mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-27 20:07:09 +00:00
2d826cc5c7
Signed-off-by: Kristian Hoegsberg <krh@redhat.com> Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
814 lines
20 KiB
C
814 lines
20 KiB
C
/*
|
|
* Device probing and sysfs code.
|
|
*
|
|
* Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/device.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/rwsem.h>
|
|
#include <asm/semaphore.h>
|
|
#include <linux/ctype.h>
|
|
#include "fw-transaction.h"
|
|
#include "fw-topology.h"
|
|
#include "fw-device.h"
|
|
|
|
void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
|
|
{
|
|
ci->p = p + 1;
|
|
ci->end = ci->p + (p[0] >> 16);
|
|
}
|
|
EXPORT_SYMBOL(fw_csr_iterator_init);
|
|
|
|
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
|
|
{
|
|
*key = *ci->p >> 24;
|
|
*value = *ci->p & 0xffffff;
|
|
|
|
return ci->p++ < ci->end;
|
|
}
|
|
EXPORT_SYMBOL(fw_csr_iterator_next);
|
|
|
|
static int is_fw_unit(struct device *dev);
|
|
|
|
static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
int key, value, match;
|
|
|
|
match = 0;
|
|
fw_csr_iterator_init(&ci, directory);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (key == CSR_VENDOR && value == id->vendor)
|
|
match |= FW_MATCH_VENDOR;
|
|
if (key == CSR_MODEL && value == id->model)
|
|
match |= FW_MATCH_MODEL;
|
|
if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
|
|
match |= FW_MATCH_SPECIFIER_ID;
|
|
if (key == CSR_VERSION && value == id->version)
|
|
match |= FW_MATCH_VERSION;
|
|
}
|
|
|
|
return (match & id->match_flags) == id->match_flags;
|
|
}
|
|
|
|
static int fw_unit_match(struct device *dev, struct device_driver *drv)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
struct fw_driver *driver = fw_driver(drv);
|
|
int i;
|
|
|
|
/* We only allow binding to fw_units. */
|
|
if (!is_fw_unit(dev))
|
|
return 0;
|
|
|
|
for (i = 0; driver->id_table[i].match_flags != 0; i++) {
|
|
if (match_unit_directory(unit->directory, &driver->id_table[i]))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
|
|
{
|
|
struct fw_device *device = fw_device(unit->device.parent);
|
|
struct fw_csr_iterator ci;
|
|
|
|
int key, value;
|
|
int vendor = 0;
|
|
int model = 0;
|
|
int specifier_id = 0;
|
|
int version = 0;
|
|
|
|
fw_csr_iterator_init(&ci, &device->config_rom[5]);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
switch (key) {
|
|
case CSR_VENDOR:
|
|
vendor = value;
|
|
break;
|
|
case CSR_MODEL:
|
|
model = value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
fw_csr_iterator_init(&ci, unit->directory);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
switch (key) {
|
|
case CSR_SPECIFIER_ID:
|
|
specifier_id = value;
|
|
break;
|
|
case CSR_VERSION:
|
|
version = value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return snprintf(buffer, buffer_size,
|
|
"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
|
|
vendor, model, specifier_id, version);
|
|
}
|
|
|
|
static int
|
|
fw_unit_uevent(struct device *dev, char **envp, int num_envp,
|
|
char *buffer, int buffer_size)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
char modalias[64];
|
|
int length = 0;
|
|
int i = 0;
|
|
|
|
get_modalias(unit, modalias, sizeof(modalias));
|
|
|
|
if (add_uevent_var(envp, num_envp, &i,
|
|
buffer, buffer_size, &length,
|
|
"MODALIAS=%s", modalias))
|
|
return -ENOMEM;
|
|
|
|
envp[i] = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct bus_type fw_bus_type = {
|
|
.name = "firewire",
|
|
.match = fw_unit_match,
|
|
};
|
|
EXPORT_SYMBOL(fw_bus_type);
|
|
|
|
struct fw_device *fw_device_get(struct fw_device *device)
|
|
{
|
|
get_device(&device->device);
|
|
|
|
return device;
|
|
}
|
|
|
|
void fw_device_put(struct fw_device *device)
|
|
{
|
|
put_device(&device->device);
|
|
}
|
|
|
|
static void fw_device_release(struct device *dev)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Take the card lock so we don't set this to NULL while a
|
|
* FW_NODE_UPDATED callback is being handled.
|
|
*/
|
|
spin_lock_irqsave(&device->card->lock, flags);
|
|
device->node->data = NULL;
|
|
spin_unlock_irqrestore(&device->card->lock, flags);
|
|
|
|
fw_node_put(device->node);
|
|
fw_card_put(device->card);
|
|
kfree(device->config_rom);
|
|
kfree(device);
|
|
}
|
|
|
|
int fw_device_enable_phys_dma(struct fw_device *device)
|
|
{
|
|
return device->card->driver->enable_phys_dma(device->card,
|
|
device->node_id,
|
|
device->generation);
|
|
}
|
|
EXPORT_SYMBOL(fw_device_enable_phys_dma);
|
|
|
|
struct config_rom_attribute {
|
|
struct device_attribute attr;
|
|
u32 key;
|
|
};
|
|
|
|
static ssize_t
|
|
show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
|
|
{
|
|
struct config_rom_attribute *attr =
|
|
container_of(dattr, struct config_rom_attribute, attr);
|
|
struct fw_csr_iterator ci;
|
|
u32 *dir;
|
|
int key, value;
|
|
|
|
if (is_fw_unit(dev))
|
|
dir = fw_unit(dev)->directory;
|
|
else
|
|
dir = fw_device(dev)->config_rom + 5;
|
|
|
|
fw_csr_iterator_init(&ci, dir);
|
|
while (fw_csr_iterator_next(&ci, &key, &value))
|
|
if (attr->key == key)
|
|
return snprintf(buf, buf ? PAGE_SIZE : 0,
|
|
"0x%06x\n", value);
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
#define IMMEDIATE_ATTR(name, key) \
|
|
{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
|
|
|
|
static ssize_t
|
|
show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
|
|
{
|
|
struct config_rom_attribute *attr =
|
|
container_of(dattr, struct config_rom_attribute, attr);
|
|
struct fw_csr_iterator ci;
|
|
u32 *dir, *block = NULL, *p, *end;
|
|
int length, key, value, last_key = 0;
|
|
char *b;
|
|
|
|
if (is_fw_unit(dev))
|
|
dir = fw_unit(dev)->directory;
|
|
else
|
|
dir = fw_device(dev)->config_rom + 5;
|
|
|
|
fw_csr_iterator_init(&ci, dir);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (attr->key == last_key &&
|
|
key == (CSR_DESCRIPTOR | CSR_LEAF))
|
|
block = ci.p - 1 + value;
|
|
last_key = key;
|
|
}
|
|
|
|
if (block == NULL)
|
|
return -ENOENT;
|
|
|
|
length = min(block[0] >> 16, 256U);
|
|
if (length < 3)
|
|
return -ENOENT;
|
|
|
|
if (block[1] != 0 || block[2] != 0)
|
|
/* Unknown encoding. */
|
|
return -ENOENT;
|
|
|
|
if (buf == NULL)
|
|
return length * 4;
|
|
|
|
b = buf;
|
|
end = &block[length + 1];
|
|
for (p = &block[3]; p < end; p++, b += 4)
|
|
* (u32 *) b = (__force u32) __cpu_to_be32(*p);
|
|
|
|
/* Strip trailing whitespace and add newline. */
|
|
while (b--, (isspace(*b) || *b == '\0') && b > buf);
|
|
strcpy(b + 1, "\n");
|
|
|
|
return b + 2 - buf;
|
|
}
|
|
|
|
#define TEXT_LEAF_ATTR(name, key) \
|
|
{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
|
|
|
|
static struct config_rom_attribute config_rom_attributes[] = {
|
|
IMMEDIATE_ATTR(vendor, CSR_VENDOR),
|
|
IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
|
|
IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
|
|
IMMEDIATE_ATTR(version, CSR_VERSION),
|
|
IMMEDIATE_ATTR(model, CSR_MODEL),
|
|
TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
|
|
TEXT_LEAF_ATTR(model_name, CSR_MODEL),
|
|
TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
|
|
};
|
|
|
|
static void
|
|
init_fw_attribute_group(struct device *dev,
|
|
struct device_attribute *attrs,
|
|
struct fw_attribute_group *group)
|
|
{
|
|
struct device_attribute *attr;
|
|
int i, j;
|
|
|
|
for (j = 0; attrs[j].attr.name != NULL; j++)
|
|
group->attrs[j] = &attrs[j].attr;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
|
|
attr = &config_rom_attributes[i].attr;
|
|
if (attr->show(dev, attr, NULL) < 0)
|
|
continue;
|
|
group->attrs[j++] = &attr->attr;
|
|
}
|
|
|
|
BUG_ON(j >= ARRAY_SIZE(group->attrs));
|
|
group->attrs[j++] = NULL;
|
|
group->groups[0] = &group->group;
|
|
group->groups[1] = NULL;
|
|
group->group.attrs = group->attrs;
|
|
dev->groups = group->groups;
|
|
}
|
|
|
|
static ssize_t
|
|
modalias_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
int length;
|
|
|
|
length = get_modalias(unit, buf, PAGE_SIZE);
|
|
strcpy(buf + length, "\n");
|
|
|
|
return length + 1;
|
|
}
|
|
|
|
static ssize_t
|
|
rom_index_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev->parent);
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%d\n",
|
|
(int)(unit->directory - device->config_rom));
|
|
}
|
|
|
|
static struct device_attribute fw_unit_attributes[] = {
|
|
__ATTR_RO(modalias),
|
|
__ATTR_RO(rom_index),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
static ssize_t
|
|
config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
|
|
memcpy(buf, device->config_rom, device->config_rom_length * 4);
|
|
|
|
return device->config_rom_length * 4;
|
|
}
|
|
|
|
static ssize_t
|
|
guid_show(struct device *dev, struct device_attribute *attr, char *buf)
|
|
{
|
|
struct fw_device *device = fw_device(dev);
|
|
u64 guid;
|
|
|
|
guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4];
|
|
|
|
return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
|
|
(unsigned long long)guid);
|
|
}
|
|
|
|
static struct device_attribute fw_device_attributes[] = {
|
|
__ATTR_RO(config_rom),
|
|
__ATTR_RO(guid),
|
|
__ATTR_NULL,
|
|
};
|
|
|
|
struct read_quadlet_callback_data {
|
|
struct completion done;
|
|
int rcode;
|
|
u32 data;
|
|
};
|
|
|
|
static void
|
|
complete_transaction(struct fw_card *card, int rcode,
|
|
void *payload, size_t length, void *data)
|
|
{
|
|
struct read_quadlet_callback_data *callback_data = data;
|
|
|
|
if (rcode == RCODE_COMPLETE)
|
|
callback_data->data = be32_to_cpu(*(__be32 *)payload);
|
|
callback_data->rcode = rcode;
|
|
complete(&callback_data->done);
|
|
}
|
|
|
|
static int read_rom(struct fw_device *device, int index, u32 * data)
|
|
{
|
|
struct read_quadlet_callback_data callback_data;
|
|
struct fw_transaction t;
|
|
u64 offset;
|
|
|
|
init_completion(&callback_data.done);
|
|
|
|
offset = 0xfffff0000400ULL + index * 4;
|
|
fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
|
|
device->node_id,
|
|
device->generation, SCODE_100,
|
|
offset, NULL, 4, complete_transaction, &callback_data);
|
|
|
|
wait_for_completion(&callback_data.done);
|
|
|
|
*data = callback_data.data;
|
|
|
|
return callback_data.rcode;
|
|
}
|
|
|
|
static int read_bus_info_block(struct fw_device *device)
|
|
{
|
|
static u32 rom[256];
|
|
u32 stack[16], sp, key;
|
|
int i, end, length;
|
|
|
|
/* First read the bus info block. */
|
|
for (i = 0; i < 5; i++) {
|
|
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
|
|
return -1;
|
|
/*
|
|
* As per IEEE1212 7.2, during power-up, devices can
|
|
* reply with a 0 for the first quadlet of the config
|
|
* rom to indicate that they are booting (for example,
|
|
* if the firmware is on the disk of a external
|
|
* harddisk). In that case we just fail, and the
|
|
* retry mechanism will try again later.
|
|
*/
|
|
if (i == 0 && rom[i] == 0)
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Now parse the config rom. The config rom is a recursive
|
|
* directory structure so we parse it using a stack of
|
|
* references to the blocks that make up the structure. We
|
|
* push a reference to the root directory on the stack to
|
|
* start things off.
|
|
*/
|
|
length = i;
|
|
sp = 0;
|
|
stack[sp++] = 0xc0000005;
|
|
while (sp > 0) {
|
|
/*
|
|
* Pop the next block reference of the stack. The
|
|
* lower 24 bits is the offset into the config rom,
|
|
* the upper 8 bits are the type of the reference the
|
|
* block.
|
|
*/
|
|
key = stack[--sp];
|
|
i = key & 0xffffff;
|
|
if (i >= ARRAY_SIZE(rom))
|
|
/*
|
|
* The reference points outside the standard
|
|
* config rom area, something's fishy.
|
|
*/
|
|
return -1;
|
|
|
|
/* Read header quadlet for the block to get the length. */
|
|
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
|
|
return -1;
|
|
end = i + (rom[i] >> 16) + 1;
|
|
i++;
|
|
if (end > ARRAY_SIZE(rom))
|
|
/*
|
|
* This block extends outside standard config
|
|
* area (and the array we're reading it
|
|
* into). That's broken, so ignore this
|
|
* device.
|
|
*/
|
|
return -1;
|
|
|
|
/*
|
|
* Now read in the block. If this is a directory
|
|
* block, check the entries as we read them to see if
|
|
* it references another block, and push it in that case.
|
|
*/
|
|
while (i < end) {
|
|
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
|
|
return -1;
|
|
if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
|
|
sp < ARRAY_SIZE(stack))
|
|
stack[sp++] = i + rom[i];
|
|
i++;
|
|
}
|
|
if (length < i)
|
|
length = i;
|
|
}
|
|
|
|
device->config_rom = kmalloc(length * 4, GFP_KERNEL);
|
|
if (device->config_rom == NULL)
|
|
return -1;
|
|
memcpy(device->config_rom, rom, length * 4);
|
|
device->config_rom_length = length;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fw_unit_release(struct device *dev)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
|
|
kfree(unit);
|
|
}
|
|
|
|
static struct device_type fw_unit_type = {
|
|
.uevent = fw_unit_uevent,
|
|
.release = fw_unit_release,
|
|
};
|
|
|
|
static int is_fw_unit(struct device *dev)
|
|
{
|
|
return dev->type == &fw_unit_type;
|
|
}
|
|
|
|
static void create_units(struct fw_device *device)
|
|
{
|
|
struct fw_csr_iterator ci;
|
|
struct fw_unit *unit;
|
|
int key, value, i;
|
|
|
|
i = 0;
|
|
fw_csr_iterator_init(&ci, &device->config_rom[5]);
|
|
while (fw_csr_iterator_next(&ci, &key, &value)) {
|
|
if (key != (CSR_UNIT | CSR_DIRECTORY))
|
|
continue;
|
|
|
|
/*
|
|
* Get the address of the unit directory and try to
|
|
* match the drivers id_tables against it.
|
|
*/
|
|
unit = kzalloc(sizeof(*unit), GFP_KERNEL);
|
|
if (unit == NULL) {
|
|
fw_error("failed to allocate memory for unit\n");
|
|
continue;
|
|
}
|
|
|
|
unit->directory = ci.p + value - 1;
|
|
unit->device.bus = &fw_bus_type;
|
|
unit->device.type = &fw_unit_type;
|
|
unit->device.parent = &device->device;
|
|
snprintf(unit->device.bus_id, sizeof(unit->device.bus_id),
|
|
"%s.%d", device->device.bus_id, i++);
|
|
|
|
init_fw_attribute_group(&unit->device,
|
|
fw_unit_attributes,
|
|
&unit->attribute_group);
|
|
if (device_register(&unit->device) < 0)
|
|
goto skip_unit;
|
|
|
|
continue;
|
|
|
|
skip_unit:
|
|
kfree(unit);
|
|
}
|
|
}
|
|
|
|
static int shutdown_unit(struct device *device, void *data)
|
|
{
|
|
device_unregister(device);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static DECLARE_RWSEM(idr_rwsem);
|
|
static DEFINE_IDR(fw_device_idr);
|
|
int fw_cdev_major;
|
|
|
|
struct fw_device *fw_device_from_devt(dev_t devt)
|
|
{
|
|
struct fw_device *device;
|
|
|
|
down_read(&idr_rwsem);
|
|
device = idr_find(&fw_device_idr, MINOR(devt));
|
|
up_read(&idr_rwsem);
|
|
|
|
return device;
|
|
}
|
|
|
|
static void fw_device_shutdown(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
int minor = MINOR(device->device.devt);
|
|
|
|
down_write(&idr_rwsem);
|
|
idr_remove(&fw_device_idr, minor);
|
|
up_write(&idr_rwsem);
|
|
|
|
fw_device_cdev_remove(device);
|
|
device_for_each_child(&device->device, NULL, shutdown_unit);
|
|
device_unregister(&device->device);
|
|
}
|
|
|
|
static struct device_type fw_device_type = {
|
|
.release = fw_device_release,
|
|
};
|
|
|
|
/*
|
|
* These defines control the retry behavior for reading the config
|
|
* rom. It shouldn't be necessary to tweak these; if the device
|
|
* doesn't respond to a config rom read within 10 seconds, it's not
|
|
* going to respond at all. As for the initial delay, a lot of
|
|
* devices will be able to respond within half a second after bus
|
|
* reset. On the other hand, it's not really worth being more
|
|
* aggressive than that, since it scales pretty well; if 10 devices
|
|
* are plugged in, they're all getting read within one second.
|
|
*/
|
|
|
|
#define MAX_RETRIES 10
|
|
#define RETRY_DELAY (3 * HZ)
|
|
#define INITIAL_DELAY (HZ / 2)
|
|
|
|
static void fw_device_init(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
int minor, err;
|
|
|
|
/*
|
|
* All failure paths here set node->data to NULL, so that we
|
|
* don't try to do device_for_each_child() on a kfree()'d
|
|
* device.
|
|
*/
|
|
|
|
if (read_bus_info_block(device) < 0) {
|
|
if (device->config_rom_retries < MAX_RETRIES) {
|
|
device->config_rom_retries++;
|
|
schedule_delayed_work(&device->work, RETRY_DELAY);
|
|
} else {
|
|
fw_notify("giving up on config rom for node id %x\n",
|
|
device->node_id);
|
|
if (device->node == device->card->root_node)
|
|
schedule_delayed_work(&device->card->work, 0);
|
|
fw_device_release(&device->device);
|
|
}
|
|
return;
|
|
}
|
|
|
|
err = -ENOMEM;
|
|
down_write(&idr_rwsem);
|
|
if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
|
|
err = idr_get_new(&fw_device_idr, device, &minor);
|
|
up_write(&idr_rwsem);
|
|
if (err < 0)
|
|
goto error;
|
|
|
|
device->device.bus = &fw_bus_type;
|
|
device->device.type = &fw_device_type;
|
|
device->device.parent = device->card->device;
|
|
device->device.devt = MKDEV(fw_cdev_major, minor);
|
|
snprintf(device->device.bus_id, sizeof(device->device.bus_id),
|
|
"fw%d", minor);
|
|
|
|
init_fw_attribute_group(&device->device,
|
|
fw_device_attributes,
|
|
&device->attribute_group);
|
|
if (device_add(&device->device)) {
|
|
fw_error("Failed to add device.\n");
|
|
goto error_with_cdev;
|
|
}
|
|
|
|
create_units(device);
|
|
|
|
/*
|
|
* Transition the device to running state. If it got pulled
|
|
* out from under us while we did the intialization work, we
|
|
* have to shut down the device again here. Normally, though,
|
|
* fw_node_event will be responsible for shutting it down when
|
|
* necessary. We have to use the atomic cmpxchg here to avoid
|
|
* racing with the FW_NODE_DESTROYED case in
|
|
* fw_node_event().
|
|
*/
|
|
if (atomic_cmpxchg(&device->state,
|
|
FW_DEVICE_INITIALIZING,
|
|
FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
|
|
fw_device_shutdown(&device->work.work);
|
|
else
|
|
fw_notify("created new fw device %s (%d config rom retries)\n",
|
|
device->device.bus_id, device->config_rom_retries);
|
|
|
|
/*
|
|
* Reschedule the IRM work if we just finished reading the
|
|
* root node config rom. If this races with a bus reset we
|
|
* just end up running the IRM work a couple of extra times -
|
|
* pretty harmless.
|
|
*/
|
|
if (device->node == device->card->root_node)
|
|
schedule_delayed_work(&device->card->work, 0);
|
|
|
|
return;
|
|
|
|
error_with_cdev:
|
|
down_write(&idr_rwsem);
|
|
idr_remove(&fw_device_idr, minor);
|
|
up_write(&idr_rwsem);
|
|
error:
|
|
put_device(&device->device);
|
|
}
|
|
|
|
static int update_unit(struct device *dev, void *data)
|
|
{
|
|
struct fw_unit *unit = fw_unit(dev);
|
|
struct fw_driver *driver = (struct fw_driver *)dev->driver;
|
|
|
|
if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
|
|
down(&dev->sem);
|
|
driver->update(unit);
|
|
up(&dev->sem);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fw_device_update(struct work_struct *work)
|
|
{
|
|
struct fw_device *device =
|
|
container_of(work, struct fw_device, work.work);
|
|
|
|
fw_device_cdev_update(device);
|
|
device_for_each_child(&device->device, NULL, update_unit);
|
|
}
|
|
|
|
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
|
|
{
|
|
struct fw_device *device;
|
|
|
|
switch (event) {
|
|
case FW_NODE_CREATED:
|
|
case FW_NODE_LINK_ON:
|
|
if (!node->link_on)
|
|
break;
|
|
|
|
device = kzalloc(sizeof(*device), GFP_ATOMIC);
|
|
if (device == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Do minimal intialization of the device here, the
|
|
* rest will happen in fw_device_init(). We need the
|
|
* card and node so we can read the config rom and we
|
|
* need to do device_initialize() now so
|
|
* device_for_each_child() in FW_NODE_UPDATED is
|
|
* doesn't freak out.
|
|
*/
|
|
device_initialize(&device->device);
|
|
atomic_set(&device->state, FW_DEVICE_INITIALIZING);
|
|
device->card = fw_card_get(card);
|
|
device->node = fw_node_get(node);
|
|
device->node_id = node->node_id;
|
|
device->generation = card->generation;
|
|
INIT_LIST_HEAD(&device->client_list);
|
|
|
|
/*
|
|
* Set the node data to point back to this device so
|
|
* FW_NODE_UPDATED callbacks can update the node_id
|
|
* and generation for the device.
|
|
*/
|
|
node->data = device;
|
|
|
|
/*
|
|
* Many devices are slow to respond after bus resets,
|
|
* especially if they are bus powered and go through
|
|
* power-up after getting plugged in. We schedule the
|
|
* first config rom scan half a second after bus reset.
|
|
*/
|
|
INIT_DELAYED_WORK(&device->work, fw_device_init);
|
|
schedule_delayed_work(&device->work, INITIAL_DELAY);
|
|
break;
|
|
|
|
case FW_NODE_UPDATED:
|
|
if (!node->link_on || node->data == NULL)
|
|
break;
|
|
|
|
device = node->data;
|
|
device->node_id = node->node_id;
|
|
device->generation = card->generation;
|
|
if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
|
|
PREPARE_DELAYED_WORK(&device->work, fw_device_update);
|
|
schedule_delayed_work(&device->work, 0);
|
|
}
|
|
break;
|
|
|
|
case FW_NODE_DESTROYED:
|
|
case FW_NODE_LINK_OFF:
|
|
if (!node->data)
|
|
break;
|
|
|
|
/*
|
|
* Destroy the device associated with the node. There
|
|
* are two cases here: either the device is fully
|
|
* initialized (FW_DEVICE_RUNNING) or we're in the
|
|
* process of reading its config rom
|
|
* (FW_DEVICE_INITIALIZING). If it is fully
|
|
* initialized we can reuse device->work to schedule a
|
|
* full fw_device_shutdown(). If not, there's work
|
|
* scheduled to read it's config rom, and we just put
|
|
* the device in shutdown state to have that code fail
|
|
* to create the device.
|
|
*/
|
|
device = node->data;
|
|
if (atomic_xchg(&device->state,
|
|
FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
|
|
PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
|
|
schedule_delayed_work(&device->work, 0);
|
|
}
|
|
break;
|
|
}
|
|
}
|