mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-29 04:45:05 +00:00
bf65e440e8
This change adds one of the Tilera standard <arch> headers to the set of headers shipped with Linux. The <arch/sim.h> header provides methods for programmatically interacting with the Tilera simulator. The current <arch/sim.h> provides inline assembly for the _sim_syscall function, so the declaration and definition previously provided manually in Linux are no longer needed. We now use the standard sim_validate_lines_evicted() method from <arch/sim.h> rather than rolling our own direct call to sim_syscall(). Signed-off-by: Chris Metcalf <cmetcalf@tilera.com>
432 lines
12 KiB
C
432 lines
12 KiB
C
/*
|
|
* Copyright 2010 Tilera Corporation. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation, version 2.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
|
* NON INFRINGEMENT. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* This code maintains the "home" for each page in the system.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/list.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sysctl.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/homecache.h>
|
|
|
|
#include <arch/sim.h>
|
|
|
|
#include "migrate.h"
|
|
|
|
|
|
#if CHIP_HAS_COHERENT_LOCAL_CACHE()
|
|
|
|
/*
|
|
* The noallocl2 option suppresses all use of the L2 cache to cache
|
|
* locally from a remote home. There's no point in using it if we
|
|
* don't have coherent local caching, though.
|
|
*/
|
|
static int __write_once noallocl2;
|
|
static int __init set_noallocl2(char *str)
|
|
{
|
|
noallocl2 = 1;
|
|
return 0;
|
|
}
|
|
early_param("noallocl2", set_noallocl2);
|
|
|
|
#else
|
|
|
|
#define noallocl2 0
|
|
|
|
#endif
|
|
|
|
/* Provide no-op versions of these routines to keep flush_remote() cleaner. */
|
|
#define mark_caches_evicted_start() 0
|
|
#define mark_caches_evicted_finish(mask, timestamp) do {} while (0)
|
|
|
|
|
|
/*
|
|
* Update the irq_stat for cpus that we are going to interrupt
|
|
* with TLB or cache flushes. Also handle removing dataplane cpus
|
|
* from the TLB flush set, and setting dataplane_tlb_state instead.
|
|
*/
|
|
static void hv_flush_update(const struct cpumask *cache_cpumask,
|
|
struct cpumask *tlb_cpumask,
|
|
unsigned long tlb_va, unsigned long tlb_length,
|
|
HV_Remote_ASID *asids, int asidcount)
|
|
{
|
|
struct cpumask mask;
|
|
int i, cpu;
|
|
|
|
cpumask_clear(&mask);
|
|
if (cache_cpumask)
|
|
cpumask_or(&mask, &mask, cache_cpumask);
|
|
if (tlb_cpumask && tlb_length) {
|
|
cpumask_or(&mask, &mask, tlb_cpumask);
|
|
}
|
|
|
|
for (i = 0; i < asidcount; ++i)
|
|
cpumask_set_cpu(asids[i].y * smp_width + asids[i].x, &mask);
|
|
|
|
/*
|
|
* Don't bother to update atomically; losing a count
|
|
* here is not that critical.
|
|
*/
|
|
for_each_cpu(cpu, &mask)
|
|
++per_cpu(irq_stat, cpu).irq_hv_flush_count;
|
|
}
|
|
|
|
/*
|
|
* This wrapper function around hv_flush_remote() does several things:
|
|
*
|
|
* - Provides a return value error-checking panic path, since
|
|
* there's never any good reason for hv_flush_remote() to fail.
|
|
* - Accepts a 32-bit PFN rather than a 64-bit PA, which generally
|
|
* is the type that Linux wants to pass around anyway.
|
|
* - Centralizes the mark_caches_evicted() handling.
|
|
* - Canonicalizes that lengths of zero make cpumasks NULL.
|
|
* - Handles deferring TLB flushes for dataplane tiles.
|
|
* - Tracks remote interrupts in the per-cpu irq_cpustat_t.
|
|
*
|
|
* Note that we have to wait until the cache flush completes before
|
|
* updating the per-cpu last_cache_flush word, since otherwise another
|
|
* concurrent flush can race, conclude the flush has already
|
|
* completed, and start to use the page while it's still dirty
|
|
* remotely (running concurrently with the actual evict, presumably).
|
|
*/
|
|
void flush_remote(unsigned long cache_pfn, unsigned long cache_control,
|
|
const struct cpumask *cache_cpumask_orig,
|
|
HV_VirtAddr tlb_va, unsigned long tlb_length,
|
|
unsigned long tlb_pgsize,
|
|
const struct cpumask *tlb_cpumask_orig,
|
|
HV_Remote_ASID *asids, int asidcount)
|
|
{
|
|
int rc;
|
|
int timestamp = 0; /* happy compiler */
|
|
struct cpumask cache_cpumask_copy, tlb_cpumask_copy;
|
|
struct cpumask *cache_cpumask, *tlb_cpumask;
|
|
HV_PhysAddr cache_pa;
|
|
char cache_buf[NR_CPUS*5], tlb_buf[NR_CPUS*5];
|
|
|
|
mb(); /* provided just to simplify "magic hypervisor" mode */
|
|
|
|
/*
|
|
* Canonicalize and copy the cpumasks.
|
|
*/
|
|
if (cache_cpumask_orig && cache_control) {
|
|
cpumask_copy(&cache_cpumask_copy, cache_cpumask_orig);
|
|
cache_cpumask = &cache_cpumask_copy;
|
|
} else {
|
|
cpumask_clear(&cache_cpumask_copy);
|
|
cache_cpumask = NULL;
|
|
}
|
|
if (cache_cpumask == NULL)
|
|
cache_control = 0;
|
|
if (tlb_cpumask_orig && tlb_length) {
|
|
cpumask_copy(&tlb_cpumask_copy, tlb_cpumask_orig);
|
|
tlb_cpumask = &tlb_cpumask_copy;
|
|
} else {
|
|
cpumask_clear(&tlb_cpumask_copy);
|
|
tlb_cpumask = NULL;
|
|
}
|
|
|
|
hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length,
|
|
asids, asidcount);
|
|
cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT;
|
|
if (cache_control & HV_FLUSH_EVICT_L2)
|
|
timestamp = mark_caches_evicted_start();
|
|
rc = hv_flush_remote(cache_pa, cache_control,
|
|
cpumask_bits(cache_cpumask),
|
|
tlb_va, tlb_length, tlb_pgsize,
|
|
cpumask_bits(tlb_cpumask),
|
|
asids, asidcount);
|
|
if (cache_control & HV_FLUSH_EVICT_L2)
|
|
mark_caches_evicted_finish(cache_cpumask, timestamp);
|
|
if (rc == 0)
|
|
return;
|
|
cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy);
|
|
cpumask_scnprintf(tlb_buf, sizeof(tlb_buf), &tlb_cpumask_copy);
|
|
|
|
pr_err("hv_flush_remote(%#llx, %#lx, %p [%s],"
|
|
" %#lx, %#lx, %#lx, %p [%s], %p, %d) = %d\n",
|
|
cache_pa, cache_control, cache_cpumask, cache_buf,
|
|
(unsigned long)tlb_va, tlb_length, tlb_pgsize,
|
|
tlb_cpumask, tlb_buf,
|
|
asids, asidcount, rc);
|
|
panic("Unsafe to continue.");
|
|
}
|
|
|
|
void homecache_evict(const struct cpumask *mask)
|
|
{
|
|
flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0);
|
|
}
|
|
|
|
/* Return a mask of the cpus whose caches currently own these pages. */
|
|
static void homecache_mask(struct page *page, int pages,
|
|
struct cpumask *home_mask)
|
|
{
|
|
int i;
|
|
cpumask_clear(home_mask);
|
|
for (i = 0; i < pages; ++i) {
|
|
int home = page_home(&page[i]);
|
|
if (home == PAGE_HOME_IMMUTABLE ||
|
|
home == PAGE_HOME_INCOHERENT) {
|
|
cpumask_copy(home_mask, cpu_possible_mask);
|
|
return;
|
|
}
|
|
#if CHIP_HAS_CBOX_HOME_MAP()
|
|
if (home == PAGE_HOME_HASH) {
|
|
cpumask_or(home_mask, home_mask, &hash_for_home_map);
|
|
continue;
|
|
}
|
|
#endif
|
|
if (home == PAGE_HOME_UNCACHED)
|
|
continue;
|
|
BUG_ON(home < 0 || home >= NR_CPUS);
|
|
cpumask_set_cpu(home, home_mask);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the passed length, or zero if it's long enough that we
|
|
* believe we should evict the whole L2 cache.
|
|
*/
|
|
static unsigned long cache_flush_length(unsigned long length)
|
|
{
|
|
return (length >= CHIP_L2_CACHE_SIZE()) ? HV_FLUSH_EVICT_L2 : length;
|
|
}
|
|
|
|
/* Flush a page out of whatever cache(s) it is in. */
|
|
void homecache_flush_cache(struct page *page, int order)
|
|
{
|
|
int pages = 1 << order;
|
|
int length = cache_flush_length(pages * PAGE_SIZE);
|
|
unsigned long pfn = page_to_pfn(page);
|
|
struct cpumask home_mask;
|
|
|
|
homecache_mask(page, pages, &home_mask);
|
|
flush_remote(pfn, length, &home_mask, 0, 0, 0, NULL, NULL, 0);
|
|
sim_validate_lines_evicted(PFN_PHYS(pfn), pages * PAGE_SIZE);
|
|
}
|
|
|
|
|
|
/* Report the home corresponding to a given PTE. */
|
|
static int pte_to_home(pte_t pte)
|
|
{
|
|
if (hv_pte_get_nc(pte))
|
|
return PAGE_HOME_IMMUTABLE;
|
|
switch (hv_pte_get_mode(pte)) {
|
|
case HV_PTE_MODE_CACHE_TILE_L3:
|
|
return get_remote_cache_cpu(pte);
|
|
case HV_PTE_MODE_CACHE_NO_L3:
|
|
return PAGE_HOME_INCOHERENT;
|
|
case HV_PTE_MODE_UNCACHED:
|
|
return PAGE_HOME_UNCACHED;
|
|
#if CHIP_HAS_CBOX_HOME_MAP()
|
|
case HV_PTE_MODE_CACHE_HASH_L3:
|
|
return PAGE_HOME_HASH;
|
|
#endif
|
|
}
|
|
panic("Bad PTE %#llx\n", pte.val);
|
|
}
|
|
|
|
/* Update the home of a PTE if necessary (can also be used for a pgprot_t). */
|
|
pte_t pte_set_home(pte_t pte, int home)
|
|
{
|
|
/* Check for non-linear file mapping "PTEs" and pass them through. */
|
|
if (pte_file(pte))
|
|
return pte;
|
|
|
|
#if CHIP_HAS_MMIO()
|
|
/* Check for MMIO mappings and pass them through. */
|
|
if (hv_pte_get_mode(pte) == HV_PTE_MODE_MMIO)
|
|
return pte;
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Only immutable pages get NC mappings. If we have a
|
|
* non-coherent PTE, but the underlying page is not
|
|
* immutable, it's likely the result of a forced
|
|
* caching setting running up against ptrace setting
|
|
* the page to be writable underneath. In this case,
|
|
* just keep the PTE coherent.
|
|
*/
|
|
if (hv_pte_get_nc(pte) && home != PAGE_HOME_IMMUTABLE) {
|
|
pte = hv_pte_clear_nc(pte);
|
|
pr_err("non-immutable page incoherently referenced: %#llx\n",
|
|
pte.val);
|
|
}
|
|
|
|
switch (home) {
|
|
|
|
case PAGE_HOME_UNCACHED:
|
|
pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED);
|
|
break;
|
|
|
|
case PAGE_HOME_INCOHERENT:
|
|
pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3);
|
|
break;
|
|
|
|
case PAGE_HOME_IMMUTABLE:
|
|
/*
|
|
* We could home this page anywhere, since it's immutable,
|
|
* but by default just home it to follow "hash_default".
|
|
*/
|
|
BUG_ON(hv_pte_get_writable(pte));
|
|
if (pte_get_forcecache(pte)) {
|
|
/* Upgrade "force any cpu" to "No L3" for immutable. */
|
|
if (hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_TILE_L3
|
|
&& pte_get_anyhome(pte)) {
|
|
pte = hv_pte_set_mode(pte,
|
|
HV_PTE_MODE_CACHE_NO_L3);
|
|
}
|
|
} else
|
|
#if CHIP_HAS_CBOX_HOME_MAP()
|
|
if (hash_default)
|
|
pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3);
|
|
else
|
|
#endif
|
|
pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_NO_L3);
|
|
pte = hv_pte_set_nc(pte);
|
|
break;
|
|
|
|
#if CHIP_HAS_CBOX_HOME_MAP()
|
|
case PAGE_HOME_HASH:
|
|
pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_HASH_L3);
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
BUG_ON(home < 0 || home >= NR_CPUS ||
|
|
!cpu_is_valid_lotar(home));
|
|
pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
|
|
pte = set_remote_cache_cpu(pte, home);
|
|
break;
|
|
}
|
|
|
|
#if CHIP_HAS_NC_AND_NOALLOC_BITS()
|
|
if (noallocl2)
|
|
pte = hv_pte_set_no_alloc_l2(pte);
|
|
|
|
/* Simplify "no local and no l3" to "uncached" */
|
|
if (hv_pte_get_no_alloc_l2(pte) && hv_pte_get_no_alloc_l1(pte) &&
|
|
hv_pte_get_mode(pte) == HV_PTE_MODE_CACHE_NO_L3) {
|
|
pte = hv_pte_set_mode(pte, HV_PTE_MODE_UNCACHED);
|
|
}
|
|
#endif
|
|
|
|
/* Checking this case here gives a better panic than from the hv. */
|
|
BUG_ON(hv_pte_get_mode(pte) == 0);
|
|
|
|
return pte;
|
|
}
|
|
EXPORT_SYMBOL(pte_set_home);
|
|
|
|
/*
|
|
* The routines in this section are the "static" versions of the normal
|
|
* dynamic homecaching routines; they just set the home cache
|
|
* of a kernel page once, and require a full-chip cache/TLB flush,
|
|
* so they're not suitable for anything but infrequent use.
|
|
*/
|
|
|
|
#if CHIP_HAS_CBOX_HOME_MAP()
|
|
static inline int initial_page_home(void) { return PAGE_HOME_HASH; }
|
|
#else
|
|
static inline int initial_page_home(void) { return 0; }
|
|
#endif
|
|
|
|
int page_home(struct page *page)
|
|
{
|
|
if (PageHighMem(page)) {
|
|
return initial_page_home();
|
|
} else {
|
|
unsigned long kva = (unsigned long)page_address(page);
|
|
return pte_to_home(*virt_to_pte(NULL, kva));
|
|
}
|
|
}
|
|
|
|
void homecache_change_page_home(struct page *page, int order, int home)
|
|
{
|
|
int i, pages = (1 << order);
|
|
unsigned long kva;
|
|
|
|
BUG_ON(PageHighMem(page));
|
|
BUG_ON(page_count(page) > 1);
|
|
BUG_ON(page_mapcount(page) != 0);
|
|
kva = (unsigned long) page_address(page);
|
|
flush_remote(0, HV_FLUSH_EVICT_L2, &cpu_cacheable_map,
|
|
kva, pages * PAGE_SIZE, PAGE_SIZE, cpu_online_mask,
|
|
NULL, 0);
|
|
|
|
for (i = 0; i < pages; ++i, kva += PAGE_SIZE) {
|
|
pte_t *ptep = virt_to_pte(NULL, kva);
|
|
pte_t pteval = *ptep;
|
|
BUG_ON(!pte_present(pteval) || pte_huge(pteval));
|
|
*ptep = pte_set_home(pteval, home);
|
|
}
|
|
}
|
|
|
|
struct page *homecache_alloc_pages(gfp_t gfp_mask,
|
|
unsigned int order, int home)
|
|
{
|
|
struct page *page;
|
|
BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */
|
|
page = alloc_pages(gfp_mask, order);
|
|
if (page)
|
|
homecache_change_page_home(page, order, home);
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(homecache_alloc_pages);
|
|
|
|
struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask,
|
|
unsigned int order, int home)
|
|
{
|
|
struct page *page;
|
|
BUG_ON(gfp_mask & __GFP_HIGHMEM); /* must be lowmem */
|
|
page = alloc_pages_node(nid, gfp_mask, order);
|
|
if (page)
|
|
homecache_change_page_home(page, order, home);
|
|
return page;
|
|
}
|
|
|
|
void homecache_free_pages(unsigned long addr, unsigned int order)
|
|
{
|
|
struct page *page;
|
|
|
|
if (addr == 0)
|
|
return;
|
|
|
|
VM_BUG_ON(!virt_addr_valid((void *)addr));
|
|
page = virt_to_page((void *)addr);
|
|
if (put_page_testzero(page)) {
|
|
int pages = (1 << order);
|
|
homecache_change_page_home(page, order, initial_page_home());
|
|
while (pages--)
|
|
__free_page(page++);
|
|
}
|
|
}
|