mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-25 03:59:29 +00:00
0345f37be6
Part of the cleanup on ath9k -- this was also causing some annoying compile time warnings. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
886 lines
25 KiB
C
886 lines
25 KiB
C
/*
|
|
* Copyright (c) 2008 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/* Implementation of beacon processing. */
|
|
|
|
#include "core.h"
|
|
|
|
/*
|
|
* Configure parameters for the beacon queue
|
|
*
|
|
* This function will modify certain transmit queue properties depending on
|
|
* the operating mode of the station (AP or AdHoc). Parameters are AIFS
|
|
* settings and channel width min/max
|
|
*/
|
|
static int ath_beaconq_config(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath9k_tx_queue_info qi;
|
|
|
|
ath9k_hw_get_txq_props(ah, sc->sc_bhalq, &qi);
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) {
|
|
/* Always burst out beacon and CAB traffic. */
|
|
qi.tqi_aifs = 1;
|
|
qi.tqi_cwmin = 0;
|
|
qi.tqi_cwmax = 0;
|
|
} else {
|
|
/* Adhoc mode; important thing is to use 2x cwmin. */
|
|
qi.tqi_aifs = sc->sc_beacon_qi.tqi_aifs;
|
|
qi.tqi_cwmin = 2*sc->sc_beacon_qi.tqi_cwmin;
|
|
qi.tqi_cwmax = sc->sc_beacon_qi.tqi_cwmax;
|
|
}
|
|
|
|
if (!ath9k_hw_set_txq_props(ah, sc->sc_bhalq, &qi)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: unable to update h/w beacon queue parameters\n",
|
|
__func__);
|
|
return 0;
|
|
} else {
|
|
ath9k_hw_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the beacon frame for transmit.
|
|
*
|
|
* Associates the beacon frame buffer with a transmit descriptor. Will set
|
|
* up all required antenna switch parameters, rate codes, and channel flags.
|
|
* Beacons are always sent out at the lowest rate, and are not retried.
|
|
*/
|
|
static void ath_beacon_setup(struct ath_softc *sc,
|
|
struct ath_vap *avp, struct ath_buf *bf)
|
|
{
|
|
struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds;
|
|
struct ath9k_11n_rate_series series[4];
|
|
const struct ath9k_rate_table *rt;
|
|
int flags, antenna;
|
|
u8 rix, rate;
|
|
int ctsrate = 0;
|
|
int ctsduration = 0;
|
|
|
|
DPRINTF(sc, ATH_DBG_BEACON, "%s: m %p len %u\n",
|
|
__func__, skb, skb->len);
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
|
|
flags = ATH9K_TXDESC_NOACK;
|
|
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_IBSS &&
|
|
(ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL)) {
|
|
ds->ds_link = bf->bf_daddr; /* self-linked */
|
|
flags |= ATH9K_TXDESC_VEOL;
|
|
/* Let hardware handle antenna switching. */
|
|
antenna = 0;
|
|
} else {
|
|
ds->ds_link = 0;
|
|
/*
|
|
* Switch antenna every beacon.
|
|
* Should only switch every beacon period, not for every
|
|
* SWBA's
|
|
* XXX assumes two antenna
|
|
*/
|
|
antenna = ((sc->ast_be_xmit / sc->sc_nbcnvaps) & 1 ? 2 : 1);
|
|
}
|
|
|
|
ds->ds_data = bf->bf_buf_addr;
|
|
|
|
/*
|
|
* Calculate rate code.
|
|
* XXX everything at min xmit rate
|
|
*/
|
|
rix = 0;
|
|
rt = sc->sc_currates;
|
|
rate = rt->info[rix].rateCode;
|
|
if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
|
|
rate |= rt->info[rix].shortPreamble;
|
|
|
|
ath9k_hw_set11n_txdesc(ah, ds,
|
|
skb->len + FCS_LEN, /* frame length */
|
|
ATH9K_PKT_TYPE_BEACON, /* Atheros packet type */
|
|
avp->av_btxctl.txpower, /* txpower XXX */
|
|
ATH9K_TXKEYIX_INVALID, /* no encryption */
|
|
ATH9K_KEY_TYPE_CLEAR, /* no encryption */
|
|
flags /* no ack,
|
|
veol for beacons */
|
|
);
|
|
|
|
/* NB: beacon's BufLen must be a multiple of 4 bytes */
|
|
ath9k_hw_filltxdesc(ah, ds,
|
|
roundup(skb->len, 4), /* buffer length */
|
|
true, /* first segment */
|
|
true, /* last segment */
|
|
ds /* first descriptor */
|
|
);
|
|
|
|
memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
|
|
series[0].Tries = 1;
|
|
series[0].Rate = rate;
|
|
series[0].ChSel = sc->sc_tx_chainmask;
|
|
series[0].RateFlags = (ctsrate) ? ATH9K_RATESERIES_RTS_CTS : 0;
|
|
ath9k_hw_set11n_ratescenario(ah, ds, ds, 0,
|
|
ctsrate, ctsduration, series, 4, 0);
|
|
}
|
|
|
|
/*
|
|
* Generate beacon frame and queue cab data for a vap.
|
|
*
|
|
* Updates the contents of the beacon frame. It is assumed that the buffer for
|
|
* the beacon frame has been allocated in the ATH object, and simply needs to
|
|
* be filled for this cycle. Also, any CAB (crap after beacon?) traffic will
|
|
* be added to the beacon frame at this point.
|
|
*/
|
|
static struct ath_buf *ath_beacon_generate(struct ath_softc *sc, int if_id)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ath_vap *avp;
|
|
struct sk_buff *skb;
|
|
struct ath_txq *cabq;
|
|
struct ieee80211_tx_info *info;
|
|
int cabq_depth;
|
|
|
|
avp = sc->sc_vaps[if_id];
|
|
ASSERT(avp);
|
|
|
|
cabq = sc->sc_cabq;
|
|
|
|
if (avp->av_bcbuf == NULL) {
|
|
DPRINTF(sc, ATH_DBG_BEACON, "%s: avp=%p av_bcbuf=%p\n",
|
|
__func__, avp, avp->av_bcbuf);
|
|
return NULL;
|
|
}
|
|
|
|
bf = avp->av_bcbuf;
|
|
skb = (struct sk_buff *)bf->bf_mpdu;
|
|
if (skb) {
|
|
pci_unmap_single(sc->pdev, bf->bf_dmacontext,
|
|
skb_end_pointer(skb) - skb->head,
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
|
|
skb = ieee80211_beacon_get(sc->hw, avp->av_if_data);
|
|
bf->bf_mpdu = skb;
|
|
if (skb == NULL)
|
|
return NULL;
|
|
|
|
info = IEEE80211_SKB_CB(skb);
|
|
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
|
|
/*
|
|
* TODO: make sure the seq# gets assigned properly (vs. other
|
|
* TX frames)
|
|
*/
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
sc->seq_no += 0x10;
|
|
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
|
|
hdr->seq_ctrl |= cpu_to_le16(sc->seq_no);
|
|
}
|
|
|
|
bf->bf_buf_addr = bf->bf_dmacontext =
|
|
pci_map_single(sc->pdev, skb->data,
|
|
skb_end_pointer(skb) - skb->head,
|
|
PCI_DMA_TODEVICE);
|
|
|
|
skb = ieee80211_get_buffered_bc(sc->hw, avp->av_if_data);
|
|
|
|
/*
|
|
* if the CABQ traffic from previous DTIM is pending and the current
|
|
* beacon is also a DTIM.
|
|
* 1) if there is only one vap let the cab traffic continue.
|
|
* 2) if there are more than one vap and we are using staggered
|
|
* beacons, then drain the cabq by dropping all the frames in
|
|
* the cabq so that the current vaps cab traffic can be scheduled.
|
|
*/
|
|
spin_lock_bh(&cabq->axq_lock);
|
|
cabq_depth = cabq->axq_depth;
|
|
spin_unlock_bh(&cabq->axq_lock);
|
|
|
|
if (skb && cabq_depth) {
|
|
/*
|
|
* Unlock the cabq lock as ath_tx_draintxq acquires
|
|
* the lock again which is a common function and that
|
|
* acquires txq lock inside.
|
|
*/
|
|
if (sc->sc_nvaps > 1) {
|
|
ath_tx_draintxq(sc, cabq, false);
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: flush previous cabq traffic\n", __func__);
|
|
}
|
|
}
|
|
|
|
/* Construct tx descriptor. */
|
|
ath_beacon_setup(sc, avp, bf);
|
|
|
|
/*
|
|
* Enable the CAB queue before the beacon queue to
|
|
* insure cab frames are triggered by this beacon.
|
|
*/
|
|
while (skb) {
|
|
ath_tx_cabq(sc, skb);
|
|
skb = ieee80211_get_buffered_bc(sc->hw, avp->av_if_data);
|
|
}
|
|
|
|
return bf;
|
|
}
|
|
|
|
/*
|
|
* Startup beacon transmission for adhoc mode when they are sent entirely
|
|
* by the hardware using the self-linked descriptor + veol trick.
|
|
*/
|
|
static void ath_beacon_start_adhoc(struct ath_softc *sc, int if_id)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
struct ath_vap *avp;
|
|
struct sk_buff *skb;
|
|
|
|
avp = sc->sc_vaps[if_id];
|
|
ASSERT(avp);
|
|
|
|
if (avp->av_bcbuf == NULL) {
|
|
DPRINTF(sc, ATH_DBG_BEACON, "%s: avp=%p av_bcbuf=%p\n",
|
|
__func__, avp, avp != NULL ? avp->av_bcbuf : NULL);
|
|
return;
|
|
}
|
|
bf = avp->av_bcbuf;
|
|
skb = (struct sk_buff *) bf->bf_mpdu;
|
|
|
|
/* Construct tx descriptor. */
|
|
ath_beacon_setup(sc, avp, bf);
|
|
|
|
/* NB: caller is known to have already stopped tx dma */
|
|
ath9k_hw_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
|
|
ath9k_hw_txstart(ah, sc->sc_bhalq);
|
|
DPRINTF(sc, ATH_DBG_BEACON, "%s: TXDP%u = %llx (%p)\n", __func__,
|
|
sc->sc_bhalq, ito64(bf->bf_daddr), bf->bf_desc);
|
|
}
|
|
|
|
/*
|
|
* Setup a h/w transmit queue for beacons.
|
|
*
|
|
* This function allocates an information structure (struct ath9k_txq_info)
|
|
* on the stack, sets some specific parameters (zero out channel width
|
|
* min/max, and enable aifs). The info structure does not need to be
|
|
* persistant.
|
|
*/
|
|
int ath_beaconq_setup(struct ath_hal *ah)
|
|
{
|
|
struct ath9k_tx_queue_info qi;
|
|
|
|
memset(&qi, 0, sizeof(qi));
|
|
qi.tqi_aifs = 1;
|
|
qi.tqi_cwmin = 0;
|
|
qi.tqi_cwmax = 0;
|
|
/* NB: don't enable any interrupts */
|
|
return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate and setup an initial beacon frame.
|
|
*
|
|
* Allocate a beacon state variable for a specific VAP instance created on
|
|
* the ATH interface. This routine also calculates the beacon "slot" for
|
|
* staggared beacons in the mBSSID case.
|
|
*/
|
|
int ath_beacon_alloc(struct ath_softc *sc, int if_id)
|
|
{
|
|
struct ath_vap *avp;
|
|
struct ieee80211_hdr *hdr;
|
|
struct ath_buf *bf;
|
|
struct sk_buff *skb;
|
|
__le64 tstamp;
|
|
|
|
avp = sc->sc_vaps[if_id];
|
|
ASSERT(avp);
|
|
|
|
/* Allocate a beacon descriptor if we haven't done so. */
|
|
if (!avp->av_bcbuf) {
|
|
/* Allocate beacon state for hostap/ibss. We know
|
|
* a buffer is available. */
|
|
|
|
avp->av_bcbuf = list_first_entry(&sc->sc_bbuf,
|
|
struct ath_buf, list);
|
|
list_del(&avp->av_bcbuf->list);
|
|
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP ||
|
|
!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL)) {
|
|
int slot;
|
|
/*
|
|
* Assign the vap to a beacon xmit slot. As
|
|
* above, this cannot fail to find one.
|
|
*/
|
|
avp->av_bslot = 0;
|
|
for (slot = 0; slot < ATH_BCBUF; slot++)
|
|
if (sc->sc_bslot[slot] == ATH_IF_ID_ANY) {
|
|
/*
|
|
* XXX hack, space out slots to better
|
|
* deal with misses
|
|
*/
|
|
if (slot+1 < ATH_BCBUF &&
|
|
sc->sc_bslot[slot+1] ==
|
|
ATH_IF_ID_ANY) {
|
|
avp->av_bslot = slot+1;
|
|
break;
|
|
}
|
|
avp->av_bslot = slot;
|
|
/* NB: keep looking for a double slot */
|
|
}
|
|
BUG_ON(sc->sc_bslot[avp->av_bslot] != ATH_IF_ID_ANY);
|
|
sc->sc_bslot[avp->av_bslot] = if_id;
|
|
sc->sc_nbcnvaps++;
|
|
}
|
|
}
|
|
|
|
/* release the previous beacon frame , if it already exists. */
|
|
bf = avp->av_bcbuf;
|
|
if (bf->bf_mpdu != NULL) {
|
|
skb = (struct sk_buff *)bf->bf_mpdu;
|
|
pci_unmap_single(sc->pdev, bf->bf_dmacontext,
|
|
skb_end_pointer(skb) - skb->head,
|
|
PCI_DMA_TODEVICE);
|
|
dev_kfree_skb_any(skb);
|
|
bf->bf_mpdu = NULL;
|
|
}
|
|
|
|
/*
|
|
* NB: the beacon data buffer must be 32-bit aligned.
|
|
* FIXME: Fill avp->av_btxctl.txpower and
|
|
* avp->av_btxctl.shortPreamble
|
|
*/
|
|
skb = ieee80211_beacon_get(sc->hw, avp->av_if_data);
|
|
if (skb == NULL) {
|
|
DPRINTF(sc, ATH_DBG_BEACON, "%s: cannot get skb\n",
|
|
__func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
tstamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
|
|
sc->bc_tstamp = le64_to_cpu(tstamp);
|
|
|
|
/*
|
|
* Calculate a TSF adjustment factor required for
|
|
* staggered beacons. Note that we assume the format
|
|
* of the beacon frame leaves the tstamp field immediately
|
|
* following the header.
|
|
*/
|
|
if (avp->av_bslot > 0) {
|
|
u64 tsfadjust;
|
|
__le64 val;
|
|
int intval;
|
|
|
|
intval = sc->hw->conf.beacon_int ?
|
|
sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL;
|
|
|
|
/*
|
|
* The beacon interval is in TU's; the TSF in usecs.
|
|
* We figure out how many TU's to add to align the
|
|
* timestamp then convert to TSF units and handle
|
|
* byte swapping before writing it in the frame.
|
|
* The hardware will then add this each time a beacon
|
|
* frame is sent. Note that we align vap's 1..N
|
|
* and leave vap 0 untouched. This means vap 0
|
|
* has a timestamp in one beacon interval while the
|
|
* others get a timestamp aligned to the next interval.
|
|
*/
|
|
tsfadjust = (intval * (ATH_BCBUF - avp->av_bslot)) / ATH_BCBUF;
|
|
val = cpu_to_le64(tsfadjust << 10); /* TU->TSF */
|
|
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: %s beacons, bslot %d intval %u tsfadjust %llu\n",
|
|
__func__, "stagger",
|
|
avp->av_bslot, intval, (unsigned long long)tsfadjust);
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
memcpy(&hdr[1], &val, sizeof(val));
|
|
}
|
|
|
|
bf->bf_buf_addr = bf->bf_dmacontext =
|
|
pci_map_single(sc->pdev, skb->data,
|
|
skb_end_pointer(skb) - skb->head,
|
|
PCI_DMA_TODEVICE);
|
|
bf->bf_mpdu = skb;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reclaim beacon resources and return buffer to the pool.
|
|
*
|
|
* Checks the VAP to put the beacon frame buffer back to the ATH object
|
|
* queue, and de-allocates any skbs that were sent as CAB traffic.
|
|
*/
|
|
void ath_beacon_return(struct ath_softc *sc, struct ath_vap *avp)
|
|
{
|
|
if (avp->av_bcbuf != NULL) {
|
|
struct ath_buf *bf;
|
|
|
|
if (avp->av_bslot != -1) {
|
|
sc->sc_bslot[avp->av_bslot] = ATH_IF_ID_ANY;
|
|
sc->sc_nbcnvaps--;
|
|
}
|
|
|
|
bf = avp->av_bcbuf;
|
|
if (bf->bf_mpdu != NULL) {
|
|
struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
|
|
pci_unmap_single(sc->pdev, bf->bf_dmacontext,
|
|
skb_end_pointer(skb) - skb->head,
|
|
PCI_DMA_TODEVICE);
|
|
dev_kfree_skb_any(skb);
|
|
bf->bf_mpdu = NULL;
|
|
}
|
|
list_add_tail(&bf->list, &sc->sc_bbuf);
|
|
|
|
avp->av_bcbuf = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tasklet for Sending Beacons
|
|
*
|
|
* Transmit one or more beacon frames at SWBA. Dynamic updates to the frame
|
|
* contents are done as needed and the slot time is also adjusted based on
|
|
* current state.
|
|
*/
|
|
void ath9k_beacon_tasklet(unsigned long data)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *)data;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf = NULL;
|
|
int slot, if_id;
|
|
u32 bfaddr;
|
|
u32 rx_clear = 0, rx_frame = 0, tx_frame = 0;
|
|
u32 show_cycles = 0;
|
|
u32 bc = 0; /* beacon count */
|
|
u64 tsf;
|
|
u32 tsftu;
|
|
u16 intval;
|
|
|
|
if (sc->sc_flags & SC_OP_NO_RESET) {
|
|
show_cycles = ath9k_hw_GetMibCycleCountsPct(ah,
|
|
&rx_clear,
|
|
&rx_frame,
|
|
&tx_frame);
|
|
}
|
|
|
|
/*
|
|
* Check if the previous beacon has gone out. If
|
|
* not don't try to post another, skip this period
|
|
* and wait for the next. Missed beacons indicate
|
|
* a problem and should not occur. If we miss too
|
|
* many consecutive beacons reset the device.
|
|
*
|
|
* FIXME: Clean up this mess !!
|
|
*/
|
|
if (ath9k_hw_numtxpending(ah, sc->sc_bhalq) != 0) {
|
|
sc->sc_bmisscount++;
|
|
/* XXX: doth needs the chanchange IE countdown decremented.
|
|
* We should consider adding a mac80211 call to indicate
|
|
* a beacon miss so appropriate action could be taken
|
|
* (in that layer).
|
|
*/
|
|
if (sc->sc_bmisscount < BSTUCK_THRESH) {
|
|
if (sc->sc_flags & SC_OP_NO_RESET) {
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: missed %u consecutive beacons\n",
|
|
__func__, sc->sc_bmisscount);
|
|
if (show_cycles) {
|
|
/*
|
|
* Display cycle counter stats from HW
|
|
* to aide in debug of stickiness.
|
|
*/
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: busy times: rx_clear=%d, "
|
|
"rx_frame=%d, tx_frame=%d\n",
|
|
__func__, rx_clear, rx_frame,
|
|
tx_frame);
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: unable to obtain "
|
|
"busy times\n", __func__);
|
|
}
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: missed %u consecutive beacons\n",
|
|
__func__, sc->sc_bmisscount);
|
|
}
|
|
} else if (sc->sc_bmisscount >= BSTUCK_THRESH) {
|
|
if (sc->sc_flags & SC_OP_NO_RESET) {
|
|
if (sc->sc_bmisscount == BSTUCK_THRESH) {
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: beacon is officially "
|
|
"stuck\n", __func__);
|
|
ath9k_hw_dmaRegDump(ah);
|
|
}
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: beacon is officially stuck\n",
|
|
__func__);
|
|
ath_bstuck_process(sc);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (sc->sc_bmisscount != 0) {
|
|
if (sc->sc_flags & SC_OP_NO_RESET) {
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: resume beacon xmit after %u misses\n",
|
|
__func__, sc->sc_bmisscount);
|
|
} else {
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: resume beacon xmit after %u misses\n",
|
|
__func__, sc->sc_bmisscount);
|
|
}
|
|
sc->sc_bmisscount = 0;
|
|
}
|
|
|
|
/*
|
|
* Generate beacon frames. we are sending frames
|
|
* staggered so calculate the slot for this frame based
|
|
* on the tsf to safeguard against missing an swba.
|
|
*/
|
|
|
|
intval = sc->hw->conf.beacon_int ?
|
|
sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL;
|
|
|
|
tsf = ath9k_hw_gettsf64(ah);
|
|
tsftu = TSF_TO_TU(tsf>>32, tsf);
|
|
slot = ((tsftu % intval) * ATH_BCBUF) / intval;
|
|
if_id = sc->sc_bslot[(slot + 1) % ATH_BCBUF];
|
|
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: slot %d [tsf %llu tsftu %u intval %u] if_id %d\n",
|
|
__func__, slot, (unsigned long long)tsf, tsftu,
|
|
intval, if_id);
|
|
|
|
bfaddr = 0;
|
|
if (if_id != ATH_IF_ID_ANY) {
|
|
bf = ath_beacon_generate(sc, if_id);
|
|
if (bf != NULL) {
|
|
bfaddr = bf->bf_daddr;
|
|
bc = 1;
|
|
}
|
|
}
|
|
/*
|
|
* Handle slot time change when a non-ERP station joins/leaves
|
|
* an 11g network. The 802.11 layer notifies us via callback,
|
|
* we mark updateslot, then wait one beacon before effecting
|
|
* the change. This gives associated stations at least one
|
|
* beacon interval to note the state change.
|
|
*
|
|
* NB: The slot time change state machine is clocked according
|
|
* to whether we are bursting or staggering beacons. We
|
|
* recognize the request to update and record the current
|
|
* slot then don't transition until that slot is reached
|
|
* again. If we miss a beacon for that slot then we'll be
|
|
* slow to transition but we'll be sure at least one beacon
|
|
* interval has passed. When bursting slot is always left
|
|
* set to ATH_BCBUF so this check is a noop.
|
|
*/
|
|
/* XXX locking */
|
|
if (sc->sc_updateslot == UPDATE) {
|
|
sc->sc_updateslot = COMMIT; /* commit next beacon */
|
|
sc->sc_slotupdate = slot;
|
|
} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
|
|
ath_setslottime(sc); /* commit change to hardware */
|
|
|
|
if (bfaddr != 0) {
|
|
/*
|
|
* Stop any current dma and put the new frame(s) on the queue.
|
|
* This should never fail since we check above that no frames
|
|
* are still pending on the queue.
|
|
*/
|
|
if (!ath9k_hw_stoptxdma(ah, sc->sc_bhalq)) {
|
|
DPRINTF(sc, ATH_DBG_FATAL,
|
|
"%s: beacon queue %u did not stop?\n",
|
|
__func__, sc->sc_bhalq);
|
|
/* NB: the HAL still stops DMA, so proceed */
|
|
}
|
|
|
|
/* NB: cabq traffic should already be queued and primed */
|
|
ath9k_hw_puttxbuf(ah, sc->sc_bhalq, bfaddr);
|
|
ath9k_hw_txstart(ah, sc->sc_bhalq);
|
|
|
|
sc->ast_be_xmit += bc; /* XXX per-vap? */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tasklet for Beacon Stuck processing
|
|
*
|
|
* Processing for Beacon Stuck.
|
|
* Basically resets the chip.
|
|
*/
|
|
void ath_bstuck_process(struct ath_softc *sc)
|
|
{
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: stuck beacon; resetting (bmiss count %u)\n",
|
|
__func__, sc->sc_bmisscount);
|
|
ath_reset(sc, false);
|
|
}
|
|
|
|
/*
|
|
* Configure the beacon and sleep timers.
|
|
*
|
|
* When operating as an AP this resets the TSF and sets
|
|
* up the hardware to notify us when we need to issue beacons.
|
|
*
|
|
* When operating in station mode this sets up the beacon
|
|
* timers according to the timestamp of the last received
|
|
* beacon and the current TSF, configures PCF and DTIM
|
|
* handling, programs the sleep registers so the hardware
|
|
* will wakeup in time to receive beacons, and configures
|
|
* the beacon miss handling so we'll receive a BMISS
|
|
* interrupt when we stop seeing beacons from the AP
|
|
* we've associated with.
|
|
*/
|
|
void ath_beacon_config(struct ath_softc *sc, int if_id)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_beacon_config conf;
|
|
enum ath9k_opmode av_opmode;
|
|
u32 nexttbtt, intval;
|
|
|
|
if (if_id != ATH_IF_ID_ANY)
|
|
av_opmode = sc->sc_vaps[if_id]->av_opmode;
|
|
else
|
|
av_opmode = sc->sc_ah->ah_opmode;
|
|
|
|
memset(&conf, 0, sizeof(struct ath_beacon_config));
|
|
|
|
conf.beacon_interval = sc->hw->conf.beacon_int ?
|
|
sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL;
|
|
conf.listen_interval = 1;
|
|
conf.dtim_period = conf.beacon_interval;
|
|
conf.dtim_count = 1;
|
|
conf.bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf.beacon_interval;
|
|
|
|
/* extract tstamp from last beacon and convert to TU */
|
|
nexttbtt = TSF_TO_TU(sc->bc_tstamp >> 32, sc->bc_tstamp);
|
|
|
|
/* XXX conditionalize multi-bss support? */
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) {
|
|
/*
|
|
* For multi-bss ap support beacons are either staggered
|
|
* evenly over N slots or burst together. For the former
|
|
* arrange for the SWBA to be delivered for each slot.
|
|
* Slots that are not occupied will generate nothing.
|
|
*/
|
|
/* NB: the beacon interval is kept internally in TU's */
|
|
intval = conf.beacon_interval & ATH9K_BEACON_PERIOD;
|
|
intval /= ATH_BCBUF; /* for staggered beacons */
|
|
} else {
|
|
intval = conf.beacon_interval & ATH9K_BEACON_PERIOD;
|
|
}
|
|
|
|
if (nexttbtt == 0) /* e.g. for ap mode */
|
|
nexttbtt = intval;
|
|
else if (intval) /* NB: can be 0 for monitor mode */
|
|
nexttbtt = roundup(nexttbtt, intval);
|
|
|
|
DPRINTF(sc, ATH_DBG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
|
|
__func__, nexttbtt, intval, conf.beacon_interval);
|
|
|
|
/* Check for ATH9K_M_HOSTAP and sc_nostabeacons for WDS client */
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_STA) {
|
|
struct ath9k_beacon_state bs;
|
|
u64 tsf;
|
|
u32 tsftu;
|
|
int dtimperiod, dtimcount, sleepduration;
|
|
int cfpperiod, cfpcount;
|
|
|
|
/*
|
|
* Setup dtim and cfp parameters according to
|
|
* last beacon we received (which may be none).
|
|
*/
|
|
dtimperiod = conf.dtim_period;
|
|
if (dtimperiod <= 0) /* NB: 0 if not known */
|
|
dtimperiod = 1;
|
|
dtimcount = conf.dtim_count;
|
|
if (dtimcount >= dtimperiod) /* NB: sanity check */
|
|
dtimcount = 0;
|
|
cfpperiod = 1; /* NB: no PCF support yet */
|
|
cfpcount = 0;
|
|
|
|
sleepduration = conf.listen_interval * intval;
|
|
if (sleepduration <= 0)
|
|
sleepduration = intval;
|
|
|
|
#define FUDGE 2
|
|
/*
|
|
* Pull nexttbtt forward to reflect the current
|
|
* TSF and calculate dtim+cfp state for the result.
|
|
*/
|
|
tsf = ath9k_hw_gettsf64(ah);
|
|
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
|
|
do {
|
|
nexttbtt += intval;
|
|
if (--dtimcount < 0) {
|
|
dtimcount = dtimperiod - 1;
|
|
if (--cfpcount < 0)
|
|
cfpcount = cfpperiod - 1;
|
|
}
|
|
} while (nexttbtt < tsftu);
|
|
#undef FUDGE
|
|
memset(&bs, 0, sizeof(bs));
|
|
bs.bs_intval = intval;
|
|
bs.bs_nexttbtt = nexttbtt;
|
|
bs.bs_dtimperiod = dtimperiod*intval;
|
|
bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
|
|
bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
|
|
bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
|
|
bs.bs_cfpmaxduration = 0;
|
|
|
|
/*
|
|
* Calculate the number of consecutive beacons to miss
|
|
* before taking a BMISS interrupt. The configuration
|
|
* is specified in TU so we only need calculate based
|
|
* on the beacon interval. Note that we clamp the
|
|
* result to at most 15 beacons.
|
|
*/
|
|
if (sleepduration > intval) {
|
|
bs.bs_bmissthreshold = conf.listen_interval *
|
|
ATH_DEFAULT_BMISS_LIMIT / 2;
|
|
} else {
|
|
bs.bs_bmissthreshold =
|
|
DIV_ROUND_UP(conf.bmiss_timeout, intval);
|
|
if (bs.bs_bmissthreshold > 15)
|
|
bs.bs_bmissthreshold = 15;
|
|
else if (bs.bs_bmissthreshold <= 0)
|
|
bs.bs_bmissthreshold = 1;
|
|
}
|
|
|
|
/*
|
|
* Calculate sleep duration. The configuration is
|
|
* given in ms. We insure a multiple of the beacon
|
|
* period is used. Also, if the sleep duration is
|
|
* greater than the DTIM period then it makes senses
|
|
* to make it a multiple of that.
|
|
*
|
|
* XXX fixed at 100ms
|
|
*/
|
|
|
|
bs.bs_sleepduration = roundup(IEEE80211_MS_TO_TU(100),
|
|
sleepduration);
|
|
if (bs.bs_sleepduration > bs.bs_dtimperiod)
|
|
bs.bs_sleepduration = bs.bs_dtimperiod;
|
|
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: tsf %llu "
|
|
"tsf:tu %u "
|
|
"intval %u "
|
|
"nexttbtt %u "
|
|
"dtim %u "
|
|
"nextdtim %u "
|
|
"bmiss %u "
|
|
"sleep %u "
|
|
"cfp:period %u "
|
|
"maxdur %u "
|
|
"next %u "
|
|
"timoffset %u\n",
|
|
__func__,
|
|
(unsigned long long)tsf, tsftu,
|
|
bs.bs_intval,
|
|
bs.bs_nexttbtt,
|
|
bs.bs_dtimperiod,
|
|
bs.bs_nextdtim,
|
|
bs.bs_bmissthreshold,
|
|
bs.bs_sleepduration,
|
|
bs.bs_cfpperiod,
|
|
bs.bs_cfpmaxduration,
|
|
bs.bs_cfpnext,
|
|
bs.bs_timoffset
|
|
);
|
|
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
ath9k_hw_set_sta_beacon_timers(ah, &bs);
|
|
sc->sc_imask |= ATH9K_INT_BMISS;
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
} else {
|
|
u64 tsf;
|
|
u32 tsftu;
|
|
ath9k_hw_set_interrupts(ah, 0);
|
|
if (nexttbtt == intval)
|
|
intval |= ATH9K_BEACON_RESET_TSF;
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_IBSS) {
|
|
/*
|
|
* Pull nexttbtt forward to reflect the current
|
|
* TSF
|
|
*/
|
|
#define FUDGE 2
|
|
if (!(intval & ATH9K_BEACON_RESET_TSF)) {
|
|
tsf = ath9k_hw_gettsf64(ah);
|
|
tsftu = TSF_TO_TU((u32)(tsf>>32),
|
|
(u32)tsf) + FUDGE;
|
|
do {
|
|
nexttbtt += intval;
|
|
} while (nexttbtt < tsftu);
|
|
}
|
|
#undef FUDGE
|
|
DPRINTF(sc, ATH_DBG_BEACON,
|
|
"%s: IBSS nexttbtt %u intval %u (%u)\n",
|
|
__func__, nexttbtt,
|
|
intval & ~ATH9K_BEACON_RESET_TSF,
|
|
conf.beacon_interval);
|
|
|
|
/*
|
|
* In IBSS mode enable the beacon timers but only
|
|
* enable SWBA interrupts if we need to manually
|
|
* prepare beacon frames. Otherwise we use a
|
|
* self-linked tx descriptor and let the hardware
|
|
* deal with things.
|
|
*/
|
|
intval |= ATH9K_BEACON_ENA;
|
|
if (!(ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL))
|
|
sc->sc_imask |= ATH9K_INT_SWBA;
|
|
ath_beaconq_config(sc);
|
|
} else if (sc->sc_ah->ah_opmode == ATH9K_M_HOSTAP) {
|
|
/*
|
|
* In AP mode we enable the beacon timers and
|
|
* SWBA interrupts to prepare beacon frames.
|
|
*/
|
|
intval |= ATH9K_BEACON_ENA;
|
|
sc->sc_imask |= ATH9K_INT_SWBA; /* beacon prepare */
|
|
ath_beaconq_config(sc);
|
|
}
|
|
ath9k_hw_beaconinit(ah, nexttbtt, intval);
|
|
sc->sc_bmisscount = 0;
|
|
ath9k_hw_set_interrupts(ah, sc->sc_imask);
|
|
/*
|
|
* When using a self-linked beacon descriptor in
|
|
* ibss mode load it once here.
|
|
*/
|
|
if (sc->sc_ah->ah_opmode == ATH9K_M_IBSS &&
|
|
(ah->ah_caps.hw_caps & ATH9K_HW_CAP_VEOL))
|
|
ath_beacon_start_adhoc(sc, 0);
|
|
}
|
|
}
|
|
|
|
/* Function to collect beacon rssi data and resync beacon if necessary */
|
|
|
|
void ath_beacon_sync(struct ath_softc *sc, int if_id)
|
|
{
|
|
/*
|
|
* Resync beacon timers using the tsf of the
|
|
* beacon frame we just received.
|
|
*/
|
|
ath_beacon_config(sc, if_id);
|
|
sc->sc_flags |= SC_OP_BEACONS;
|
|
}
|