mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 23:01:29 +00:00
ef710e100c
Documentation/trace/ftrace.txt says buffer_size_kb: This sets or displays the number of kilobytes each CPU buffer can hold. The tracer buffers are the same size for each CPU. The displayed number is the size of the CPU buffer and not total size of all buffers. The trace buffers are allocated in pages (blocks of memory that the kernel uses for allocation, usually 4 KB in size). If the last page allocated has room for more bytes than requested, the rest of the page will be used, making the actual allocation bigger than requested. ( Note, the size may not be a multiple of the page size due to buffer management overhead. ) This can only be updated when the current_tracer is set to "nop". But it's incorrect. currently total memory consumption is 'buffer_size_kb x CPUs x 2'. Why two times difference is there? because ftrace implicitly allocate the buffer for max latency too. That makes sad result when admin want to use large buffer. (If admin want full logging and makes detail analysis). example, If admin have 24 CPUs machine and write 200MB to buffer_size_kb, the system consume ~10GB memory (200MB x 24 x 2). umm.. 5GB memory waste is usually unacceptable. Fortunatelly, almost all users don't use max latency feature. The max latency buffer can be disabled easily. This patch shrink buffer size of the max latency buffer if unnecessary. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> LKML-Reference: <20100701104554.DA2D.A69D9226@jp.fujitsu.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
418 lines
9.0 KiB
C
418 lines
9.0 KiB
C
/*
|
|
* trace task wakeup timings
|
|
*
|
|
* Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
|
|
* Copyright (C) 2008 Ingo Molnar <mingo@redhat.com>
|
|
*
|
|
* Based on code from the latency_tracer, that is:
|
|
*
|
|
* Copyright (C) 2004-2006 Ingo Molnar
|
|
* Copyright (C) 2004 William Lee Irwin III
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/ftrace.h>
|
|
#include <trace/events/sched.h>
|
|
|
|
#include "trace.h"
|
|
|
|
static struct trace_array *wakeup_trace;
|
|
static int __read_mostly tracer_enabled;
|
|
|
|
static struct task_struct *wakeup_task;
|
|
static int wakeup_cpu;
|
|
static int wakeup_current_cpu;
|
|
static unsigned wakeup_prio = -1;
|
|
static int wakeup_rt;
|
|
|
|
static arch_spinlock_t wakeup_lock =
|
|
(arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
|
|
|
|
static void __wakeup_reset(struct trace_array *tr);
|
|
|
|
static int save_lat_flag;
|
|
|
|
#ifdef CONFIG_FUNCTION_TRACER
|
|
/*
|
|
* irqsoff uses its own tracer function to keep the overhead down:
|
|
*/
|
|
static void
|
|
wakeup_tracer_call(unsigned long ip, unsigned long parent_ip)
|
|
{
|
|
struct trace_array *tr = wakeup_trace;
|
|
struct trace_array_cpu *data;
|
|
unsigned long flags;
|
|
long disabled;
|
|
int cpu;
|
|
int pc;
|
|
|
|
if (likely(!wakeup_task))
|
|
return;
|
|
|
|
pc = preempt_count();
|
|
preempt_disable_notrace();
|
|
|
|
cpu = raw_smp_processor_id();
|
|
if (cpu != wakeup_current_cpu)
|
|
goto out_enable;
|
|
|
|
data = tr->data[cpu];
|
|
disabled = atomic_inc_return(&data->disabled);
|
|
if (unlikely(disabled != 1))
|
|
goto out;
|
|
|
|
local_irq_save(flags);
|
|
|
|
trace_function(tr, ip, parent_ip, flags, pc);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
out:
|
|
atomic_dec(&data->disabled);
|
|
out_enable:
|
|
preempt_enable_notrace();
|
|
}
|
|
|
|
static struct ftrace_ops trace_ops __read_mostly =
|
|
{
|
|
.func = wakeup_tracer_call,
|
|
};
|
|
#endif /* CONFIG_FUNCTION_TRACER */
|
|
|
|
/*
|
|
* Should this new latency be reported/recorded?
|
|
*/
|
|
static int report_latency(cycle_t delta)
|
|
{
|
|
if (tracing_thresh) {
|
|
if (delta < tracing_thresh)
|
|
return 0;
|
|
} else {
|
|
if (delta <= tracing_max_latency)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
probe_wakeup_migrate_task(void *ignore, struct task_struct *task, int cpu)
|
|
{
|
|
if (task != wakeup_task)
|
|
return;
|
|
|
|
wakeup_current_cpu = cpu;
|
|
}
|
|
|
|
static void notrace
|
|
probe_wakeup_sched_switch(void *ignore,
|
|
struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
struct trace_array_cpu *data;
|
|
cycle_t T0, T1, delta;
|
|
unsigned long flags;
|
|
long disabled;
|
|
int cpu;
|
|
int pc;
|
|
|
|
tracing_record_cmdline(prev);
|
|
|
|
if (unlikely(!tracer_enabled))
|
|
return;
|
|
|
|
/*
|
|
* When we start a new trace, we set wakeup_task to NULL
|
|
* and then set tracer_enabled = 1. We want to make sure
|
|
* that another CPU does not see the tracer_enabled = 1
|
|
* and the wakeup_task with an older task, that might
|
|
* actually be the same as next.
|
|
*/
|
|
smp_rmb();
|
|
|
|
if (next != wakeup_task)
|
|
return;
|
|
|
|
pc = preempt_count();
|
|
|
|
/* disable local data, not wakeup_cpu data */
|
|
cpu = raw_smp_processor_id();
|
|
disabled = atomic_inc_return(&wakeup_trace->data[cpu]->disabled);
|
|
if (likely(disabled != 1))
|
|
goto out;
|
|
|
|
local_irq_save(flags);
|
|
arch_spin_lock(&wakeup_lock);
|
|
|
|
/* We could race with grabbing wakeup_lock */
|
|
if (unlikely(!tracer_enabled || next != wakeup_task))
|
|
goto out_unlock;
|
|
|
|
/* The task we are waiting for is waking up */
|
|
data = wakeup_trace->data[wakeup_cpu];
|
|
|
|
trace_function(wakeup_trace, CALLER_ADDR0, CALLER_ADDR1, flags, pc);
|
|
tracing_sched_switch_trace(wakeup_trace, prev, next, flags, pc);
|
|
|
|
T0 = data->preempt_timestamp;
|
|
T1 = ftrace_now(cpu);
|
|
delta = T1-T0;
|
|
|
|
if (!report_latency(delta))
|
|
goto out_unlock;
|
|
|
|
if (likely(!is_tracing_stopped())) {
|
|
tracing_max_latency = delta;
|
|
update_max_tr(wakeup_trace, wakeup_task, wakeup_cpu);
|
|
}
|
|
|
|
out_unlock:
|
|
__wakeup_reset(wakeup_trace);
|
|
arch_spin_unlock(&wakeup_lock);
|
|
local_irq_restore(flags);
|
|
out:
|
|
atomic_dec(&wakeup_trace->data[cpu]->disabled);
|
|
}
|
|
|
|
static void __wakeup_reset(struct trace_array *tr)
|
|
{
|
|
wakeup_cpu = -1;
|
|
wakeup_prio = -1;
|
|
|
|
if (wakeup_task)
|
|
put_task_struct(wakeup_task);
|
|
|
|
wakeup_task = NULL;
|
|
}
|
|
|
|
static void wakeup_reset(struct trace_array *tr)
|
|
{
|
|
unsigned long flags;
|
|
|
|
tracing_reset_online_cpus(tr);
|
|
|
|
local_irq_save(flags);
|
|
arch_spin_lock(&wakeup_lock);
|
|
__wakeup_reset(tr);
|
|
arch_spin_unlock(&wakeup_lock);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static void
|
|
probe_wakeup(void *ignore, struct task_struct *p, int success)
|
|
{
|
|
struct trace_array_cpu *data;
|
|
int cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
long disabled;
|
|
int pc;
|
|
|
|
if (likely(!tracer_enabled))
|
|
return;
|
|
|
|
tracing_record_cmdline(p);
|
|
tracing_record_cmdline(current);
|
|
|
|
if ((wakeup_rt && !rt_task(p)) ||
|
|
p->prio >= wakeup_prio ||
|
|
p->prio >= current->prio)
|
|
return;
|
|
|
|
pc = preempt_count();
|
|
disabled = atomic_inc_return(&wakeup_trace->data[cpu]->disabled);
|
|
if (unlikely(disabled != 1))
|
|
goto out;
|
|
|
|
/* interrupts should be off from try_to_wake_up */
|
|
arch_spin_lock(&wakeup_lock);
|
|
|
|
/* check for races. */
|
|
if (!tracer_enabled || p->prio >= wakeup_prio)
|
|
goto out_locked;
|
|
|
|
/* reset the trace */
|
|
__wakeup_reset(wakeup_trace);
|
|
|
|
wakeup_cpu = task_cpu(p);
|
|
wakeup_current_cpu = wakeup_cpu;
|
|
wakeup_prio = p->prio;
|
|
|
|
wakeup_task = p;
|
|
get_task_struct(wakeup_task);
|
|
|
|
local_save_flags(flags);
|
|
|
|
data = wakeup_trace->data[wakeup_cpu];
|
|
data->preempt_timestamp = ftrace_now(cpu);
|
|
tracing_sched_wakeup_trace(wakeup_trace, p, current, flags, pc);
|
|
|
|
/*
|
|
* We must be careful in using CALLER_ADDR2. But since wake_up
|
|
* is not called by an assembly function (where as schedule is)
|
|
* it should be safe to use it here.
|
|
*/
|
|
trace_function(wakeup_trace, CALLER_ADDR1, CALLER_ADDR2, flags, pc);
|
|
|
|
out_locked:
|
|
arch_spin_unlock(&wakeup_lock);
|
|
out:
|
|
atomic_dec(&wakeup_trace->data[cpu]->disabled);
|
|
}
|
|
|
|
static void start_wakeup_tracer(struct trace_array *tr)
|
|
{
|
|
int ret;
|
|
|
|
ret = register_trace_sched_wakeup(probe_wakeup, NULL);
|
|
if (ret) {
|
|
pr_info("wakeup trace: Couldn't activate tracepoint"
|
|
" probe to kernel_sched_wakeup\n");
|
|
return;
|
|
}
|
|
|
|
ret = register_trace_sched_wakeup_new(probe_wakeup, NULL);
|
|
if (ret) {
|
|
pr_info("wakeup trace: Couldn't activate tracepoint"
|
|
" probe to kernel_sched_wakeup_new\n");
|
|
goto fail_deprobe;
|
|
}
|
|
|
|
ret = register_trace_sched_switch(probe_wakeup_sched_switch, NULL);
|
|
if (ret) {
|
|
pr_info("sched trace: Couldn't activate tracepoint"
|
|
" probe to kernel_sched_switch\n");
|
|
goto fail_deprobe_wake_new;
|
|
}
|
|
|
|
ret = register_trace_sched_migrate_task(probe_wakeup_migrate_task, NULL);
|
|
if (ret) {
|
|
pr_info("wakeup trace: Couldn't activate tracepoint"
|
|
" probe to kernel_sched_migrate_task\n");
|
|
return;
|
|
}
|
|
|
|
wakeup_reset(tr);
|
|
|
|
/*
|
|
* Don't let the tracer_enabled = 1 show up before
|
|
* the wakeup_task is reset. This may be overkill since
|
|
* wakeup_reset does a spin_unlock after setting the
|
|
* wakeup_task to NULL, but I want to be safe.
|
|
* This is a slow path anyway.
|
|
*/
|
|
smp_wmb();
|
|
|
|
register_ftrace_function(&trace_ops);
|
|
|
|
if (tracing_is_enabled())
|
|
tracer_enabled = 1;
|
|
else
|
|
tracer_enabled = 0;
|
|
|
|
return;
|
|
fail_deprobe_wake_new:
|
|
unregister_trace_sched_wakeup_new(probe_wakeup, NULL);
|
|
fail_deprobe:
|
|
unregister_trace_sched_wakeup(probe_wakeup, NULL);
|
|
}
|
|
|
|
static void stop_wakeup_tracer(struct trace_array *tr)
|
|
{
|
|
tracer_enabled = 0;
|
|
unregister_ftrace_function(&trace_ops);
|
|
unregister_trace_sched_switch(probe_wakeup_sched_switch, NULL);
|
|
unregister_trace_sched_wakeup_new(probe_wakeup, NULL);
|
|
unregister_trace_sched_wakeup(probe_wakeup, NULL);
|
|
unregister_trace_sched_migrate_task(probe_wakeup_migrate_task, NULL);
|
|
}
|
|
|
|
static int __wakeup_tracer_init(struct trace_array *tr)
|
|
{
|
|
save_lat_flag = trace_flags & TRACE_ITER_LATENCY_FMT;
|
|
trace_flags |= TRACE_ITER_LATENCY_FMT;
|
|
|
|
tracing_max_latency = 0;
|
|
wakeup_trace = tr;
|
|
start_wakeup_tracer(tr);
|
|
return 0;
|
|
}
|
|
|
|
static int wakeup_tracer_init(struct trace_array *tr)
|
|
{
|
|
wakeup_rt = 0;
|
|
return __wakeup_tracer_init(tr);
|
|
}
|
|
|
|
static int wakeup_rt_tracer_init(struct trace_array *tr)
|
|
{
|
|
wakeup_rt = 1;
|
|
return __wakeup_tracer_init(tr);
|
|
}
|
|
|
|
static void wakeup_tracer_reset(struct trace_array *tr)
|
|
{
|
|
stop_wakeup_tracer(tr);
|
|
/* make sure we put back any tasks we are tracing */
|
|
wakeup_reset(tr);
|
|
|
|
if (!save_lat_flag)
|
|
trace_flags &= ~TRACE_ITER_LATENCY_FMT;
|
|
}
|
|
|
|
static void wakeup_tracer_start(struct trace_array *tr)
|
|
{
|
|
wakeup_reset(tr);
|
|
tracer_enabled = 1;
|
|
}
|
|
|
|
static void wakeup_tracer_stop(struct trace_array *tr)
|
|
{
|
|
tracer_enabled = 0;
|
|
}
|
|
|
|
static struct tracer wakeup_tracer __read_mostly =
|
|
{
|
|
.name = "wakeup",
|
|
.init = wakeup_tracer_init,
|
|
.reset = wakeup_tracer_reset,
|
|
.start = wakeup_tracer_start,
|
|
.stop = wakeup_tracer_stop,
|
|
.print_max = 1,
|
|
#ifdef CONFIG_FTRACE_SELFTEST
|
|
.selftest = trace_selftest_startup_wakeup,
|
|
#endif
|
|
.use_max_tr = 1,
|
|
};
|
|
|
|
static struct tracer wakeup_rt_tracer __read_mostly =
|
|
{
|
|
.name = "wakeup_rt",
|
|
.init = wakeup_rt_tracer_init,
|
|
.reset = wakeup_tracer_reset,
|
|
.start = wakeup_tracer_start,
|
|
.stop = wakeup_tracer_stop,
|
|
.wait_pipe = poll_wait_pipe,
|
|
.print_max = 1,
|
|
#ifdef CONFIG_FTRACE_SELFTEST
|
|
.selftest = trace_selftest_startup_wakeup,
|
|
#endif
|
|
.use_max_tr = 1,
|
|
};
|
|
|
|
__init static int init_wakeup_tracer(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = register_tracer(&wakeup_tracer);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = register_tracer(&wakeup_rt_tracer);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
device_initcall(init_wakeup_tracer);
|