mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-26 04:35:01 +00:00
1f40c49570
1/ Device DAX for persistent memory: Device DAX is the device-centric analogue of Filesystem DAX (CONFIG_FS_DAX). It allows memory ranges to be allocated and mapped without need of an intervening file system. Device DAX is strict, precise and predictable. Specifically this interface: a) Guarantees fault granularity with respect to a given page size (pte, pmd, or pud) set at configuration time. b) Enforces deterministic behavior by being strict about what fault scenarios are supported. Persistent memory is the first target, but the mechanism is also targeted for exclusive allocations of performance/feature differentiated memory ranges. 2/ Support for the HPE DSM (device specific method) command formats. This enables management of these first generation devices until a unified DSM specification materializes. 3/ Further ACPI 6.1 compliance with support for the common dimm identifier format. 4/ Various fixes and cleanups across the subsystem. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJXQhdeAAoJEB7SkWpmfYgCYP8P/RAgHkroL5lUKKU45TQUBKcY diC9POeNSccme4tIRIQCGQUZ7+7mKM5ECv2ulF4xYOHvFBCcd/8OF6xKAXs48r3v oguYhvX1YvIkBc9FUfBQbR1IsCOJ7uWp/UYiYCIQEXS5tS9Jv545j3ASqDt9xWoV TWlceZn3yWSbASiV9qZ2eXhEkk75pg4yara++rsm2/7rs/TTXn5EIjBs+57BtAo+ 6utI4fTy0CQvBYwVzam3m7y9dt2Z2jWXL4hgmT7pkvJ7HDoctVly0P9+bknJPUAo g+NugKgTGeiqH5GYp5CTZ9KvL91sDF4q00pfinITVdFl0E3VE293cIHlAzSQBm5/ w58xxaRV958ZvpH7EaBmYQG82QDi/eFNqeHqVGn0xAM6MlaqO7avUMQp2lRPYMCJ u1z/NloR5yo+sffHxsn5Luiq9KqOf6zk33PuxEkKbN74OayCSPn/SeVCO7rQR0B6 yPMJTTcTiCLnId1kOWAPaEmuK2U3BW/+ogg7hKgeCQSysuy5n6Ok5a2vEx/gJRAm v9yF68RmIWumpHr+QB0TmB8mVbD5SY+xWTm3CqJb9MipuFIOF7AVsPyTgucBvE7s v+i5F6MDO6tcVfiDT4AiZEt6D2TM5RbtckkUEX3ZTD6j7CGuR5D8bH0HNRrghrYk KT1lAk6tjWBOGAHc5Ji7 =Y3Xv -----END PGP SIGNATURE----- Merge tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm updates from Dan Williams: "The bulk of this update was stabilized before the merge window and appeared in -next. The "device dax" implementation was revised this week in response to review feedback, and to address failures detected by the recently expanded ndctl unit test suite. Not included in this pull request are two dax topic branches (dax error handling, and dax radix-tree locking). These topics were deferred to get a few more days of -next integration testing, and to coordinate a branch baseline with Ted and the ext4 tree. Vishal and Ross will send the error handling and locking topics respectively in the next few days. This branch has received a positive build result from the kbuild robot across 226 configs. Summary: - Device DAX for persistent memory: Device DAX is the device-centric analogue of Filesystem DAX (CONFIG_FS_DAX). It allows memory ranges to be allocated and mapped without need of an intervening file system. Device DAX is strict, precise and predictable. Specifically this interface: a) Guarantees fault granularity with respect to a given page size (pte, pmd, or pud) set at configuration time. b) Enforces deterministic behavior by being strict about what fault scenarios are supported. Persistent memory is the first target, but the mechanism is also targeted for exclusive allocations of performance/feature differentiated memory ranges. - Support for the HPE DSM (device specific method) command formats. This enables management of these first generation devices until a unified DSM specification materializes. - Further ACPI 6.1 compliance with support for the common dimm identifier format. - Various fixes and cleanups across the subsystem" * tag 'libnvdimm-for-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (40 commits) libnvdimm, dax: fix deletion libnvdimm, dax: fix alignment validation libnvdimm, dax: autodetect support libnvdimm: release ida resources Revert "block: enable dax for raw block devices" /dev/dax, core: file operations and dax-mmap /dev/dax, pmem: direct access to persistent memory libnvdimm: stop requiring a driver ->remove() method libnvdimm, dax: record the specified alignment of a dax-device instance libnvdimm, dax: reserve space to store labels for device-dax libnvdimm, dax: introduce device-dax infrastructure nfit: add sysfs dimm 'family' and 'dsm_mask' attributes tools/testing/nvdimm: ND_CMD_CALL support nfit: disable vendor specific commands nfit: export subsystem ids as attributes nfit: fix format interface code byte order per ACPI6.1 nfit, libnvdimm: limited/whitelisted dimm command marshaling mechanism nfit, libnvdimm: clarify "commands" vs "_DSMs" libnvdimm: increase max envelope size for ioctl acpi/nfit: Add sysfs "id" for NVDIMM ID ...
3537 lines
93 KiB
C
3537 lines
93 KiB
C
/*
|
|
* Copyright (C) 2009 Red Hat, Inc.
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/shrinker.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/khugepaged.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/page_idle.h>
|
|
|
|
#include <asm/tlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include "internal.h"
|
|
|
|
enum scan_result {
|
|
SCAN_FAIL,
|
|
SCAN_SUCCEED,
|
|
SCAN_PMD_NULL,
|
|
SCAN_EXCEED_NONE_PTE,
|
|
SCAN_PTE_NON_PRESENT,
|
|
SCAN_PAGE_RO,
|
|
SCAN_NO_REFERENCED_PAGE,
|
|
SCAN_PAGE_NULL,
|
|
SCAN_SCAN_ABORT,
|
|
SCAN_PAGE_COUNT,
|
|
SCAN_PAGE_LRU,
|
|
SCAN_PAGE_LOCK,
|
|
SCAN_PAGE_ANON,
|
|
SCAN_PAGE_COMPOUND,
|
|
SCAN_ANY_PROCESS,
|
|
SCAN_VMA_NULL,
|
|
SCAN_VMA_CHECK,
|
|
SCAN_ADDRESS_RANGE,
|
|
SCAN_SWAP_CACHE_PAGE,
|
|
SCAN_DEL_PAGE_LRU,
|
|
SCAN_ALLOC_HUGE_PAGE_FAIL,
|
|
SCAN_CGROUP_CHARGE_FAIL
|
|
};
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/huge_memory.h>
|
|
|
|
/*
|
|
* By default transparent hugepage support is disabled in order that avoid
|
|
* to risk increase the memory footprint of applications without a guaranteed
|
|
* benefit. When transparent hugepage support is enabled, is for all mappings,
|
|
* and khugepaged scans all mappings.
|
|
* Defrag is invoked by khugepaged hugepage allocations and by page faults
|
|
* for all hugepage allocations.
|
|
*/
|
|
unsigned long transparent_hugepage_flags __read_mostly =
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
|
|
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
|
|
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
|
|
#endif
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
|
|
/* default scan 8*512 pte (or vmas) every 30 second */
|
|
static unsigned int khugepaged_pages_to_scan __read_mostly;
|
|
static unsigned int khugepaged_pages_collapsed;
|
|
static unsigned int khugepaged_full_scans;
|
|
static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
|
|
/* during fragmentation poll the hugepage allocator once every minute */
|
|
static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
|
|
static unsigned long khugepaged_sleep_expire;
|
|
static struct task_struct *khugepaged_thread __read_mostly;
|
|
static DEFINE_MUTEX(khugepaged_mutex);
|
|
static DEFINE_SPINLOCK(khugepaged_mm_lock);
|
|
static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
|
|
/*
|
|
* default collapse hugepages if there is at least one pte mapped like
|
|
* it would have happened if the vma was large enough during page
|
|
* fault.
|
|
*/
|
|
static unsigned int khugepaged_max_ptes_none __read_mostly;
|
|
|
|
static int khugepaged(void *none);
|
|
static int khugepaged_slab_init(void);
|
|
static void khugepaged_slab_exit(void);
|
|
|
|
#define MM_SLOTS_HASH_BITS 10
|
|
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
|
|
|
|
static struct kmem_cache *mm_slot_cache __read_mostly;
|
|
|
|
/**
|
|
* struct mm_slot - hash lookup from mm to mm_slot
|
|
* @hash: hash collision list
|
|
* @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
|
|
* @mm: the mm that this information is valid for
|
|
*/
|
|
struct mm_slot {
|
|
struct hlist_node hash;
|
|
struct list_head mm_node;
|
|
struct mm_struct *mm;
|
|
};
|
|
|
|
/**
|
|
* struct khugepaged_scan - cursor for scanning
|
|
* @mm_head: the head of the mm list to scan
|
|
* @mm_slot: the current mm_slot we are scanning
|
|
* @address: the next address inside that to be scanned
|
|
*
|
|
* There is only the one khugepaged_scan instance of this cursor structure.
|
|
*/
|
|
struct khugepaged_scan {
|
|
struct list_head mm_head;
|
|
struct mm_slot *mm_slot;
|
|
unsigned long address;
|
|
};
|
|
static struct khugepaged_scan khugepaged_scan = {
|
|
.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
|
|
};
|
|
|
|
static struct shrinker deferred_split_shrinker;
|
|
|
|
static void set_recommended_min_free_kbytes(void)
|
|
{
|
|
struct zone *zone;
|
|
int nr_zones = 0;
|
|
unsigned long recommended_min;
|
|
|
|
for_each_populated_zone(zone)
|
|
nr_zones++;
|
|
|
|
/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
|
|
recommended_min = pageblock_nr_pages * nr_zones * 2;
|
|
|
|
/*
|
|
* Make sure that on average at least two pageblocks are almost free
|
|
* of another type, one for a migratetype to fall back to and a
|
|
* second to avoid subsequent fallbacks of other types There are 3
|
|
* MIGRATE_TYPES we care about.
|
|
*/
|
|
recommended_min += pageblock_nr_pages * nr_zones *
|
|
MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
|
|
|
|
/* don't ever allow to reserve more than 5% of the lowmem */
|
|
recommended_min = min(recommended_min,
|
|
(unsigned long) nr_free_buffer_pages() / 20);
|
|
recommended_min <<= (PAGE_SHIFT-10);
|
|
|
|
if (recommended_min > min_free_kbytes) {
|
|
if (user_min_free_kbytes >= 0)
|
|
pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
|
|
min_free_kbytes, recommended_min);
|
|
|
|
min_free_kbytes = recommended_min;
|
|
}
|
|
setup_per_zone_wmarks();
|
|
}
|
|
|
|
static int start_stop_khugepaged(void)
|
|
{
|
|
int err = 0;
|
|
if (khugepaged_enabled()) {
|
|
if (!khugepaged_thread)
|
|
khugepaged_thread = kthread_run(khugepaged, NULL,
|
|
"khugepaged");
|
|
if (IS_ERR(khugepaged_thread)) {
|
|
pr_err("khugepaged: kthread_run(khugepaged) failed\n");
|
|
err = PTR_ERR(khugepaged_thread);
|
|
khugepaged_thread = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
if (!list_empty(&khugepaged_scan.mm_head))
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
set_recommended_min_free_kbytes();
|
|
} else if (khugepaged_thread) {
|
|
kthread_stop(khugepaged_thread);
|
|
khugepaged_thread = NULL;
|
|
}
|
|
fail:
|
|
return err;
|
|
}
|
|
|
|
static atomic_t huge_zero_refcount;
|
|
struct page *huge_zero_page __read_mostly;
|
|
|
|
struct page *get_huge_zero_page(void)
|
|
{
|
|
struct page *zero_page;
|
|
retry:
|
|
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
|
|
return READ_ONCE(huge_zero_page);
|
|
|
|
zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
|
|
HPAGE_PMD_ORDER);
|
|
if (!zero_page) {
|
|
count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
|
|
return NULL;
|
|
}
|
|
count_vm_event(THP_ZERO_PAGE_ALLOC);
|
|
preempt_disable();
|
|
if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
|
|
preempt_enable();
|
|
__free_pages(zero_page, compound_order(zero_page));
|
|
goto retry;
|
|
}
|
|
|
|
/* We take additional reference here. It will be put back by shrinker */
|
|
atomic_set(&huge_zero_refcount, 2);
|
|
preempt_enable();
|
|
return READ_ONCE(huge_zero_page);
|
|
}
|
|
|
|
void put_huge_zero_page(void)
|
|
{
|
|
/*
|
|
* Counter should never go to zero here. Only shrinker can put
|
|
* last reference.
|
|
*/
|
|
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
|
|
}
|
|
|
|
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
/* we can free zero page only if last reference remains */
|
|
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
|
|
}
|
|
|
|
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
|
|
struct page *zero_page = xchg(&huge_zero_page, NULL);
|
|
BUG_ON(zero_page == NULL);
|
|
__free_pages(zero_page, compound_order(zero_page));
|
|
return HPAGE_PMD_NR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct shrinker huge_zero_page_shrinker = {
|
|
.count_objects = shrink_huge_zero_page_count,
|
|
.scan_objects = shrink_huge_zero_page_scan,
|
|
.seeks = DEFAULT_SEEKS,
|
|
};
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
|
|
static ssize_t triple_flag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count,
|
|
enum transparent_hugepage_flag enabled,
|
|
enum transparent_hugepage_flag deferred,
|
|
enum transparent_hugepage_flag req_madv)
|
|
{
|
|
if (!memcmp("defer", buf,
|
|
min(sizeof("defer")-1, count))) {
|
|
if (enabled == deferred)
|
|
return -EINVAL;
|
|
clear_bit(enabled, &transparent_hugepage_flags);
|
|
clear_bit(req_madv, &transparent_hugepage_flags);
|
|
set_bit(deferred, &transparent_hugepage_flags);
|
|
} else if (!memcmp("always", buf,
|
|
min(sizeof("always")-1, count))) {
|
|
clear_bit(deferred, &transparent_hugepage_flags);
|
|
clear_bit(req_madv, &transparent_hugepage_flags);
|
|
set_bit(enabled, &transparent_hugepage_flags);
|
|
} else if (!memcmp("madvise", buf,
|
|
min(sizeof("madvise")-1, count))) {
|
|
clear_bit(enabled, &transparent_hugepage_flags);
|
|
clear_bit(deferred, &transparent_hugepage_flags);
|
|
set_bit(req_madv, &transparent_hugepage_flags);
|
|
} else if (!memcmp("never", buf,
|
|
min(sizeof("never")-1, count))) {
|
|
clear_bit(enabled, &transparent_hugepage_flags);
|
|
clear_bit(req_madv, &transparent_hugepage_flags);
|
|
clear_bit(deferred, &transparent_hugepage_flags);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "[always] madvise never\n");
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "always [madvise] never\n");
|
|
else
|
|
return sprintf(buf, "always madvise [never]\n");
|
|
}
|
|
|
|
static ssize_t enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = triple_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_FLAG,
|
|
TRANSPARENT_HUGEPAGE_FLAG,
|
|
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
|
|
|
|
if (ret > 0) {
|
|
int err;
|
|
|
|
mutex_lock(&khugepaged_mutex);
|
|
err = start_stop_khugepaged();
|
|
mutex_unlock(&khugepaged_mutex);
|
|
|
|
if (err)
|
|
ret = err;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
static struct kobj_attribute enabled_attr =
|
|
__ATTR(enabled, 0644, enabled_show, enabled_store);
|
|
|
|
static ssize_t single_flag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
return sprintf(buf, "%d\n",
|
|
!!test_bit(flag, &transparent_hugepage_flags));
|
|
}
|
|
|
|
static ssize_t single_flag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
unsigned long value;
|
|
int ret;
|
|
|
|
ret = kstrtoul(buf, 10, &value);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (value > 1)
|
|
return -EINVAL;
|
|
|
|
if (value)
|
|
set_bit(flag, &transparent_hugepage_flags);
|
|
else
|
|
clear_bit(flag, &transparent_hugepage_flags);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Currently defrag only disables __GFP_NOWAIT for allocation. A blind
|
|
* __GFP_REPEAT is too aggressive, it's never worth swapping tons of
|
|
* memory just to allocate one more hugepage.
|
|
*/
|
|
static ssize_t defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "[always] defer madvise never\n");
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "always [defer] madvise never\n");
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "always defer [madvise] never\n");
|
|
else
|
|
return sprintf(buf, "always defer madvise [never]\n");
|
|
|
|
}
|
|
static ssize_t defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return triple_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
|
|
}
|
|
static struct kobj_attribute defrag_attr =
|
|
__ATTR(defrag, 0644, defrag_show, defrag_store);
|
|
|
|
static ssize_t use_zero_page_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
}
|
|
static ssize_t use_zero_page_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
return single_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
}
|
|
static struct kobj_attribute use_zero_page_attr =
|
|
__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
|
|
#ifdef CONFIG_DEBUG_VM
|
|
static ssize_t debug_cow_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
|
|
}
|
|
static ssize_t debug_cow_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return single_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
|
|
}
|
|
static struct kobj_attribute debug_cow_attr =
|
|
__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
|
|
#endif /* CONFIG_DEBUG_VM */
|
|
|
|
static struct attribute *hugepage_attr[] = {
|
|
&enabled_attr.attr,
|
|
&defrag_attr.attr,
|
|
&use_zero_page_attr.attr,
|
|
#ifdef CONFIG_DEBUG_VM
|
|
&debug_cow_attr.attr,
|
|
#endif
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group hugepage_attr_group = {
|
|
.attrs = hugepage_attr,
|
|
};
|
|
|
|
static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
|
|
}
|
|
|
|
static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long msecs;
|
|
int err;
|
|
|
|
err = kstrtoul(buf, 10, &msecs);
|
|
if (err || msecs > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_scan_sleep_millisecs = msecs;
|
|
khugepaged_sleep_expire = 0;
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute scan_sleep_millisecs_attr =
|
|
__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
|
|
scan_sleep_millisecs_store);
|
|
|
|
static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
|
|
}
|
|
|
|
static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned long msecs;
|
|
int err;
|
|
|
|
err = kstrtoul(buf, 10, &msecs);
|
|
if (err || msecs > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_alloc_sleep_millisecs = msecs;
|
|
khugepaged_sleep_expire = 0;
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute alloc_sleep_millisecs_attr =
|
|
__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
|
|
alloc_sleep_millisecs_store);
|
|
|
|
static ssize_t pages_to_scan_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
|
|
}
|
|
static ssize_t pages_to_scan_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long pages;
|
|
|
|
err = kstrtoul(buf, 10, &pages);
|
|
if (err || !pages || pages > UINT_MAX)
|
|
return -EINVAL;
|
|
|
|
khugepaged_pages_to_scan = pages;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute pages_to_scan_attr =
|
|
__ATTR(pages_to_scan, 0644, pages_to_scan_show,
|
|
pages_to_scan_store);
|
|
|
|
static ssize_t pages_collapsed_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
|
|
}
|
|
static struct kobj_attribute pages_collapsed_attr =
|
|
__ATTR_RO(pages_collapsed);
|
|
|
|
static ssize_t full_scans_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_full_scans);
|
|
}
|
|
static struct kobj_attribute full_scans_attr =
|
|
__ATTR_RO(full_scans);
|
|
|
|
static ssize_t khugepaged_defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
}
|
|
static ssize_t khugepaged_defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return single_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
|
|
}
|
|
static struct kobj_attribute khugepaged_defrag_attr =
|
|
__ATTR(defrag, 0644, khugepaged_defrag_show,
|
|
khugepaged_defrag_store);
|
|
|
|
/*
|
|
* max_ptes_none controls if khugepaged should collapse hugepages over
|
|
* any unmapped ptes in turn potentially increasing the memory
|
|
* footprint of the vmas. When max_ptes_none is 0 khugepaged will not
|
|
* reduce the available free memory in the system as it
|
|
* runs. Increasing max_ptes_none will instead potentially reduce the
|
|
* free memory in the system during the khugepaged scan.
|
|
*/
|
|
static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
|
|
}
|
|
static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int err;
|
|
unsigned long max_ptes_none;
|
|
|
|
err = kstrtoul(buf, 10, &max_ptes_none);
|
|
if (err || max_ptes_none > HPAGE_PMD_NR-1)
|
|
return -EINVAL;
|
|
|
|
khugepaged_max_ptes_none = max_ptes_none;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute khugepaged_max_ptes_none_attr =
|
|
__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
|
|
khugepaged_max_ptes_none_store);
|
|
|
|
static struct attribute *khugepaged_attr[] = {
|
|
&khugepaged_defrag_attr.attr,
|
|
&khugepaged_max_ptes_none_attr.attr,
|
|
&pages_to_scan_attr.attr,
|
|
&pages_collapsed_attr.attr,
|
|
&full_scans_attr.attr,
|
|
&scan_sleep_millisecs_attr.attr,
|
|
&alloc_sleep_millisecs_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group khugepaged_attr_group = {
|
|
.attrs = khugepaged_attr,
|
|
.name = "khugepaged",
|
|
};
|
|
|
|
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
int err;
|
|
|
|
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
|
|
if (unlikely(!*hugepage_kobj)) {
|
|
pr_err("failed to create transparent hugepage kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register transparent hugepage group\n");
|
|
goto delete_obj;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register transparent hugepage group\n");
|
|
goto remove_hp_group;
|
|
}
|
|
|
|
return 0;
|
|
|
|
remove_hp_group:
|
|
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
|
|
delete_obj:
|
|
kobject_put(*hugepage_kobj);
|
|
return err;
|
|
}
|
|
|
|
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
|
|
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
|
|
kobject_put(hugepage_kobj);
|
|
}
|
|
#else
|
|
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
static int __init hugepage_init(void)
|
|
{
|
|
int err;
|
|
struct kobject *hugepage_kobj;
|
|
|
|
if (!has_transparent_hugepage()) {
|
|
transparent_hugepage_flags = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
|
|
khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
|
|
/*
|
|
* hugepages can't be allocated by the buddy allocator
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
|
|
/*
|
|
* we use page->mapping and page->index in second tail page
|
|
* as list_head: assuming THP order >= 2
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
|
|
|
|
err = hugepage_init_sysfs(&hugepage_kobj);
|
|
if (err)
|
|
goto err_sysfs;
|
|
|
|
err = khugepaged_slab_init();
|
|
if (err)
|
|
goto err_slab;
|
|
|
|
err = register_shrinker(&huge_zero_page_shrinker);
|
|
if (err)
|
|
goto err_hzp_shrinker;
|
|
err = register_shrinker(&deferred_split_shrinker);
|
|
if (err)
|
|
goto err_split_shrinker;
|
|
|
|
/*
|
|
* By default disable transparent hugepages on smaller systems,
|
|
* where the extra memory used could hurt more than TLB overhead
|
|
* is likely to save. The admin can still enable it through /sys.
|
|
*/
|
|
if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
|
|
transparent_hugepage_flags = 0;
|
|
return 0;
|
|
}
|
|
|
|
err = start_stop_khugepaged();
|
|
if (err)
|
|
goto err_khugepaged;
|
|
|
|
return 0;
|
|
err_khugepaged:
|
|
unregister_shrinker(&deferred_split_shrinker);
|
|
err_split_shrinker:
|
|
unregister_shrinker(&huge_zero_page_shrinker);
|
|
err_hzp_shrinker:
|
|
khugepaged_slab_exit();
|
|
err_slab:
|
|
hugepage_exit_sysfs(hugepage_kobj);
|
|
err_sysfs:
|
|
return err;
|
|
}
|
|
subsys_initcall(hugepage_init);
|
|
|
|
static int __init setup_transparent_hugepage(char *str)
|
|
{
|
|
int ret = 0;
|
|
if (!str)
|
|
goto out;
|
|
if (!strcmp(str, "always")) {
|
|
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret)
|
|
pr_warn("transparent_hugepage= cannot parse, ignored\n");
|
|
return ret;
|
|
}
|
|
__setup("transparent_hugepage=", setup_transparent_hugepage);
|
|
|
|
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pmd = pmd_mkwrite(pmd);
|
|
return pmd;
|
|
}
|
|
|
|
static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
|
|
{
|
|
return pmd_mkhuge(mk_pmd(page, prot));
|
|
}
|
|
|
|
static inline struct list_head *page_deferred_list(struct page *page)
|
|
{
|
|
/*
|
|
* ->lru in the tail pages is occupied by compound_head.
|
|
* Let's use ->mapping + ->index in the second tail page as list_head.
|
|
*/
|
|
return (struct list_head *)&page[2].mapping;
|
|
}
|
|
|
|
void prep_transhuge_page(struct page *page)
|
|
{
|
|
/*
|
|
* we use page->mapping and page->indexlru in second tail page
|
|
* as list_head: assuming THP order >= 2
|
|
*/
|
|
|
|
INIT_LIST_HEAD(page_deferred_list(page));
|
|
set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
|
|
}
|
|
|
|
static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmd,
|
|
struct page *page, gfp_t gfp,
|
|
unsigned int flags)
|
|
{
|
|
struct mem_cgroup *memcg;
|
|
pgtable_t pgtable;
|
|
spinlock_t *ptl;
|
|
unsigned long haddr = address & HPAGE_PMD_MASK;
|
|
|
|
VM_BUG_ON_PAGE(!PageCompound(page), page);
|
|
|
|
if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
|
|
put_page(page);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
|
|
pgtable = pte_alloc_one(mm, haddr);
|
|
if (unlikely(!pgtable)) {
|
|
mem_cgroup_cancel_charge(page, memcg, true);
|
|
put_page(page);
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
clear_huge_page(page, haddr, HPAGE_PMD_NR);
|
|
/*
|
|
* The memory barrier inside __SetPageUptodate makes sure that
|
|
* clear_huge_page writes become visible before the set_pmd_at()
|
|
* write.
|
|
*/
|
|
__SetPageUptodate(page);
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (unlikely(!pmd_none(*pmd))) {
|
|
spin_unlock(ptl);
|
|
mem_cgroup_cancel_charge(page, memcg, true);
|
|
put_page(page);
|
|
pte_free(mm, pgtable);
|
|
} else {
|
|
pmd_t entry;
|
|
|
|
/* Deliver the page fault to userland */
|
|
if (userfaultfd_missing(vma)) {
|
|
int ret;
|
|
|
|
spin_unlock(ptl);
|
|
mem_cgroup_cancel_charge(page, memcg, true);
|
|
put_page(page);
|
|
pte_free(mm, pgtable);
|
|
ret = handle_userfault(vma, address, flags,
|
|
VM_UFFD_MISSING);
|
|
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
|
|
return ret;
|
|
}
|
|
|
|
entry = mk_huge_pmd(page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
page_add_new_anon_rmap(page, vma, haddr, true);
|
|
mem_cgroup_commit_charge(page, memcg, false, true);
|
|
lru_cache_add_active_or_unevictable(page, vma);
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
set_pmd_at(mm, haddr, pmd, entry);
|
|
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
atomic_long_inc(&mm->nr_ptes);
|
|
spin_unlock(ptl);
|
|
count_vm_event(THP_FAULT_ALLOC);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If THP is set to always then directly reclaim/compact as necessary
|
|
* If set to defer then do no reclaim and defer to khugepaged
|
|
* If set to madvise and the VMA is flagged then directly reclaim/compact
|
|
*/
|
|
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
|
|
{
|
|
gfp_t reclaim_flags = 0;
|
|
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
|
|
(vma->vm_flags & VM_HUGEPAGE))
|
|
reclaim_flags = __GFP_DIRECT_RECLAIM;
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
|
|
reclaim_flags = __GFP_KSWAPD_RECLAIM;
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
|
|
reclaim_flags = __GFP_DIRECT_RECLAIM;
|
|
|
|
return GFP_TRANSHUGE | reclaim_flags;
|
|
}
|
|
|
|
/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
|
|
static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
|
|
{
|
|
return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
|
|
}
|
|
|
|
/* Caller must hold page table lock. */
|
|
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
|
|
struct page *zero_page)
|
|
{
|
|
pmd_t entry;
|
|
if (!pmd_none(*pmd))
|
|
return false;
|
|
entry = mk_pmd(zero_page, vma->vm_page_prot);
|
|
entry = pmd_mkhuge(entry);
|
|
if (pgtable)
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
set_pmd_at(mm, haddr, pmd, entry);
|
|
atomic_long_inc(&mm->nr_ptes);
|
|
return true;
|
|
}
|
|
|
|
int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmd,
|
|
unsigned int flags)
|
|
{
|
|
gfp_t gfp;
|
|
struct page *page;
|
|
unsigned long haddr = address & HPAGE_PMD_MASK;
|
|
|
|
if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
|
|
return VM_FAULT_FALLBACK;
|
|
if (unlikely(anon_vma_prepare(vma)))
|
|
return VM_FAULT_OOM;
|
|
if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
|
|
return VM_FAULT_OOM;
|
|
if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
|
|
transparent_hugepage_use_zero_page()) {
|
|
spinlock_t *ptl;
|
|
pgtable_t pgtable;
|
|
struct page *zero_page;
|
|
bool set;
|
|
int ret;
|
|
pgtable = pte_alloc_one(mm, haddr);
|
|
if (unlikely(!pgtable))
|
|
return VM_FAULT_OOM;
|
|
zero_page = get_huge_zero_page();
|
|
if (unlikely(!zero_page)) {
|
|
pte_free(mm, pgtable);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
ptl = pmd_lock(mm, pmd);
|
|
ret = 0;
|
|
set = false;
|
|
if (pmd_none(*pmd)) {
|
|
if (userfaultfd_missing(vma)) {
|
|
spin_unlock(ptl);
|
|
ret = handle_userfault(vma, address, flags,
|
|
VM_UFFD_MISSING);
|
|
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
|
|
} else {
|
|
set_huge_zero_page(pgtable, mm, vma,
|
|
haddr, pmd,
|
|
zero_page);
|
|
spin_unlock(ptl);
|
|
set = true;
|
|
}
|
|
} else
|
|
spin_unlock(ptl);
|
|
if (!set) {
|
|
pte_free(mm, pgtable);
|
|
put_huge_zero_page();
|
|
}
|
|
return ret;
|
|
}
|
|
gfp = alloc_hugepage_direct_gfpmask(vma);
|
|
page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
|
|
if (unlikely(!page)) {
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
prep_transhuge_page(page);
|
|
return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
|
|
flags);
|
|
}
|
|
|
|
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pmd_t entry;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
|
|
if (pfn_t_devmap(pfn))
|
|
entry = pmd_mkdevmap(entry);
|
|
if (write) {
|
|
entry = pmd_mkyoung(pmd_mkdirty(entry));
|
|
entry = maybe_pmd_mkwrite(entry, vma);
|
|
}
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, pfn_t pfn, bool write)
|
|
{
|
|
pgprot_t pgprot = vma->vm_page_prot;
|
|
/*
|
|
* If we had pmd_special, we could avoid all these restrictions,
|
|
* but we need to be consistent with PTEs and architectures that
|
|
* can't support a 'special' bit.
|
|
*/
|
|
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
|
|
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
|
|
(VM_PFNMAP|VM_MIXEDMAP));
|
|
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
|
|
BUG_ON(!pfn_t_devmap(pfn));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return VM_FAULT_SIGBUS;
|
|
if (track_pfn_insert(vma, &pgprot, pfn))
|
|
return VM_FAULT_SIGBUS;
|
|
insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
|
|
|
|
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd)
|
|
{
|
|
pmd_t _pmd;
|
|
|
|
/*
|
|
* We should set the dirty bit only for FOLL_WRITE but for now
|
|
* the dirty bit in the pmd is meaningless. And if the dirty
|
|
* bit will become meaningful and we'll only set it with
|
|
* FOLL_WRITE, an atomic set_bit will be required on the pmd to
|
|
* set the young bit, instead of the current set_pmd_at.
|
|
*/
|
|
_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
|
|
if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
|
|
pmd, _pmd, 1))
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
}
|
|
|
|
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, int flags)
|
|
{
|
|
unsigned long pfn = pmd_pfn(*pmd);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct dev_pagemap *pgmap;
|
|
struct page *page;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmd));
|
|
|
|
if (flags & FOLL_WRITE && !pmd_write(*pmd))
|
|
return NULL;
|
|
|
|
if (pmd_present(*pmd) && pmd_devmap(*pmd))
|
|
/* pass */;
|
|
else
|
|
return NULL;
|
|
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pmd(vma, addr, pmd);
|
|
|
|
/*
|
|
* device mapped pages can only be returned if the
|
|
* caller will manage the page reference count.
|
|
*/
|
|
if (!(flags & FOLL_GET))
|
|
return ERR_PTR(-EEXIST);
|
|
|
|
pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
|
|
pgmap = get_dev_pagemap(pfn, NULL);
|
|
if (!pgmap)
|
|
return ERR_PTR(-EFAULT);
|
|
page = pfn_to_page(pfn);
|
|
get_page(page);
|
|
put_dev_pagemap(pgmap);
|
|
|
|
return page;
|
|
}
|
|
|
|
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *dst_ptl, *src_ptl;
|
|
struct page *src_page;
|
|
pmd_t pmd;
|
|
pgtable_t pgtable = NULL;
|
|
int ret;
|
|
|
|
if (!vma_is_dax(vma)) {
|
|
ret = -ENOMEM;
|
|
pgtable = pte_alloc_one(dst_mm, addr);
|
|
if (unlikely(!pgtable))
|
|
goto out;
|
|
}
|
|
|
|
dst_ptl = pmd_lock(dst_mm, dst_pmd);
|
|
src_ptl = pmd_lockptr(src_mm, src_pmd);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
ret = -EAGAIN;
|
|
pmd = *src_pmd;
|
|
if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
|
|
pte_free(dst_mm, pgtable);
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* When page table lock is held, the huge zero pmd should not be
|
|
* under splitting since we don't split the page itself, only pmd to
|
|
* a page table.
|
|
*/
|
|
if (is_huge_zero_pmd(pmd)) {
|
|
struct page *zero_page;
|
|
/*
|
|
* get_huge_zero_page() will never allocate a new page here,
|
|
* since we already have a zero page to copy. It just takes a
|
|
* reference.
|
|
*/
|
|
zero_page = get_huge_zero_page();
|
|
set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
|
|
zero_page);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!vma_is_dax(vma)) {
|
|
/* thp accounting separate from pmd_devmap accounting */
|
|
src_page = pmd_page(pmd);
|
|
VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
|
|
get_page(src_page);
|
|
page_dup_rmap(src_page, true);
|
|
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
atomic_long_inc(&dst_mm->nr_ptes);
|
|
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
|
|
}
|
|
|
|
pmdp_set_wrprotect(src_mm, addr, src_pmd);
|
|
pmd = pmd_mkold(pmd_wrprotect(pmd));
|
|
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void huge_pmd_set_accessed(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmd, pmd_t orig_pmd,
|
|
int dirty)
|
|
{
|
|
spinlock_t *ptl;
|
|
pmd_t entry;
|
|
unsigned long haddr;
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (unlikely(!pmd_same(*pmd, orig_pmd)))
|
|
goto unlock;
|
|
|
|
entry = pmd_mkyoung(orig_pmd);
|
|
haddr = address & HPAGE_PMD_MASK;
|
|
if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
|
|
unlock:
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pmd_t *pmd, pmd_t orig_pmd,
|
|
struct page *page,
|
|
unsigned long haddr)
|
|
{
|
|
struct mem_cgroup *memcg;
|
|
spinlock_t *ptl;
|
|
pgtable_t pgtable;
|
|
pmd_t _pmd;
|
|
int ret = 0, i;
|
|
struct page **pages;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
|
|
pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
|
|
GFP_KERNEL);
|
|
if (unlikely(!pages)) {
|
|
ret |= VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
|
|
__GFP_OTHER_NODE,
|
|
vma, address, page_to_nid(page));
|
|
if (unlikely(!pages[i] ||
|
|
mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
|
|
&memcg, false))) {
|
|
if (pages[i])
|
|
put_page(pages[i]);
|
|
while (--i >= 0) {
|
|
memcg = (void *)page_private(pages[i]);
|
|
set_page_private(pages[i], 0);
|
|
mem_cgroup_cancel_charge(pages[i], memcg,
|
|
false);
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
ret |= VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
set_page_private(pages[i], (unsigned long)memcg);
|
|
}
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
copy_user_highpage(pages[i], page + i,
|
|
haddr + PAGE_SIZE * i, vma);
|
|
__SetPageUptodate(pages[i]);
|
|
cond_resched();
|
|
}
|
|
|
|
mmun_start = haddr;
|
|
mmun_end = haddr + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (unlikely(!pmd_same(*pmd, orig_pmd)))
|
|
goto out_free_pages;
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
|
|
pmdp_huge_clear_flush_notify(vma, haddr, pmd);
|
|
/* leave pmd empty until pte is filled */
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
|
pte_t *pte, entry;
|
|
entry = mk_pte(pages[i], vma->vm_page_prot);
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
|
memcg = (void *)page_private(pages[i]);
|
|
set_page_private(pages[i], 0);
|
|
page_add_new_anon_rmap(pages[i], vma, haddr, false);
|
|
mem_cgroup_commit_charge(pages[i], memcg, false, false);
|
|
lru_cache_add_active_or_unevictable(pages[i], vma);
|
|
pte = pte_offset_map(&_pmd, haddr);
|
|
VM_BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, haddr, pte, entry);
|
|
pte_unmap(pte);
|
|
}
|
|
kfree(pages);
|
|
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
page_remove_rmap(page, true);
|
|
spin_unlock(ptl);
|
|
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
|
|
ret |= VM_FAULT_WRITE;
|
|
put_page(page);
|
|
|
|
out:
|
|
return ret;
|
|
|
|
out_free_pages:
|
|
spin_unlock(ptl);
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
memcg = (void *)page_private(pages[i]);
|
|
set_page_private(pages[i], 0);
|
|
mem_cgroup_cancel_charge(pages[i], memcg, false);
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
goto out;
|
|
}
|
|
|
|
int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
|
|
{
|
|
spinlock_t *ptl;
|
|
int ret = 0;
|
|
struct page *page = NULL, *new_page;
|
|
struct mem_cgroup *memcg;
|
|
unsigned long haddr;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
gfp_t huge_gfp; /* for allocation and charge */
|
|
|
|
ptl = pmd_lockptr(mm, pmd);
|
|
VM_BUG_ON_VMA(!vma->anon_vma, vma);
|
|
haddr = address & HPAGE_PMD_MASK;
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
goto alloc;
|
|
spin_lock(ptl);
|
|
if (unlikely(!pmd_same(*pmd, orig_pmd)))
|
|
goto out_unlock;
|
|
|
|
page = pmd_page(orig_pmd);
|
|
VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
|
|
/*
|
|
* We can only reuse the page if nobody else maps the huge page or it's
|
|
* part.
|
|
*/
|
|
if (page_trans_huge_mapcount(page, NULL) == 1) {
|
|
pmd_t entry;
|
|
entry = pmd_mkyoung(orig_pmd);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
ret |= VM_FAULT_WRITE;
|
|
goto out_unlock;
|
|
}
|
|
get_page(page);
|
|
spin_unlock(ptl);
|
|
alloc:
|
|
if (transparent_hugepage_enabled(vma) &&
|
|
!transparent_hugepage_debug_cow()) {
|
|
huge_gfp = alloc_hugepage_direct_gfpmask(vma);
|
|
new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
|
|
} else
|
|
new_page = NULL;
|
|
|
|
if (likely(new_page)) {
|
|
prep_transhuge_page(new_page);
|
|
} else {
|
|
if (!page) {
|
|
split_huge_pmd(vma, pmd, address);
|
|
ret |= VM_FAULT_FALLBACK;
|
|
} else {
|
|
ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
|
|
pmd, orig_pmd, page, haddr);
|
|
if (ret & VM_FAULT_OOM) {
|
|
split_huge_pmd(vma, pmd, address);
|
|
ret |= VM_FAULT_FALLBACK;
|
|
}
|
|
put_page(page);
|
|
}
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
|
|
true))) {
|
|
put_page(new_page);
|
|
if (page) {
|
|
split_huge_pmd(vma, pmd, address);
|
|
put_page(page);
|
|
} else
|
|
split_huge_pmd(vma, pmd, address);
|
|
ret |= VM_FAULT_FALLBACK;
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
goto out;
|
|
}
|
|
|
|
count_vm_event(THP_FAULT_ALLOC);
|
|
|
|
if (!page)
|
|
clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
|
|
else
|
|
copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
|
|
__SetPageUptodate(new_page);
|
|
|
|
mmun_start = haddr;
|
|
mmun_end = haddr + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
|
|
spin_lock(ptl);
|
|
if (page)
|
|
put_page(page);
|
|
if (unlikely(!pmd_same(*pmd, orig_pmd))) {
|
|
spin_unlock(ptl);
|
|
mem_cgroup_cancel_charge(new_page, memcg, true);
|
|
put_page(new_page);
|
|
goto out_mn;
|
|
} else {
|
|
pmd_t entry;
|
|
entry = mk_huge_pmd(new_page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
pmdp_huge_clear_flush_notify(vma, haddr, pmd);
|
|
page_add_new_anon_rmap(new_page, vma, haddr, true);
|
|
mem_cgroup_commit_charge(new_page, memcg, false, true);
|
|
lru_cache_add_active_or_unevictable(new_page, vma);
|
|
set_pmd_at(mm, haddr, pmd, entry);
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
if (!page) {
|
|
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
put_huge_zero_page();
|
|
} else {
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
page_remove_rmap(page, true);
|
|
put_page(page);
|
|
}
|
|
ret |= VM_FAULT_WRITE;
|
|
}
|
|
spin_unlock(ptl);
|
|
out_mn:
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
out:
|
|
return ret;
|
|
out_unlock:
|
|
spin_unlock(ptl);
|
|
return ret;
|
|
}
|
|
|
|
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
pmd_t *pmd,
|
|
unsigned int flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page = NULL;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmd));
|
|
|
|
if (flags & FOLL_WRITE && !pmd_write(*pmd))
|
|
goto out;
|
|
|
|
/* Avoid dumping huge zero page */
|
|
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
/* Full NUMA hinting faults to serialise migration in fault paths */
|
|
if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
|
|
goto out;
|
|
|
|
page = pmd_page(*pmd);
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pmd(vma, addr, pmd);
|
|
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
|
|
/*
|
|
* We don't mlock() pte-mapped THPs. This way we can avoid
|
|
* leaking mlocked pages into non-VM_LOCKED VMAs.
|
|
*
|
|
* In most cases the pmd is the only mapping of the page as we
|
|
* break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
|
|
* writable private mappings in populate_vma_page_range().
|
|
*
|
|
* The only scenario when we have the page shared here is if we
|
|
* mlocking read-only mapping shared over fork(). We skip
|
|
* mlocking such pages.
|
|
*/
|
|
if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
|
|
page->mapping && trylock_page(page)) {
|
|
lru_add_drain();
|
|
if (page->mapping)
|
|
mlock_vma_page(page);
|
|
unlock_page(page);
|
|
}
|
|
}
|
|
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
|
|
VM_BUG_ON_PAGE(!PageCompound(page), page);
|
|
if (flags & FOLL_GET)
|
|
get_page(page);
|
|
|
|
out:
|
|
return page;
|
|
}
|
|
|
|
/* NUMA hinting page fault entry point for trans huge pmds */
|
|
int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t pmd, pmd_t *pmdp)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct anon_vma *anon_vma = NULL;
|
|
struct page *page;
|
|
unsigned long haddr = addr & HPAGE_PMD_MASK;
|
|
int page_nid = -1, this_nid = numa_node_id();
|
|
int target_nid, last_cpupid = -1;
|
|
bool page_locked;
|
|
bool migrated = false;
|
|
bool was_writable;
|
|
int flags = 0;
|
|
|
|
/* A PROT_NONE fault should not end up here */
|
|
BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
|
|
|
|
ptl = pmd_lock(mm, pmdp);
|
|
if (unlikely(!pmd_same(pmd, *pmdp)))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If there are potential migrations, wait for completion and retry
|
|
* without disrupting NUMA hinting information. Do not relock and
|
|
* check_same as the page may no longer be mapped.
|
|
*/
|
|
if (unlikely(pmd_trans_migrating(*pmdp))) {
|
|
page = pmd_page(*pmdp);
|
|
spin_unlock(ptl);
|
|
wait_on_page_locked(page);
|
|
goto out;
|
|
}
|
|
|
|
page = pmd_page(pmd);
|
|
BUG_ON(is_huge_zero_page(page));
|
|
page_nid = page_to_nid(page);
|
|
last_cpupid = page_cpupid_last(page);
|
|
count_vm_numa_event(NUMA_HINT_FAULTS);
|
|
if (page_nid == this_nid) {
|
|
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
|
|
flags |= TNF_FAULT_LOCAL;
|
|
}
|
|
|
|
/* See similar comment in do_numa_page for explanation */
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
flags |= TNF_NO_GROUP;
|
|
|
|
/*
|
|
* Acquire the page lock to serialise THP migrations but avoid dropping
|
|
* page_table_lock if at all possible
|
|
*/
|
|
page_locked = trylock_page(page);
|
|
target_nid = mpol_misplaced(page, vma, haddr);
|
|
if (target_nid == -1) {
|
|
/* If the page was locked, there are no parallel migrations */
|
|
if (page_locked)
|
|
goto clear_pmdnuma;
|
|
}
|
|
|
|
/* Migration could have started since the pmd_trans_migrating check */
|
|
if (!page_locked) {
|
|
spin_unlock(ptl);
|
|
wait_on_page_locked(page);
|
|
page_nid = -1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Page is misplaced. Page lock serialises migrations. Acquire anon_vma
|
|
* to serialises splits
|
|
*/
|
|
get_page(page);
|
|
spin_unlock(ptl);
|
|
anon_vma = page_lock_anon_vma_read(page);
|
|
|
|
/* Confirm the PMD did not change while page_table_lock was released */
|
|
spin_lock(ptl);
|
|
if (unlikely(!pmd_same(pmd, *pmdp))) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
page_nid = -1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Bail if we fail to protect against THP splits for any reason */
|
|
if (unlikely(!anon_vma)) {
|
|
put_page(page);
|
|
page_nid = -1;
|
|
goto clear_pmdnuma;
|
|
}
|
|
|
|
/*
|
|
* Migrate the THP to the requested node, returns with page unlocked
|
|
* and access rights restored.
|
|
*/
|
|
spin_unlock(ptl);
|
|
migrated = migrate_misplaced_transhuge_page(mm, vma,
|
|
pmdp, pmd, addr, page, target_nid);
|
|
if (migrated) {
|
|
flags |= TNF_MIGRATED;
|
|
page_nid = target_nid;
|
|
} else
|
|
flags |= TNF_MIGRATE_FAIL;
|
|
|
|
goto out;
|
|
clear_pmdnuma:
|
|
BUG_ON(!PageLocked(page));
|
|
was_writable = pmd_write(pmd);
|
|
pmd = pmd_modify(pmd, vma->vm_page_prot);
|
|
pmd = pmd_mkyoung(pmd);
|
|
if (was_writable)
|
|
pmd = pmd_mkwrite(pmd);
|
|
set_pmd_at(mm, haddr, pmdp, pmd);
|
|
update_mmu_cache_pmd(vma, addr, pmdp);
|
|
unlock_page(page);
|
|
out_unlock:
|
|
spin_unlock(ptl);
|
|
|
|
out:
|
|
if (anon_vma)
|
|
page_unlock_anon_vma_read(anon_vma);
|
|
|
|
if (page_nid != -1)
|
|
task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr, unsigned long next)
|
|
|
|
{
|
|
spinlock_t *ptl;
|
|
pmd_t orig_pmd;
|
|
struct page *page;
|
|
struct mm_struct *mm = tlb->mm;
|
|
int ret = 0;
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
goto out_unlocked;
|
|
|
|
orig_pmd = *pmd;
|
|
if (is_huge_zero_pmd(orig_pmd)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
page = pmd_page(orig_pmd);
|
|
/*
|
|
* If other processes are mapping this page, we couldn't discard
|
|
* the page unless they all do MADV_FREE so let's skip the page.
|
|
*/
|
|
if (page_mapcount(page) != 1)
|
|
goto out;
|
|
|
|
if (!trylock_page(page))
|
|
goto out;
|
|
|
|
/*
|
|
* If user want to discard part-pages of THP, split it so MADV_FREE
|
|
* will deactivate only them.
|
|
*/
|
|
if (next - addr != HPAGE_PMD_SIZE) {
|
|
get_page(page);
|
|
spin_unlock(ptl);
|
|
if (split_huge_page(page)) {
|
|
put_page(page);
|
|
unlock_page(page);
|
|
goto out_unlocked;
|
|
}
|
|
put_page(page);
|
|
unlock_page(page);
|
|
ret = 1;
|
|
goto out_unlocked;
|
|
}
|
|
|
|
if (PageDirty(page))
|
|
ClearPageDirty(page);
|
|
unlock_page(page);
|
|
|
|
if (PageActive(page))
|
|
deactivate_page(page);
|
|
|
|
if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
|
|
orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
|
|
tlb->fullmm);
|
|
orig_pmd = pmd_mkold(orig_pmd);
|
|
orig_pmd = pmd_mkclean(orig_pmd);
|
|
|
|
set_pmd_at(mm, addr, pmd, orig_pmd);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
}
|
|
ret = 1;
|
|
out:
|
|
spin_unlock(ptl);
|
|
out_unlocked:
|
|
return ret;
|
|
}
|
|
|
|
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pmd_t orig_pmd;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = __pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
/*
|
|
* For architectures like ppc64 we look at deposited pgtable
|
|
* when calling pmdp_huge_get_and_clear. So do the
|
|
* pgtable_trans_huge_withdraw after finishing pmdp related
|
|
* operations.
|
|
*/
|
|
orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
|
|
tlb->fullmm);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
if (vma_is_dax(vma)) {
|
|
spin_unlock(ptl);
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
tlb_remove_page(tlb, pmd_page(orig_pmd));
|
|
} else if (is_huge_zero_pmd(orig_pmd)) {
|
|
pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
|
|
atomic_long_dec(&tlb->mm->nr_ptes);
|
|
spin_unlock(ptl);
|
|
tlb_remove_page(tlb, pmd_page(orig_pmd));
|
|
} else {
|
|
struct page *page = pmd_page(orig_pmd);
|
|
page_remove_rmap(page, true);
|
|
VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
|
|
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
|
|
atomic_long_dec(&tlb->mm->nr_ptes);
|
|
spin_unlock(ptl);
|
|
tlb_remove_page(tlb, page);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
|
|
unsigned long new_addr, unsigned long old_end,
|
|
pmd_t *old_pmd, pmd_t *new_pmd)
|
|
{
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
pmd_t pmd;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
if ((old_addr & ~HPAGE_PMD_MASK) ||
|
|
(new_addr & ~HPAGE_PMD_MASK) ||
|
|
old_end - old_addr < HPAGE_PMD_SIZE)
|
|
return false;
|
|
|
|
/*
|
|
* The destination pmd shouldn't be established, free_pgtables()
|
|
* should have release it.
|
|
*/
|
|
if (WARN_ON(!pmd_none(*new_pmd))) {
|
|
VM_BUG_ON(pmd_trans_huge(*new_pmd));
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* ptlocks because exclusive mmap_sem prevents deadlock.
|
|
*/
|
|
old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
|
|
if (old_ptl) {
|
|
new_ptl = pmd_lockptr(mm, new_pmd);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
|
|
VM_BUG_ON(!pmd_none(*new_pmd));
|
|
|
|
if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
|
|
vma_is_anonymous(vma)) {
|
|
pgtable_t pgtable;
|
|
pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
|
|
pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
|
|
}
|
|
set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
spin_unlock(old_ptl);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns
|
|
* - 0 if PMD could not be locked
|
|
* - 1 if PMD was locked but protections unchange and TLB flush unnecessary
|
|
* - HPAGE_PMD_NR is protections changed and TLB flush necessary
|
|
*/
|
|
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, pgprot_t newprot, int prot_numa)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
spinlock_t *ptl;
|
|
int ret = 0;
|
|
|
|
ptl = __pmd_trans_huge_lock(pmd, vma);
|
|
if (ptl) {
|
|
pmd_t entry;
|
|
bool preserve_write = prot_numa && pmd_write(*pmd);
|
|
ret = 1;
|
|
|
|
/*
|
|
* Avoid trapping faults against the zero page. The read-only
|
|
* data is likely to be read-cached on the local CPU and
|
|
* local/remote hits to the zero page are not interesting.
|
|
*/
|
|
if (prot_numa && is_huge_zero_pmd(*pmd)) {
|
|
spin_unlock(ptl);
|
|
return ret;
|
|
}
|
|
|
|
if (!prot_numa || !pmd_protnone(*pmd)) {
|
|
entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
|
|
entry = pmd_modify(entry, newprot);
|
|
if (preserve_write)
|
|
entry = pmd_mkwrite(entry);
|
|
ret = HPAGE_PMD_NR;
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
BUG_ON(!preserve_write && pmd_write(entry));
|
|
}
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns true if a given pmd maps a thp, false otherwise.
|
|
*
|
|
* Note that if it returns true, this routine returns without unlocking page
|
|
* table lock. So callers must unlock it.
|
|
*/
|
|
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *ptl;
|
|
ptl = pmd_lock(vma->vm_mm, pmd);
|
|
if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
|
|
return ptl;
|
|
spin_unlock(ptl);
|
|
return NULL;
|
|
}
|
|
|
|
#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
|
|
|
|
int hugepage_madvise(struct vm_area_struct *vma,
|
|
unsigned long *vm_flags, int advice)
|
|
{
|
|
switch (advice) {
|
|
case MADV_HUGEPAGE:
|
|
#ifdef CONFIG_S390
|
|
/*
|
|
* qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
|
|
* can't handle this properly after s390_enable_sie, so we simply
|
|
* ignore the madvise to prevent qemu from causing a SIGSEGV.
|
|
*/
|
|
if (mm_has_pgste(vma->vm_mm))
|
|
return 0;
|
|
#endif
|
|
/*
|
|
* Be somewhat over-protective like KSM for now!
|
|
*/
|
|
if (*vm_flags & VM_NO_THP)
|
|
return -EINVAL;
|
|
*vm_flags &= ~VM_NOHUGEPAGE;
|
|
*vm_flags |= VM_HUGEPAGE;
|
|
/*
|
|
* If the vma become good for khugepaged to scan,
|
|
* register it here without waiting a page fault that
|
|
* may not happen any time soon.
|
|
*/
|
|
if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
|
|
return -ENOMEM;
|
|
break;
|
|
case MADV_NOHUGEPAGE:
|
|
/*
|
|
* Be somewhat over-protective like KSM for now!
|
|
*/
|
|
if (*vm_flags & VM_NO_THP)
|
|
return -EINVAL;
|
|
*vm_flags &= ~VM_HUGEPAGE;
|
|
*vm_flags |= VM_NOHUGEPAGE;
|
|
/*
|
|
* Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
|
|
* this vma even if we leave the mm registered in khugepaged if
|
|
* it got registered before VM_NOHUGEPAGE was set.
|
|
*/
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init khugepaged_slab_init(void)
|
|
{
|
|
mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
|
|
sizeof(struct mm_slot),
|
|
__alignof__(struct mm_slot), 0, NULL);
|
|
if (!mm_slot_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init khugepaged_slab_exit(void)
|
|
{
|
|
kmem_cache_destroy(mm_slot_cache);
|
|
}
|
|
|
|
static inline struct mm_slot *alloc_mm_slot(void)
|
|
{
|
|
if (!mm_slot_cache) /* initialization failed */
|
|
return NULL;
|
|
return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
|
|
}
|
|
|
|
static inline void free_mm_slot(struct mm_slot *mm_slot)
|
|
{
|
|
kmem_cache_free(mm_slot_cache, mm_slot);
|
|
}
|
|
|
|
static struct mm_slot *get_mm_slot(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
|
|
hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
|
|
if (mm == mm_slot->mm)
|
|
return mm_slot;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void insert_to_mm_slots_hash(struct mm_struct *mm,
|
|
struct mm_slot *mm_slot)
|
|
{
|
|
mm_slot->mm = mm;
|
|
hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
|
|
}
|
|
|
|
static inline int khugepaged_test_exit(struct mm_struct *mm)
|
|
{
|
|
return atomic_read(&mm->mm_users) == 0;
|
|
}
|
|
|
|
int __khugepaged_enter(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
int wakeup;
|
|
|
|
mm_slot = alloc_mm_slot();
|
|
if (!mm_slot)
|
|
return -ENOMEM;
|
|
|
|
/* __khugepaged_exit() must not run from under us */
|
|
VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
|
|
if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
|
|
free_mm_slot(mm_slot);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
insert_to_mm_slots_hash(mm, mm_slot);
|
|
/*
|
|
* Insert just behind the scanning cursor, to let the area settle
|
|
* down a little.
|
|
*/
|
|
wakeup = list_empty(&khugepaged_scan.mm_head);
|
|
list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
atomic_inc(&mm->mm_count);
|
|
if (wakeup)
|
|
wake_up_interruptible(&khugepaged_wait);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
|
|
unsigned long vm_flags)
|
|
{
|
|
unsigned long hstart, hend;
|
|
if (!vma->anon_vma)
|
|
/*
|
|
* Not yet faulted in so we will register later in the
|
|
* page fault if needed.
|
|
*/
|
|
return 0;
|
|
if (vma->vm_ops || (vm_flags & VM_NO_THP))
|
|
/* khugepaged not yet working on file or special mappings */
|
|
return 0;
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (hstart < hend)
|
|
return khugepaged_enter(vma, vm_flags);
|
|
return 0;
|
|
}
|
|
|
|
void __khugepaged_exit(struct mm_struct *mm)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
int free = 0;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
mm_slot = get_mm_slot(mm);
|
|
if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
|
|
hash_del(&mm_slot->hash);
|
|
list_del(&mm_slot->mm_node);
|
|
free = 1;
|
|
}
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
if (free) {
|
|
clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
|
|
free_mm_slot(mm_slot);
|
|
mmdrop(mm);
|
|
} else if (mm_slot) {
|
|
/*
|
|
* This is required to serialize against
|
|
* khugepaged_test_exit() (which is guaranteed to run
|
|
* under mmap sem read mode). Stop here (after we
|
|
* return all pagetables will be destroyed) until
|
|
* khugepaged has finished working on the pagetables
|
|
* under the mmap_sem.
|
|
*/
|
|
down_write(&mm->mmap_sem);
|
|
up_write(&mm->mmap_sem);
|
|
}
|
|
}
|
|
|
|
static void release_pte_page(struct page *page)
|
|
{
|
|
/* 0 stands for page_is_file_cache(page) == false */
|
|
dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
|
|
unlock_page(page);
|
|
putback_lru_page(page);
|
|
}
|
|
|
|
static void release_pte_pages(pte_t *pte, pte_t *_pte)
|
|
{
|
|
while (--_pte >= pte) {
|
|
pte_t pteval = *_pte;
|
|
if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
|
|
release_pte_page(pte_page(pteval));
|
|
}
|
|
}
|
|
|
|
static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
pte_t *pte)
|
|
{
|
|
struct page *page = NULL;
|
|
pte_t *_pte;
|
|
int none_or_zero = 0, result = 0;
|
|
bool referenced = false, writable = false;
|
|
|
|
for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
|
|
_pte++, address += PAGE_SIZE) {
|
|
pte_t pteval = *_pte;
|
|
if (pte_none(pteval) || (pte_present(pteval) &&
|
|
is_zero_pfn(pte_pfn(pteval)))) {
|
|
if (!userfaultfd_armed(vma) &&
|
|
++none_or_zero <= khugepaged_max_ptes_none) {
|
|
continue;
|
|
} else {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
goto out;
|
|
}
|
|
}
|
|
if (!pte_present(pteval)) {
|
|
result = SCAN_PTE_NON_PRESENT;
|
|
goto out;
|
|
}
|
|
page = vm_normal_page(vma, address, pteval);
|
|
if (unlikely(!page)) {
|
|
result = SCAN_PAGE_NULL;
|
|
goto out;
|
|
}
|
|
|
|
VM_BUG_ON_PAGE(PageCompound(page), page);
|
|
VM_BUG_ON_PAGE(!PageAnon(page), page);
|
|
VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
|
|
|
|
/*
|
|
* We can do it before isolate_lru_page because the
|
|
* page can't be freed from under us. NOTE: PG_lock
|
|
* is needed to serialize against split_huge_page
|
|
* when invoked from the VM.
|
|
*/
|
|
if (!trylock_page(page)) {
|
|
result = SCAN_PAGE_LOCK;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* cannot use mapcount: can't collapse if there's a gup pin.
|
|
* The page must only be referenced by the scanned process
|
|
* and page swap cache.
|
|
*/
|
|
if (page_count(page) != 1 + !!PageSwapCache(page)) {
|
|
unlock_page(page);
|
|
result = SCAN_PAGE_COUNT;
|
|
goto out;
|
|
}
|
|
if (pte_write(pteval)) {
|
|
writable = true;
|
|
} else {
|
|
if (PageSwapCache(page) &&
|
|
!reuse_swap_page(page, NULL)) {
|
|
unlock_page(page);
|
|
result = SCAN_SWAP_CACHE_PAGE;
|
|
goto out;
|
|
}
|
|
/*
|
|
* Page is not in the swap cache. It can be collapsed
|
|
* into a THP.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Isolate the page to avoid collapsing an hugepage
|
|
* currently in use by the VM.
|
|
*/
|
|
if (isolate_lru_page(page)) {
|
|
unlock_page(page);
|
|
result = SCAN_DEL_PAGE_LRU;
|
|
goto out;
|
|
}
|
|
/* 0 stands for page_is_file_cache(page) == false */
|
|
inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(PageLRU(page), page);
|
|
|
|
/* If there is no mapped pte young don't collapse the page */
|
|
if (pte_young(pteval) ||
|
|
page_is_young(page) || PageReferenced(page) ||
|
|
mmu_notifier_test_young(vma->vm_mm, address))
|
|
referenced = true;
|
|
}
|
|
if (likely(writable)) {
|
|
if (likely(referenced)) {
|
|
result = SCAN_SUCCEED;
|
|
trace_mm_collapse_huge_page_isolate(page, none_or_zero,
|
|
referenced, writable, result);
|
|
return 1;
|
|
}
|
|
} else {
|
|
result = SCAN_PAGE_RO;
|
|
}
|
|
|
|
out:
|
|
release_pte_pages(pte, _pte);
|
|
trace_mm_collapse_huge_page_isolate(page, none_or_zero,
|
|
referenced, writable, result);
|
|
return 0;
|
|
}
|
|
|
|
static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
spinlock_t *ptl)
|
|
{
|
|
pte_t *_pte;
|
|
for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
|
|
pte_t pteval = *_pte;
|
|
struct page *src_page;
|
|
|
|
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
|
|
clear_user_highpage(page, address);
|
|
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
|
|
if (is_zero_pfn(pte_pfn(pteval))) {
|
|
/*
|
|
* ptl mostly unnecessary.
|
|
*/
|
|
spin_lock(ptl);
|
|
/*
|
|
* paravirt calls inside pte_clear here are
|
|
* superfluous.
|
|
*/
|
|
pte_clear(vma->vm_mm, address, _pte);
|
|
spin_unlock(ptl);
|
|
}
|
|
} else {
|
|
src_page = pte_page(pteval);
|
|
copy_user_highpage(page, src_page, address, vma);
|
|
VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
|
|
release_pte_page(src_page);
|
|
/*
|
|
* ptl mostly unnecessary, but preempt has to
|
|
* be disabled to update the per-cpu stats
|
|
* inside page_remove_rmap().
|
|
*/
|
|
spin_lock(ptl);
|
|
/*
|
|
* paravirt calls inside pte_clear here are
|
|
* superfluous.
|
|
*/
|
|
pte_clear(vma->vm_mm, address, _pte);
|
|
page_remove_rmap(src_page, false);
|
|
spin_unlock(ptl);
|
|
free_page_and_swap_cache(src_page);
|
|
}
|
|
|
|
address += PAGE_SIZE;
|
|
page++;
|
|
}
|
|
}
|
|
|
|
static void khugepaged_alloc_sleep(void)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
add_wait_queue(&khugepaged_wait, &wait);
|
|
freezable_schedule_timeout_interruptible(
|
|
msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
|
|
remove_wait_queue(&khugepaged_wait, &wait);
|
|
}
|
|
|
|
static int khugepaged_node_load[MAX_NUMNODES];
|
|
|
|
static bool khugepaged_scan_abort(int nid)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* If zone_reclaim_mode is disabled, then no extra effort is made to
|
|
* allocate memory locally.
|
|
*/
|
|
if (!zone_reclaim_mode)
|
|
return false;
|
|
|
|
/* If there is a count for this node already, it must be acceptable */
|
|
if (khugepaged_node_load[nid])
|
|
return false;
|
|
|
|
for (i = 0; i < MAX_NUMNODES; i++) {
|
|
if (!khugepaged_node_load[i])
|
|
continue;
|
|
if (node_distance(nid, i) > RECLAIM_DISTANCE)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int khugepaged_find_target_node(void)
|
|
{
|
|
static int last_khugepaged_target_node = NUMA_NO_NODE;
|
|
int nid, target_node = 0, max_value = 0;
|
|
|
|
/* find first node with max normal pages hit */
|
|
for (nid = 0; nid < MAX_NUMNODES; nid++)
|
|
if (khugepaged_node_load[nid] > max_value) {
|
|
max_value = khugepaged_node_load[nid];
|
|
target_node = nid;
|
|
}
|
|
|
|
/* do some balance if several nodes have the same hit record */
|
|
if (target_node <= last_khugepaged_target_node)
|
|
for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
|
|
nid++)
|
|
if (max_value == khugepaged_node_load[nid]) {
|
|
target_node = nid;
|
|
break;
|
|
}
|
|
|
|
last_khugepaged_target_node = target_node;
|
|
return target_node;
|
|
}
|
|
|
|
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
|
|
{
|
|
if (IS_ERR(*hpage)) {
|
|
if (!*wait)
|
|
return false;
|
|
|
|
*wait = false;
|
|
*hpage = NULL;
|
|
khugepaged_alloc_sleep();
|
|
} else if (*hpage) {
|
|
put_page(*hpage);
|
|
*hpage = NULL;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct page *
|
|
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
|
|
unsigned long address, int node)
|
|
{
|
|
VM_BUG_ON_PAGE(*hpage, *hpage);
|
|
|
|
/*
|
|
* Before allocating the hugepage, release the mmap_sem read lock.
|
|
* The allocation can take potentially a long time if it involves
|
|
* sync compaction, and we do not need to hold the mmap_sem during
|
|
* that. We will recheck the vma after taking it again in write mode.
|
|
*/
|
|
up_read(&mm->mmap_sem);
|
|
|
|
*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
|
|
if (unlikely(!*hpage)) {
|
|
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
|
|
*hpage = ERR_PTR(-ENOMEM);
|
|
return NULL;
|
|
}
|
|
|
|
prep_transhuge_page(*hpage);
|
|
count_vm_event(THP_COLLAPSE_ALLOC);
|
|
return *hpage;
|
|
}
|
|
#else
|
|
static int khugepaged_find_target_node(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline struct page *alloc_khugepaged_hugepage(void)
|
|
{
|
|
struct page *page;
|
|
|
|
page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
|
|
HPAGE_PMD_ORDER);
|
|
if (page)
|
|
prep_transhuge_page(page);
|
|
return page;
|
|
}
|
|
|
|
static struct page *khugepaged_alloc_hugepage(bool *wait)
|
|
{
|
|
struct page *hpage;
|
|
|
|
do {
|
|
hpage = alloc_khugepaged_hugepage();
|
|
if (!hpage) {
|
|
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
|
|
if (!*wait)
|
|
return NULL;
|
|
|
|
*wait = false;
|
|
khugepaged_alloc_sleep();
|
|
} else
|
|
count_vm_event(THP_COLLAPSE_ALLOC);
|
|
} while (unlikely(!hpage) && likely(khugepaged_enabled()));
|
|
|
|
return hpage;
|
|
}
|
|
|
|
static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
|
|
{
|
|
if (!*hpage)
|
|
*hpage = khugepaged_alloc_hugepage(wait);
|
|
|
|
if (unlikely(!*hpage))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct page *
|
|
khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
|
|
unsigned long address, int node)
|
|
{
|
|
up_read(&mm->mmap_sem);
|
|
VM_BUG_ON(!*hpage);
|
|
|
|
return *hpage;
|
|
}
|
|
#endif
|
|
|
|
static bool hugepage_vma_check(struct vm_area_struct *vma)
|
|
{
|
|
if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
|
|
(vma->vm_flags & VM_NOHUGEPAGE))
|
|
return false;
|
|
if (!vma->anon_vma || vma->vm_ops)
|
|
return false;
|
|
if (is_vma_temporary_stack(vma))
|
|
return false;
|
|
return !(vma->vm_flags & VM_NO_THP);
|
|
}
|
|
|
|
static void collapse_huge_page(struct mm_struct *mm,
|
|
unsigned long address,
|
|
struct page **hpage,
|
|
struct vm_area_struct *vma,
|
|
int node)
|
|
{
|
|
pmd_t *pmd, _pmd;
|
|
pte_t *pte;
|
|
pgtable_t pgtable;
|
|
struct page *new_page;
|
|
spinlock_t *pmd_ptl, *pte_ptl;
|
|
int isolated = 0, result = 0;
|
|
unsigned long hstart, hend;
|
|
struct mem_cgroup *memcg;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
gfp_t gfp;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
/* Only allocate from the target node */
|
|
gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
|
|
|
|
/* release the mmap_sem read lock. */
|
|
new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
|
|
if (!new_page) {
|
|
result = SCAN_ALLOC_HUGE_PAGE_FAIL;
|
|
goto out_nolock;
|
|
}
|
|
|
|
if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
|
|
result = SCAN_CGROUP_CHARGE_FAIL;
|
|
goto out_nolock;
|
|
}
|
|
|
|
/*
|
|
* Prevent all access to pagetables with the exception of
|
|
* gup_fast later hanlded by the ptep_clear_flush and the VM
|
|
* handled by the anon_vma lock + PG_lock.
|
|
*/
|
|
down_write(&mm->mmap_sem);
|
|
if (unlikely(khugepaged_test_exit(mm))) {
|
|
result = SCAN_ANY_PROCESS;
|
|
goto out;
|
|
}
|
|
|
|
vma = find_vma(mm, address);
|
|
if (!vma) {
|
|
result = SCAN_VMA_NULL;
|
|
goto out;
|
|
}
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
|
|
result = SCAN_ADDRESS_RANGE;
|
|
goto out;
|
|
}
|
|
if (!hugepage_vma_check(vma)) {
|
|
result = SCAN_VMA_CHECK;
|
|
goto out;
|
|
}
|
|
pmd = mm_find_pmd(mm, address);
|
|
if (!pmd) {
|
|
result = SCAN_PMD_NULL;
|
|
goto out;
|
|
}
|
|
|
|
anon_vma_lock_write(vma->anon_vma);
|
|
|
|
pte = pte_offset_map(pmd, address);
|
|
pte_ptl = pte_lockptr(mm, pmd);
|
|
|
|
mmun_start = address;
|
|
mmun_end = address + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
|
|
/*
|
|
* After this gup_fast can't run anymore. This also removes
|
|
* any huge TLB entry from the CPU so we won't allow
|
|
* huge and small TLB entries for the same virtual address
|
|
* to avoid the risk of CPU bugs in that area.
|
|
*/
|
|
_pmd = pmdp_collapse_flush(vma, address, pmd);
|
|
spin_unlock(pmd_ptl);
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
|
|
spin_lock(pte_ptl);
|
|
isolated = __collapse_huge_page_isolate(vma, address, pte);
|
|
spin_unlock(pte_ptl);
|
|
|
|
if (unlikely(!isolated)) {
|
|
pte_unmap(pte);
|
|
spin_lock(pmd_ptl);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
/*
|
|
* We can only use set_pmd_at when establishing
|
|
* hugepmds and never for establishing regular pmds that
|
|
* points to regular pagetables. Use pmd_populate for that
|
|
*/
|
|
pmd_populate(mm, pmd, pmd_pgtable(_pmd));
|
|
spin_unlock(pmd_ptl);
|
|
anon_vma_unlock_write(vma->anon_vma);
|
|
result = SCAN_FAIL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* All pages are isolated and locked so anon_vma rmap
|
|
* can't run anymore.
|
|
*/
|
|
anon_vma_unlock_write(vma->anon_vma);
|
|
|
|
__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
|
|
pte_unmap(pte);
|
|
__SetPageUptodate(new_page);
|
|
pgtable = pmd_pgtable(_pmd);
|
|
|
|
_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
|
|
_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
|
|
|
|
/*
|
|
* spin_lock() below is not the equivalent of smp_wmb(), so
|
|
* this is needed to avoid the copy_huge_page writes to become
|
|
* visible after the set_pmd_at() write.
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(pmd_ptl);
|
|
BUG_ON(!pmd_none(*pmd));
|
|
page_add_new_anon_rmap(new_page, vma, address, true);
|
|
mem_cgroup_commit_charge(new_page, memcg, false, true);
|
|
lru_cache_add_active_or_unevictable(new_page, vma);
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
set_pmd_at(mm, address, pmd, _pmd);
|
|
update_mmu_cache_pmd(vma, address, pmd);
|
|
spin_unlock(pmd_ptl);
|
|
|
|
*hpage = NULL;
|
|
|
|
khugepaged_pages_collapsed++;
|
|
result = SCAN_SUCCEED;
|
|
out_up_write:
|
|
up_write(&mm->mmap_sem);
|
|
trace_mm_collapse_huge_page(mm, isolated, result);
|
|
return;
|
|
|
|
out_nolock:
|
|
trace_mm_collapse_huge_page(mm, isolated, result);
|
|
return;
|
|
out:
|
|
mem_cgroup_cancel_charge(new_page, memcg, true);
|
|
goto out_up_write;
|
|
}
|
|
|
|
static int khugepaged_scan_pmd(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
unsigned long address,
|
|
struct page **hpage)
|
|
{
|
|
pmd_t *pmd;
|
|
pte_t *pte, *_pte;
|
|
int ret = 0, none_or_zero = 0, result = 0;
|
|
struct page *page = NULL;
|
|
unsigned long _address;
|
|
spinlock_t *ptl;
|
|
int node = NUMA_NO_NODE;
|
|
bool writable = false, referenced = false;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
pmd = mm_find_pmd(mm, address);
|
|
if (!pmd) {
|
|
result = SCAN_PMD_NULL;
|
|
goto out;
|
|
}
|
|
|
|
memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
|
|
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
|
|
_pte++, _address += PAGE_SIZE) {
|
|
pte_t pteval = *_pte;
|
|
if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
|
|
if (!userfaultfd_armed(vma) &&
|
|
++none_or_zero <= khugepaged_max_ptes_none) {
|
|
continue;
|
|
} else {
|
|
result = SCAN_EXCEED_NONE_PTE;
|
|
goto out_unmap;
|
|
}
|
|
}
|
|
if (!pte_present(pteval)) {
|
|
result = SCAN_PTE_NON_PRESENT;
|
|
goto out_unmap;
|
|
}
|
|
if (pte_write(pteval))
|
|
writable = true;
|
|
|
|
page = vm_normal_page(vma, _address, pteval);
|
|
if (unlikely(!page)) {
|
|
result = SCAN_PAGE_NULL;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/* TODO: teach khugepaged to collapse THP mapped with pte */
|
|
if (PageCompound(page)) {
|
|
result = SCAN_PAGE_COMPOUND;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/*
|
|
* Record which node the original page is from and save this
|
|
* information to khugepaged_node_load[].
|
|
* Khupaged will allocate hugepage from the node has the max
|
|
* hit record.
|
|
*/
|
|
node = page_to_nid(page);
|
|
if (khugepaged_scan_abort(node)) {
|
|
result = SCAN_SCAN_ABORT;
|
|
goto out_unmap;
|
|
}
|
|
khugepaged_node_load[node]++;
|
|
if (!PageLRU(page)) {
|
|
result = SCAN_PAGE_LRU;
|
|
goto out_unmap;
|
|
}
|
|
if (PageLocked(page)) {
|
|
result = SCAN_PAGE_LOCK;
|
|
goto out_unmap;
|
|
}
|
|
if (!PageAnon(page)) {
|
|
result = SCAN_PAGE_ANON;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/*
|
|
* cannot use mapcount: can't collapse if there's a gup pin.
|
|
* The page must only be referenced by the scanned process
|
|
* and page swap cache.
|
|
*/
|
|
if (page_count(page) != 1 + !!PageSwapCache(page)) {
|
|
result = SCAN_PAGE_COUNT;
|
|
goto out_unmap;
|
|
}
|
|
if (pte_young(pteval) ||
|
|
page_is_young(page) || PageReferenced(page) ||
|
|
mmu_notifier_test_young(vma->vm_mm, address))
|
|
referenced = true;
|
|
}
|
|
if (writable) {
|
|
if (referenced) {
|
|
result = SCAN_SUCCEED;
|
|
ret = 1;
|
|
} else {
|
|
result = SCAN_NO_REFERENCED_PAGE;
|
|
}
|
|
} else {
|
|
result = SCAN_PAGE_RO;
|
|
}
|
|
out_unmap:
|
|
pte_unmap_unlock(pte, ptl);
|
|
if (ret) {
|
|
node = khugepaged_find_target_node();
|
|
/* collapse_huge_page will return with the mmap_sem released */
|
|
collapse_huge_page(mm, address, hpage, vma, node);
|
|
}
|
|
out:
|
|
trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
|
|
none_or_zero, result);
|
|
return ret;
|
|
}
|
|
|
|
static void collect_mm_slot(struct mm_slot *mm_slot)
|
|
{
|
|
struct mm_struct *mm = mm_slot->mm;
|
|
|
|
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
|
|
|
|
if (khugepaged_test_exit(mm)) {
|
|
/* free mm_slot */
|
|
hash_del(&mm_slot->hash);
|
|
list_del(&mm_slot->mm_node);
|
|
|
|
/*
|
|
* Not strictly needed because the mm exited already.
|
|
*
|
|
* clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
|
|
*/
|
|
|
|
/* khugepaged_mm_lock actually not necessary for the below */
|
|
free_mm_slot(mm_slot);
|
|
mmdrop(mm);
|
|
}
|
|
}
|
|
|
|
static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
|
|
struct page **hpage)
|
|
__releases(&khugepaged_mm_lock)
|
|
__acquires(&khugepaged_mm_lock)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
int progress = 0;
|
|
|
|
VM_BUG_ON(!pages);
|
|
VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
|
|
|
|
if (khugepaged_scan.mm_slot)
|
|
mm_slot = khugepaged_scan.mm_slot;
|
|
else {
|
|
mm_slot = list_entry(khugepaged_scan.mm_head.next,
|
|
struct mm_slot, mm_node);
|
|
khugepaged_scan.address = 0;
|
|
khugepaged_scan.mm_slot = mm_slot;
|
|
}
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
|
|
mm = mm_slot->mm;
|
|
down_read(&mm->mmap_sem);
|
|
if (unlikely(khugepaged_test_exit(mm)))
|
|
vma = NULL;
|
|
else
|
|
vma = find_vma(mm, khugepaged_scan.address);
|
|
|
|
progress++;
|
|
for (; vma; vma = vma->vm_next) {
|
|
unsigned long hstart, hend;
|
|
|
|
cond_resched();
|
|
if (unlikely(khugepaged_test_exit(mm))) {
|
|
progress++;
|
|
break;
|
|
}
|
|
if (!hugepage_vma_check(vma)) {
|
|
skip:
|
|
progress++;
|
|
continue;
|
|
}
|
|
hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
|
|
hend = vma->vm_end & HPAGE_PMD_MASK;
|
|
if (hstart >= hend)
|
|
goto skip;
|
|
if (khugepaged_scan.address > hend)
|
|
goto skip;
|
|
if (khugepaged_scan.address < hstart)
|
|
khugepaged_scan.address = hstart;
|
|
VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
|
|
|
|
while (khugepaged_scan.address < hend) {
|
|
int ret;
|
|
cond_resched();
|
|
if (unlikely(khugepaged_test_exit(mm)))
|
|
goto breakouterloop;
|
|
|
|
VM_BUG_ON(khugepaged_scan.address < hstart ||
|
|
khugepaged_scan.address + HPAGE_PMD_SIZE >
|
|
hend);
|
|
ret = khugepaged_scan_pmd(mm, vma,
|
|
khugepaged_scan.address,
|
|
hpage);
|
|
/* move to next address */
|
|
khugepaged_scan.address += HPAGE_PMD_SIZE;
|
|
progress += HPAGE_PMD_NR;
|
|
if (ret)
|
|
/* we released mmap_sem so break loop */
|
|
goto breakouterloop_mmap_sem;
|
|
if (progress >= pages)
|
|
goto breakouterloop;
|
|
}
|
|
}
|
|
breakouterloop:
|
|
up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
|
|
breakouterloop_mmap_sem:
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
|
|
/*
|
|
* Release the current mm_slot if this mm is about to die, or
|
|
* if we scanned all vmas of this mm.
|
|
*/
|
|
if (khugepaged_test_exit(mm) || !vma) {
|
|
/*
|
|
* Make sure that if mm_users is reaching zero while
|
|
* khugepaged runs here, khugepaged_exit will find
|
|
* mm_slot not pointing to the exiting mm.
|
|
*/
|
|
if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
|
|
khugepaged_scan.mm_slot = list_entry(
|
|
mm_slot->mm_node.next,
|
|
struct mm_slot, mm_node);
|
|
khugepaged_scan.address = 0;
|
|
} else {
|
|
khugepaged_scan.mm_slot = NULL;
|
|
khugepaged_full_scans++;
|
|
}
|
|
|
|
collect_mm_slot(mm_slot);
|
|
}
|
|
|
|
return progress;
|
|
}
|
|
|
|
static int khugepaged_has_work(void)
|
|
{
|
|
return !list_empty(&khugepaged_scan.mm_head) &&
|
|
khugepaged_enabled();
|
|
}
|
|
|
|
static int khugepaged_wait_event(void)
|
|
{
|
|
return !list_empty(&khugepaged_scan.mm_head) ||
|
|
kthread_should_stop();
|
|
}
|
|
|
|
static void khugepaged_do_scan(void)
|
|
{
|
|
struct page *hpage = NULL;
|
|
unsigned int progress = 0, pass_through_head = 0;
|
|
unsigned int pages = khugepaged_pages_to_scan;
|
|
bool wait = true;
|
|
|
|
barrier(); /* write khugepaged_pages_to_scan to local stack */
|
|
|
|
while (progress < pages) {
|
|
if (!khugepaged_prealloc_page(&hpage, &wait))
|
|
break;
|
|
|
|
cond_resched();
|
|
|
|
if (unlikely(kthread_should_stop() || try_to_freeze()))
|
|
break;
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
if (!khugepaged_scan.mm_slot)
|
|
pass_through_head++;
|
|
if (khugepaged_has_work() &&
|
|
pass_through_head < 2)
|
|
progress += khugepaged_scan_mm_slot(pages - progress,
|
|
&hpage);
|
|
else
|
|
progress = pages;
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
}
|
|
|
|
if (!IS_ERR_OR_NULL(hpage))
|
|
put_page(hpage);
|
|
}
|
|
|
|
static bool khugepaged_should_wakeup(void)
|
|
{
|
|
return kthread_should_stop() ||
|
|
time_after_eq(jiffies, khugepaged_sleep_expire);
|
|
}
|
|
|
|
static void khugepaged_wait_work(void)
|
|
{
|
|
if (khugepaged_has_work()) {
|
|
const unsigned long scan_sleep_jiffies =
|
|
msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
|
|
|
|
if (!scan_sleep_jiffies)
|
|
return;
|
|
|
|
khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
|
|
wait_event_freezable_timeout(khugepaged_wait,
|
|
khugepaged_should_wakeup(),
|
|
scan_sleep_jiffies);
|
|
return;
|
|
}
|
|
|
|
if (khugepaged_enabled())
|
|
wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
|
|
}
|
|
|
|
static int khugepaged(void *none)
|
|
{
|
|
struct mm_slot *mm_slot;
|
|
|
|
set_freezable();
|
|
set_user_nice(current, MAX_NICE);
|
|
|
|
while (!kthread_should_stop()) {
|
|
khugepaged_do_scan();
|
|
khugepaged_wait_work();
|
|
}
|
|
|
|
spin_lock(&khugepaged_mm_lock);
|
|
mm_slot = khugepaged_scan.mm_slot;
|
|
khugepaged_scan.mm_slot = NULL;
|
|
if (mm_slot)
|
|
collect_mm_slot(mm_slot);
|
|
spin_unlock(&khugepaged_mm_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
|
|
unsigned long haddr, pmd_t *pmd)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgtable_t pgtable;
|
|
pmd_t _pmd;
|
|
int i;
|
|
|
|
/* leave pmd empty until pte is filled */
|
|
pmdp_huge_clear_flush_notify(vma, haddr, pmd);
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
|
pte_t *pte, entry;
|
|
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
|
|
entry = pte_mkspecial(entry);
|
|
pte = pte_offset_map(&_pmd, haddr);
|
|
VM_BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, haddr, pte, entry);
|
|
pte_unmap(pte);
|
|
}
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
put_huge_zero_page();
|
|
}
|
|
|
|
static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long haddr, bool freeze)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
pgtable_t pgtable;
|
|
pmd_t _pmd;
|
|
bool young, write, dirty;
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
|
|
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
|
|
VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
|
|
|
|
count_vm_event(THP_SPLIT_PMD);
|
|
|
|
if (vma_is_dax(vma)) {
|
|
pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
|
|
if (is_huge_zero_pmd(_pmd))
|
|
put_huge_zero_page();
|
|
return;
|
|
} else if (is_huge_zero_pmd(*pmd)) {
|
|
return __split_huge_zero_page_pmd(vma, haddr, pmd);
|
|
}
|
|
|
|
page = pmd_page(*pmd);
|
|
VM_BUG_ON_PAGE(!page_count(page), page);
|
|
page_ref_add(page, HPAGE_PMD_NR - 1);
|
|
write = pmd_write(*pmd);
|
|
young = pmd_young(*pmd);
|
|
dirty = pmd_dirty(*pmd);
|
|
|
|
pmdp_huge_split_prepare(vma, haddr, pmd);
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
|
|
pte_t entry, *pte;
|
|
/*
|
|
* Note that NUMA hinting access restrictions are not
|
|
* transferred to avoid any possibility of altering
|
|
* permissions across VMAs.
|
|
*/
|
|
if (freeze) {
|
|
swp_entry_t swp_entry;
|
|
swp_entry = make_migration_entry(page + i, write);
|
|
entry = swp_entry_to_pte(swp_entry);
|
|
} else {
|
|
entry = mk_pte(page + i, vma->vm_page_prot);
|
|
entry = maybe_mkwrite(entry, vma);
|
|
if (!write)
|
|
entry = pte_wrprotect(entry);
|
|
if (!young)
|
|
entry = pte_mkold(entry);
|
|
}
|
|
if (dirty)
|
|
SetPageDirty(page + i);
|
|
pte = pte_offset_map(&_pmd, addr);
|
|
BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, addr, pte, entry);
|
|
atomic_inc(&page[i]._mapcount);
|
|
pte_unmap(pte);
|
|
}
|
|
|
|
/*
|
|
* Set PG_double_map before dropping compound_mapcount to avoid
|
|
* false-negative page_mapped().
|
|
*/
|
|
if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
atomic_inc(&page[i]._mapcount);
|
|
}
|
|
|
|
if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
|
|
/* Last compound_mapcount is gone. */
|
|
__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
|
|
if (TestClearPageDoubleMap(page)) {
|
|
/* No need in mapcount reference anymore */
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
atomic_dec(&page[i]._mapcount);
|
|
}
|
|
}
|
|
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
/*
|
|
* Up to this point the pmd is present and huge and userland has the
|
|
* whole access to the hugepage during the split (which happens in
|
|
* place). If we overwrite the pmd with the not-huge version pointing
|
|
* to the pte here (which of course we could if all CPUs were bug
|
|
* free), userland could trigger a small page size TLB miss on the
|
|
* small sized TLB while the hugepage TLB entry is still established in
|
|
* the huge TLB. Some CPU doesn't like that.
|
|
* See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
|
|
* 383 on page 93. Intel should be safe but is also warns that it's
|
|
* only safe if the permission and cache attributes of the two entries
|
|
* loaded in the two TLB is identical (which should be the case here).
|
|
* But it is generally safer to never allow small and huge TLB entries
|
|
* for the same virtual address to be loaded simultaneously. So instead
|
|
* of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
|
|
* current pmd notpresent (atomically because here the pmd_trans_huge
|
|
* and pmd_trans_splitting must remain set at all times on the pmd
|
|
* until the split is complete for this pmd), then we flush the SMP TLB
|
|
* and finally we write the non-huge version of the pmd entry with
|
|
* pmd_populate.
|
|
*/
|
|
pmdp_invalidate(vma, haddr, pmd);
|
|
pmd_populate(mm, pmd, pgtable);
|
|
|
|
if (freeze) {
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
page_remove_rmap(page + i, false);
|
|
put_page(page + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long address, bool freeze)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long haddr = address & HPAGE_PMD_MASK;
|
|
|
|
mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (pmd_trans_huge(*pmd)) {
|
|
struct page *page = pmd_page(*pmd);
|
|
if (PageMlocked(page))
|
|
clear_page_mlock(page);
|
|
} else if (!pmd_devmap(*pmd))
|
|
goto out;
|
|
__split_huge_pmd_locked(vma, pmd, haddr, freeze);
|
|
out:
|
|
spin_unlock(ptl);
|
|
mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
|
|
}
|
|
|
|
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
|
|
bool freeze, struct page *page)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = pgd_offset(vma->vm_mm, address);
|
|
if (!pgd_present(*pgd))
|
|
return;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (!pud_present(*pud))
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
|
|
return;
|
|
|
|
/*
|
|
* If caller asks to setup a migration entries, we need a page to check
|
|
* pmd against. Otherwise we can end up replacing wrong page.
|
|
*/
|
|
VM_BUG_ON(freeze && !page);
|
|
if (page && page != pmd_page(*pmd))
|
|
return;
|
|
|
|
/*
|
|
* Caller holds the mmap_sem write mode or the anon_vma lock,
|
|
* so a huge pmd cannot materialize from under us (khugepaged
|
|
* holds both the mmap_sem write mode and the anon_vma lock
|
|
* write mode).
|
|
*/
|
|
__split_huge_pmd(vma, pmd, address, freeze);
|
|
}
|
|
|
|
void vma_adjust_trans_huge(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
long adjust_next)
|
|
{
|
|
/*
|
|
* If the new start address isn't hpage aligned and it could
|
|
* previously contain an hugepage: check if we need to split
|
|
* an huge pmd.
|
|
*/
|
|
if (start & ~HPAGE_PMD_MASK &&
|
|
(start & HPAGE_PMD_MASK) >= vma->vm_start &&
|
|
(start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
|
|
split_huge_pmd_address(vma, start, false, NULL);
|
|
|
|
/*
|
|
* If the new end address isn't hpage aligned and it could
|
|
* previously contain an hugepage: check if we need to split
|
|
* an huge pmd.
|
|
*/
|
|
if (end & ~HPAGE_PMD_MASK &&
|
|
(end & HPAGE_PMD_MASK) >= vma->vm_start &&
|
|
(end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
|
|
split_huge_pmd_address(vma, end, false, NULL);
|
|
|
|
/*
|
|
* If we're also updating the vma->vm_next->vm_start, if the new
|
|
* vm_next->vm_start isn't page aligned and it could previously
|
|
* contain an hugepage: check if we need to split an huge pmd.
|
|
*/
|
|
if (adjust_next > 0) {
|
|
struct vm_area_struct *next = vma->vm_next;
|
|
unsigned long nstart = next->vm_start;
|
|
nstart += adjust_next << PAGE_SHIFT;
|
|
if (nstart & ~HPAGE_PMD_MASK &&
|
|
(nstart & HPAGE_PMD_MASK) >= next->vm_start &&
|
|
(nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
|
|
split_huge_pmd_address(next, nstart, false, NULL);
|
|
}
|
|
}
|
|
|
|
static void freeze_page(struct page *page)
|
|
{
|
|
enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
|
|
TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
|
|
int i, ret;
|
|
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
|
|
/* We only need TTU_SPLIT_HUGE_PMD once */
|
|
ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
|
|
for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
|
|
/* Cut short if the page is unmapped */
|
|
if (page_count(page) == 1)
|
|
return;
|
|
|
|
ret = try_to_unmap(page + i, ttu_flags);
|
|
}
|
|
VM_BUG_ON(ret);
|
|
}
|
|
|
|
static void unfreeze_page(struct page *page)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
remove_migration_ptes(page + i, page + i, true);
|
|
}
|
|
|
|
static void __split_huge_page_tail(struct page *head, int tail,
|
|
struct lruvec *lruvec, struct list_head *list)
|
|
{
|
|
struct page *page_tail = head + tail;
|
|
|
|
VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
|
|
VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
|
|
|
|
/*
|
|
* tail_page->_refcount is zero and not changing from under us. But
|
|
* get_page_unless_zero() may be running from under us on the
|
|
* tail_page. If we used atomic_set() below instead of atomic_inc(), we
|
|
* would then run atomic_set() concurrently with
|
|
* get_page_unless_zero(), and atomic_set() is implemented in C not
|
|
* using locked ops. spin_unlock on x86 sometime uses locked ops
|
|
* because of PPro errata 66, 92, so unless somebody can guarantee
|
|
* atomic_set() here would be safe on all archs (and not only on x86),
|
|
* it's safer to use atomic_inc().
|
|
*/
|
|
page_ref_inc(page_tail);
|
|
|
|
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
|
|
page_tail->flags |= (head->flags &
|
|
((1L << PG_referenced) |
|
|
(1L << PG_swapbacked) |
|
|
(1L << PG_mlocked) |
|
|
(1L << PG_uptodate) |
|
|
(1L << PG_active) |
|
|
(1L << PG_locked) |
|
|
(1L << PG_unevictable) |
|
|
(1L << PG_dirty)));
|
|
|
|
/*
|
|
* After clearing PageTail the gup refcount can be released.
|
|
* Page flags also must be visible before we make the page non-compound.
|
|
*/
|
|
smp_wmb();
|
|
|
|
clear_compound_head(page_tail);
|
|
|
|
if (page_is_young(head))
|
|
set_page_young(page_tail);
|
|
if (page_is_idle(head))
|
|
set_page_idle(page_tail);
|
|
|
|
/* ->mapping in first tail page is compound_mapcount */
|
|
VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
|
|
page_tail);
|
|
page_tail->mapping = head->mapping;
|
|
|
|
page_tail->index = head->index + tail;
|
|
page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
|
|
lru_add_page_tail(head, page_tail, lruvec, list);
|
|
}
|
|
|
|
static void __split_huge_page(struct page *page, struct list_head *list)
|
|
{
|
|
struct page *head = compound_head(page);
|
|
struct zone *zone = page_zone(head);
|
|
struct lruvec *lruvec;
|
|
int i;
|
|
|
|
/* prevent PageLRU to go away from under us, and freeze lru stats */
|
|
spin_lock_irq(&zone->lru_lock);
|
|
lruvec = mem_cgroup_page_lruvec(head, zone);
|
|
|
|
/* complete memcg works before add pages to LRU */
|
|
mem_cgroup_split_huge_fixup(head);
|
|
|
|
for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
|
|
__split_huge_page_tail(head, i, lruvec, list);
|
|
|
|
ClearPageCompound(head);
|
|
spin_unlock_irq(&zone->lru_lock);
|
|
|
|
unfreeze_page(head);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
struct page *subpage = head + i;
|
|
if (subpage == page)
|
|
continue;
|
|
unlock_page(subpage);
|
|
|
|
/*
|
|
* Subpages may be freed if there wasn't any mapping
|
|
* like if add_to_swap() is running on a lru page that
|
|
* had its mapping zapped. And freeing these pages
|
|
* requires taking the lru_lock so we do the put_page
|
|
* of the tail pages after the split is complete.
|
|
*/
|
|
put_page(subpage);
|
|
}
|
|
}
|
|
|
|
int total_mapcount(struct page *page)
|
|
{
|
|
int i, ret;
|
|
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
|
|
if (likely(!PageCompound(page)))
|
|
return atomic_read(&page->_mapcount) + 1;
|
|
|
|
ret = compound_mapcount(page);
|
|
if (PageHuge(page))
|
|
return ret;
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
ret += atomic_read(&page[i]._mapcount) + 1;
|
|
if (PageDoubleMap(page))
|
|
ret -= HPAGE_PMD_NR;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This calculates accurately how many mappings a transparent hugepage
|
|
* has (unlike page_mapcount() which isn't fully accurate). This full
|
|
* accuracy is primarily needed to know if copy-on-write faults can
|
|
* reuse the page and change the mapping to read-write instead of
|
|
* copying them. At the same time this returns the total_mapcount too.
|
|
*
|
|
* The function returns the highest mapcount any one of the subpages
|
|
* has. If the return value is one, even if different processes are
|
|
* mapping different subpages of the transparent hugepage, they can
|
|
* all reuse it, because each process is reusing a different subpage.
|
|
*
|
|
* The total_mapcount is instead counting all virtual mappings of the
|
|
* subpages. If the total_mapcount is equal to "one", it tells the
|
|
* caller all mappings belong to the same "mm" and in turn the
|
|
* anon_vma of the transparent hugepage can become the vma->anon_vma
|
|
* local one as no other process may be mapping any of the subpages.
|
|
*
|
|
* It would be more accurate to replace page_mapcount() with
|
|
* page_trans_huge_mapcount(), however we only use
|
|
* page_trans_huge_mapcount() in the copy-on-write faults where we
|
|
* need full accuracy to avoid breaking page pinning, because
|
|
* page_trans_huge_mapcount() is slower than page_mapcount().
|
|
*/
|
|
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
|
|
{
|
|
int i, ret, _total_mapcount, mapcount;
|
|
|
|
/* hugetlbfs shouldn't call it */
|
|
VM_BUG_ON_PAGE(PageHuge(page), page);
|
|
|
|
if (likely(!PageTransCompound(page))) {
|
|
mapcount = atomic_read(&page->_mapcount) + 1;
|
|
if (total_mapcount)
|
|
*total_mapcount = mapcount;
|
|
return mapcount;
|
|
}
|
|
|
|
page = compound_head(page);
|
|
|
|
_total_mapcount = ret = 0;
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
mapcount = atomic_read(&page[i]._mapcount) + 1;
|
|
ret = max(ret, mapcount);
|
|
_total_mapcount += mapcount;
|
|
}
|
|
if (PageDoubleMap(page)) {
|
|
ret -= 1;
|
|
_total_mapcount -= HPAGE_PMD_NR;
|
|
}
|
|
mapcount = compound_mapcount(page);
|
|
ret += mapcount;
|
|
_total_mapcount += mapcount;
|
|
if (total_mapcount)
|
|
*total_mapcount = _total_mapcount;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function splits huge page into normal pages. @page can point to any
|
|
* subpage of huge page to split. Split doesn't change the position of @page.
|
|
*
|
|
* Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
|
|
* The huge page must be locked.
|
|
*
|
|
* If @list is null, tail pages will be added to LRU list, otherwise, to @list.
|
|
*
|
|
* Both head page and tail pages will inherit mapping, flags, and so on from
|
|
* the hugepage.
|
|
*
|
|
* GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
|
|
* they are not mapped.
|
|
*
|
|
* Returns 0 if the hugepage is split successfully.
|
|
* Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
|
|
* us.
|
|
*/
|
|
int split_huge_page_to_list(struct page *page, struct list_head *list)
|
|
{
|
|
struct page *head = compound_head(page);
|
|
struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
|
|
struct anon_vma *anon_vma;
|
|
int count, mapcount, ret;
|
|
bool mlocked;
|
|
unsigned long flags;
|
|
|
|
VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
|
|
VM_BUG_ON_PAGE(!PageAnon(page), page);
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
|
|
VM_BUG_ON_PAGE(!PageCompound(page), page);
|
|
|
|
/*
|
|
* The caller does not necessarily hold an mmap_sem that would prevent
|
|
* the anon_vma disappearing so we first we take a reference to it
|
|
* and then lock the anon_vma for write. This is similar to
|
|
* page_lock_anon_vma_read except the write lock is taken to serialise
|
|
* against parallel split or collapse operations.
|
|
*/
|
|
anon_vma = page_get_anon_vma(head);
|
|
if (!anon_vma) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
anon_vma_lock_write(anon_vma);
|
|
|
|
/*
|
|
* Racy check if we can split the page, before freeze_page() will
|
|
* split PMDs
|
|
*/
|
|
if (total_mapcount(head) != page_count(head) - 1) {
|
|
ret = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
mlocked = PageMlocked(page);
|
|
freeze_page(head);
|
|
VM_BUG_ON_PAGE(compound_mapcount(head), head);
|
|
|
|
/* Make sure the page is not on per-CPU pagevec as it takes pin */
|
|
if (mlocked)
|
|
lru_add_drain();
|
|
|
|
/* Prevent deferred_split_scan() touching ->_refcount */
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
count = page_count(head);
|
|
mapcount = total_mapcount(head);
|
|
if (!mapcount && count == 1) {
|
|
if (!list_empty(page_deferred_list(head))) {
|
|
pgdata->split_queue_len--;
|
|
list_del(page_deferred_list(head));
|
|
}
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
__split_huge_page(page, list);
|
|
ret = 0;
|
|
} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
pr_alert("total_mapcount: %u, page_count(): %u\n",
|
|
mapcount, count);
|
|
if (PageTail(page))
|
|
dump_page(head, NULL);
|
|
dump_page(page, "total_mapcount(head) > 0");
|
|
BUG();
|
|
} else {
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
unfreeze_page(head);
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
out_unlock:
|
|
anon_vma_unlock_write(anon_vma);
|
|
put_anon_vma(anon_vma);
|
|
out:
|
|
count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
|
|
return ret;
|
|
}
|
|
|
|
void free_transhuge_page(struct page *page)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
if (!list_empty(page_deferred_list(page))) {
|
|
pgdata->split_queue_len--;
|
|
list_del(page_deferred_list(page));
|
|
}
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
free_compound_page(page);
|
|
}
|
|
|
|
void deferred_split_huge_page(struct page *page)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
|
|
unsigned long flags;
|
|
|
|
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
|
|
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
if (list_empty(page_deferred_list(page))) {
|
|
count_vm_event(THP_DEFERRED_SPLIT_PAGE);
|
|
list_add_tail(page_deferred_list(page), &pgdata->split_queue);
|
|
pgdata->split_queue_len++;
|
|
}
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
}
|
|
|
|
static unsigned long deferred_split_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(sc->nid);
|
|
return ACCESS_ONCE(pgdata->split_queue_len);
|
|
}
|
|
|
|
static unsigned long deferred_split_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(sc->nid);
|
|
unsigned long flags;
|
|
LIST_HEAD(list), *pos, *next;
|
|
struct page *page;
|
|
int split = 0;
|
|
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
/* Take pin on all head pages to avoid freeing them under us */
|
|
list_for_each_safe(pos, next, &pgdata->split_queue) {
|
|
page = list_entry((void *)pos, struct page, mapping);
|
|
page = compound_head(page);
|
|
if (get_page_unless_zero(page)) {
|
|
list_move(page_deferred_list(page), &list);
|
|
} else {
|
|
/* We lost race with put_compound_page() */
|
|
list_del_init(page_deferred_list(page));
|
|
pgdata->split_queue_len--;
|
|
}
|
|
if (!--sc->nr_to_scan)
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
|
|
list_for_each_safe(pos, next, &list) {
|
|
page = list_entry((void *)pos, struct page, mapping);
|
|
lock_page(page);
|
|
/* split_huge_page() removes page from list on success */
|
|
if (!split_huge_page(page))
|
|
split++;
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
list_splice_tail(&list, &pgdata->split_queue);
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
|
|
/*
|
|
* Stop shrinker if we didn't split any page, but the queue is empty.
|
|
* This can happen if pages were freed under us.
|
|
*/
|
|
if (!split && list_empty(&pgdata->split_queue))
|
|
return SHRINK_STOP;
|
|
return split;
|
|
}
|
|
|
|
static struct shrinker deferred_split_shrinker = {
|
|
.count_objects = deferred_split_count,
|
|
.scan_objects = deferred_split_scan,
|
|
.seeks = DEFAULT_SEEKS,
|
|
.flags = SHRINKER_NUMA_AWARE,
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static int split_huge_pages_set(void *data, u64 val)
|
|
{
|
|
struct zone *zone;
|
|
struct page *page;
|
|
unsigned long pfn, max_zone_pfn;
|
|
unsigned long total = 0, split = 0;
|
|
|
|
if (val != 1)
|
|
return -EINVAL;
|
|
|
|
for_each_populated_zone(zone) {
|
|
max_zone_pfn = zone_end_pfn(zone);
|
|
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (!get_page_unless_zero(page))
|
|
continue;
|
|
|
|
if (zone != page_zone(page))
|
|
goto next;
|
|
|
|
if (!PageHead(page) || !PageAnon(page) ||
|
|
PageHuge(page))
|
|
goto next;
|
|
|
|
total++;
|
|
lock_page(page);
|
|
if (!split_huge_page(page))
|
|
split++;
|
|
unlock_page(page);
|
|
next:
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
pr_info("%lu of %lu THP split\n", split, total);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
|
|
"%llu\n");
|
|
|
|
static int __init split_huge_pages_debugfs(void)
|
|
{
|
|
void *ret;
|
|
|
|
ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
|
|
&split_huge_pages_fops);
|
|
if (!ret)
|
|
pr_warn("Failed to create split_huge_pages in debugfs");
|
|
return 0;
|
|
}
|
|
late_initcall(split_huge_pages_debugfs);
|
|
#endif
|