT_CONSOLE
}
#endif
if (!ret)
return 0;
if (sport) {
out_error_unmap:
iounmap(sport->port.membase);
out_error_free_peripherals:
peripheral_free_list(
(unsigned short *)pdev->dev.platform_data);
out_error_free_mem:
kfree(sport);
bfin_sport_uart_ports[pdev->id] = NULL;
}
return ret;
}
static int __devexit sport_uart_remove(struct platform_device *pdev)
{
struct sport_uart_port *sport = platform_get_drvdata(pdev);
dev_dbg(&pdev->dev, "%s enter\n", __func__);
dev_set_drvdata(&pdev->dev, NULL);
if (sport) {
uart_remove_one_port(&sport_uart_reg, &sport->port);
#ifdef CONFIG_SERIAL_BFIN_CTSRTS
if (sport->rts_pin >= 0)
gpio_free(sport->rts_pin);
#endif
iounmap(sport->port.membase);
peripheral_free_list(
(unsigned short *)pdev->dev.platform_data);
kfree(sport);
bfin_sport_uart_ports[pdev->id] = NULL;
}
return 0;
}
static struct platform_driver sport_uart_driver = {
.probe = sport_uart_probe,
.remove = __devexit_p(sport_uart_remove),
.driver = {
.name = DRV_NAME,
#ifdef CONFIG_PM
.pm = &bfin_sport_uart_dev_pm_ops,
#endif
},
};
#ifdef CONFIG_SERIAL_BFIN_SPORT_CONSOLE
static __initdata struct early_platform_driver early_sport_uart_driver = {
.class_str = CLASS_BFIN_SPORT_CONSOLE,
.pdrv = &sport_uart_driver,
.requested_id = EARLY_PLATFORM_ID_UNSET,
};
static int __init sport_uart_rs_console_init(void)
{
early_platform_driver_register(&early_sport_uart_driver, DRV_NAME);
early_platform_driver_probe(CLASS_BFIN_SPORT_CONSOLE,
BFIN_SPORT_UART_MAX_PORTS, 0);
register_console(&sport_uart_console);
return 0;
}
console_initcall(sport_uart_rs_console_init);
#endif
static int __init sport_uart_init(void)
{
int ret;
pr_info("Blackfin uart over sport driver\n");
ret = uart_register_driver(&sport_uart_reg);
if (ret) {
pr_err("failed to register %s:%d\n",
sport_uart_reg.driver_name, ret);
return ret;
}
ret = platform_driver_register(&sport_uart_driver);
if (ret) {
pr_err("failed to register sport uart driver:%d\n", ret);
uart_unregister_driver(&sport_uart_reg);
}
return ret;
}
module_init(sport_uart_init);
static void __exit sport_uart_exit(void)
{
platform_driver_unregister(&sport_uart_driver);
uart_unregister_driver(&sport_uart_reg);
}
module_exit(sport_uart_exit);
MODULE_AUTHOR("Sonic Zhang, Roy Huang");
MODULE_DESCRIPTION("Blackfin serial over SPORT driver");
MODULE_LICENSE("GPL");