mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-30 13:38:40 +00:00
cddb8a5c14
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages. There are secondary MMUs (with secondary sptes and secondary tlbs) too. sptes in the kvm case are shadow pagetables, but when I say spte in mmu-notifier context, I mean "secondary pte". In GRU case there's no actual secondary pte and there's only a secondary tlb because the GRU secondary MMU has no knowledge about sptes and every secondary tlb miss event in the MMU always generates a page fault that has to be resolved by the CPU (this is not the case of KVM where the a secondary tlb miss will walk sptes in hardware and it will refill the secondary tlb transparently to software if the corresponding spte is present). The same way zap_page_range has to invalidate the pte before freeing the page, the spte (and secondary tlb) must also be invalidated before any page is freed and reused. Currently we take a page_count pin on every page mapped by sptes, but that means the pages can't be swapped whenever they're mapped by any spte because they're part of the guest working set. Furthermore a spte unmap event can immediately lead to a page to be freed when the pin is released (so requiring the same complex and relatively slow tlb_gather smp safe logic we have in zap_page_range and that can be avoided completely if the spte unmap event doesn't require an unpin of the page previously mapped in the secondary MMU). The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know when the VM is swapping or freeing or doing anything on the primary MMU so that the secondary MMU code can drop sptes before the pages are freed, avoiding all page pinning and allowing 100% reliable swapping of guest physical address space. Furthermore it avoids the code that teardown the mappings of the secondary MMU, to implement a logic like tlb_gather in zap_page_range that would require many IPI to flush other cpu tlbs, for each fixed number of spte unmapped. To make an example: if what happens on the primary MMU is a protection downgrade (from writeable to wrprotect) the secondary MMU mappings will be invalidated, and the next secondary-mmu-page-fault will call get_user_pages and trigger a do_wp_page through get_user_pages if it called get_user_pages with write=1, and it'll re-establishing an updated spte or secondary-tlb-mapping on the copied page. Or it will setup a readonly spte or readonly tlb mapping if it's a guest-read, if it calls get_user_pages with write=0. This is just an example. This allows to map any page pointed by any pte (and in turn visible in the primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an full MMU with both sptes and secondary-tlb like the shadow-pagetable layer with kvm), or a remote DMA in software like XPMEM (hence needing of schedule in XPMEM code to send the invalidate to the remote node, while no need to schedule in kvm/gru as it's an immediate event like invalidating primary-mmu pte). At least for KVM without this patch it's impossible to swap guests reliably. And having this feature and removing the page pin allows several other optimizations that simplify life considerably. Dependencies: 1) mm_take_all_locks() to register the mmu notifier when the whole VM isn't doing anything with "mm". This allows mmu notifier users to keep track if the VM is in the middle of the invalidate_range_begin/end critical section with an atomic counter incraese in range_begin and decreased in range_end. No secondary MMU page fault is allowed to map any spte or secondary tlb reference, while the VM is in the middle of range_begin/end as any page returned by get_user_pages in that critical section could later immediately be freed without any further ->invalidate_page notification (invalidate_range_begin/end works on ranges and ->invalidate_page isn't called immediately before freeing the page). To stop all page freeing and pagetable overwrites the mmap_sem must be taken in write mode and all other anon_vma/i_mmap locks must be taken too. 2) It'd be a waste to add branches in the VM if nobody could possibly run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of mmu notifiers, but this already allows to compile a KVM external module against a kernel with mmu notifiers enabled and from the next pull from kvm.git we'll start using them. And GRU/XPMEM will also be able to continue the development by enabling KVM=m in their config, until they submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n). This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM are all =n. The mmu_notifier_register call can fail because mm_take_all_locks may be interrupted by a signal and return -EINTR. Because mmu_notifier_reigster is used when a driver startup, a failure can be gracefully handled. Here an example of the change applied to kvm to register the mmu notifiers. Usually when a driver startups other allocations are required anyway and -ENOMEM failure paths exists already. struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); + int err; if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops; + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm); + if (err) { + kfree(kvm); + return ERR_PTR(err); + } + return kvm; } mmu_notifier_unregister returns void and it's reliable. The patch also adds a few needed but missing includes that would prevent kernel to compile after these changes on non-x86 archs (x86 didn't need them by luck). [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: fix mm/filemap_xip.c build] [akpm@linux-foundation.org: fix mm/mmu_notifier.c build] Signed-off-by: Andrea Arcangeli <andrea@qumranet.com> Signed-off-by: Nick Piggin <npiggin@suse.de> Signed-off-by: Christoph Lameter <cl@linux-foundation.org> Cc: Jack Steiner <steiner@sgi.com> Cc: Robin Holt <holt@sgi.com> Cc: Nick Piggin <npiggin@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Kanoj Sarcar <kanojsarcar@yahoo.com> Cc: Roland Dreier <rdreier@cisco.com> Cc: Steve Wise <swise@opengridcomputing.com> Cc: Avi Kivity <avi@qumranet.com> Cc: Hugh Dickins <hugh@veritas.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Chris Wright <chrisw@redhat.com> Cc: Marcelo Tosatti <marcelo@kvack.org> Cc: Eric Dumazet <dada1@cosmosbay.com> Cc: "Paul E. McKenney" <paulmck@us.ibm.com> Cc: Izik Eidus <izike@qumranet.com> Cc: Anthony Liguori <aliguori@us.ibm.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
432 lines
11 KiB
C
432 lines
11 KiB
C
/*
|
|
* mm/mremap.c
|
|
*
|
|
* (C) Copyright 1996 Linus Torvalds
|
|
*
|
|
* Address space accounting code <alan@redhat.com>
|
|
* (C) Copyright 2002 Red Hat Inc, All Rights Reserved
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/shm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/security.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/mmu_notifier.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
return NULL;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
if (pud_none_or_clear_bad(pud))
|
|
return NULL;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
return NULL;
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static pmd_t *alloc_new_pmd(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = pgd_offset(mm, addr);
|
|
pud = pud_alloc(mm, pgd, addr);
|
|
if (!pud)
|
|
return NULL;
|
|
|
|
pmd = pmd_alloc(mm, pud, addr);
|
|
if (!pmd)
|
|
return NULL;
|
|
|
|
if (!pmd_present(*pmd) && __pte_alloc(mm, pmd, addr))
|
|
return NULL;
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
|
|
unsigned long old_addr, unsigned long old_end,
|
|
struct vm_area_struct *new_vma, pmd_t *new_pmd,
|
|
unsigned long new_addr)
|
|
{
|
|
struct address_space *mapping = NULL;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pte_t *old_pte, *new_pte, pte;
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
unsigned long old_start;
|
|
|
|
old_start = old_addr;
|
|
mmu_notifier_invalidate_range_start(vma->vm_mm,
|
|
old_start, old_end);
|
|
if (vma->vm_file) {
|
|
/*
|
|
* Subtle point from Rajesh Venkatasubramanian: before
|
|
* moving file-based ptes, we must lock vmtruncate out,
|
|
* since it might clean the dst vma before the src vma,
|
|
* and we propagate stale pages into the dst afterward.
|
|
*/
|
|
mapping = vma->vm_file->f_mapping;
|
|
spin_lock(&mapping->i_mmap_lock);
|
|
if (new_vma->vm_truncate_count &&
|
|
new_vma->vm_truncate_count != vma->vm_truncate_count)
|
|
new_vma->vm_truncate_count = 0;
|
|
}
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* pte locks because exclusive mmap_sem prevents deadlock.
|
|
*/
|
|
old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
|
|
new_pte = pte_offset_map_nested(new_pmd, new_addr);
|
|
new_ptl = pte_lockptr(mm, new_pmd);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
arch_enter_lazy_mmu_mode();
|
|
|
|
for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
|
|
new_pte++, new_addr += PAGE_SIZE) {
|
|
if (pte_none(*old_pte))
|
|
continue;
|
|
pte = ptep_clear_flush(vma, old_addr, old_pte);
|
|
pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
|
|
set_pte_at(mm, new_addr, new_pte, pte);
|
|
}
|
|
|
|
arch_leave_lazy_mmu_mode();
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
pte_unmap_nested(new_pte - 1);
|
|
pte_unmap_unlock(old_pte - 1, old_ptl);
|
|
if (mapping)
|
|
spin_unlock(&mapping->i_mmap_lock);
|
|
mmu_notifier_invalidate_range_end(vma->vm_mm, old_start, old_end);
|
|
}
|
|
|
|
#define LATENCY_LIMIT (64 * PAGE_SIZE)
|
|
|
|
unsigned long move_page_tables(struct vm_area_struct *vma,
|
|
unsigned long old_addr, struct vm_area_struct *new_vma,
|
|
unsigned long new_addr, unsigned long len)
|
|
{
|
|
unsigned long extent, next, old_end;
|
|
pmd_t *old_pmd, *new_pmd;
|
|
|
|
old_end = old_addr + len;
|
|
flush_cache_range(vma, old_addr, old_end);
|
|
|
|
for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
|
|
cond_resched();
|
|
next = (old_addr + PMD_SIZE) & PMD_MASK;
|
|
if (next - 1 > old_end)
|
|
next = old_end;
|
|
extent = next - old_addr;
|
|
old_pmd = get_old_pmd(vma->vm_mm, old_addr);
|
|
if (!old_pmd)
|
|
continue;
|
|
new_pmd = alloc_new_pmd(vma->vm_mm, new_addr);
|
|
if (!new_pmd)
|
|
break;
|
|
next = (new_addr + PMD_SIZE) & PMD_MASK;
|
|
if (extent > next - new_addr)
|
|
extent = next - new_addr;
|
|
if (extent > LATENCY_LIMIT)
|
|
extent = LATENCY_LIMIT;
|
|
move_ptes(vma, old_pmd, old_addr, old_addr + extent,
|
|
new_vma, new_pmd, new_addr);
|
|
}
|
|
|
|
return len + old_addr - old_end; /* how much done */
|
|
}
|
|
|
|
static unsigned long move_vma(struct vm_area_struct *vma,
|
|
unsigned long old_addr, unsigned long old_len,
|
|
unsigned long new_len, unsigned long new_addr)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct vm_area_struct *new_vma;
|
|
unsigned long vm_flags = vma->vm_flags;
|
|
unsigned long new_pgoff;
|
|
unsigned long moved_len;
|
|
unsigned long excess = 0;
|
|
unsigned long hiwater_vm;
|
|
int split = 0;
|
|
|
|
/*
|
|
* We'd prefer to avoid failure later on in do_munmap:
|
|
* which may split one vma into three before unmapping.
|
|
*/
|
|
if (mm->map_count >= sysctl_max_map_count - 3)
|
|
return -ENOMEM;
|
|
|
|
new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
|
|
new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff);
|
|
if (!new_vma)
|
|
return -ENOMEM;
|
|
|
|
moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len);
|
|
if (moved_len < old_len) {
|
|
/*
|
|
* On error, move entries back from new area to old,
|
|
* which will succeed since page tables still there,
|
|
* and then proceed to unmap new area instead of old.
|
|
*/
|
|
move_page_tables(new_vma, new_addr, vma, old_addr, moved_len);
|
|
vma = new_vma;
|
|
old_len = new_len;
|
|
old_addr = new_addr;
|
|
new_addr = -ENOMEM;
|
|
}
|
|
|
|
/* Conceal VM_ACCOUNT so old reservation is not undone */
|
|
if (vm_flags & VM_ACCOUNT) {
|
|
vma->vm_flags &= ~VM_ACCOUNT;
|
|
excess = vma->vm_end - vma->vm_start - old_len;
|
|
if (old_addr > vma->vm_start &&
|
|
old_addr + old_len < vma->vm_end)
|
|
split = 1;
|
|
}
|
|
|
|
/*
|
|
* If we failed to move page tables we still do total_vm increment
|
|
* since do_munmap() will decrement it by old_len == new_len.
|
|
*
|
|
* Since total_vm is about to be raised artificially high for a
|
|
* moment, we need to restore high watermark afterwards: if stats
|
|
* are taken meanwhile, total_vm and hiwater_vm appear too high.
|
|
* If this were a serious issue, we'd add a flag to do_munmap().
|
|
*/
|
|
hiwater_vm = mm->hiwater_vm;
|
|
mm->total_vm += new_len >> PAGE_SHIFT;
|
|
vm_stat_account(mm, vma->vm_flags, vma->vm_file, new_len>>PAGE_SHIFT);
|
|
|
|
if (do_munmap(mm, old_addr, old_len) < 0) {
|
|
/* OOM: unable to split vma, just get accounts right */
|
|
vm_unacct_memory(excess >> PAGE_SHIFT);
|
|
excess = 0;
|
|
}
|
|
mm->hiwater_vm = hiwater_vm;
|
|
|
|
/* Restore VM_ACCOUNT if one or two pieces of vma left */
|
|
if (excess) {
|
|
vma->vm_flags |= VM_ACCOUNT;
|
|
if (split)
|
|
vma->vm_next->vm_flags |= VM_ACCOUNT;
|
|
}
|
|
|
|
if (vm_flags & VM_LOCKED) {
|
|
mm->locked_vm += new_len >> PAGE_SHIFT;
|
|
if (new_len > old_len)
|
|
make_pages_present(new_addr + old_len,
|
|
new_addr + new_len);
|
|
}
|
|
|
|
return new_addr;
|
|
}
|
|
|
|
/*
|
|
* Expand (or shrink) an existing mapping, potentially moving it at the
|
|
* same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
|
|
*
|
|
* MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
|
|
* This option implies MREMAP_MAYMOVE.
|
|
*/
|
|
unsigned long do_mremap(unsigned long addr,
|
|
unsigned long old_len, unsigned long new_len,
|
|
unsigned long flags, unsigned long new_addr)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
struct vm_area_struct *vma;
|
|
unsigned long ret = -EINVAL;
|
|
unsigned long charged = 0;
|
|
|
|
if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE))
|
|
goto out;
|
|
|
|
if (addr & ~PAGE_MASK)
|
|
goto out;
|
|
|
|
old_len = PAGE_ALIGN(old_len);
|
|
new_len = PAGE_ALIGN(new_len);
|
|
|
|
/*
|
|
* We allow a zero old-len as a special case
|
|
* for DOS-emu "duplicate shm area" thing. But
|
|
* a zero new-len is nonsensical.
|
|
*/
|
|
if (!new_len)
|
|
goto out;
|
|
|
|
/* new_addr is only valid if MREMAP_FIXED is specified */
|
|
if (flags & MREMAP_FIXED) {
|
|
if (new_addr & ~PAGE_MASK)
|
|
goto out;
|
|
if (!(flags & MREMAP_MAYMOVE))
|
|
goto out;
|
|
|
|
if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
|
|
goto out;
|
|
|
|
/* Check if the location we're moving into overlaps the
|
|
* old location at all, and fail if it does.
|
|
*/
|
|
if ((new_addr <= addr) && (new_addr+new_len) > addr)
|
|
goto out;
|
|
|
|
if ((addr <= new_addr) && (addr+old_len) > new_addr)
|
|
goto out;
|
|
|
|
ret = security_file_mmap(NULL, 0, 0, 0, new_addr, 1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = do_munmap(mm, new_addr, new_len);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Always allow a shrinking remap: that just unmaps
|
|
* the unnecessary pages..
|
|
* do_munmap does all the needed commit accounting
|
|
*/
|
|
if (old_len >= new_len) {
|
|
ret = do_munmap(mm, addr+new_len, old_len - new_len);
|
|
if (ret && old_len != new_len)
|
|
goto out;
|
|
ret = addr;
|
|
if (!(flags & MREMAP_FIXED) || (new_addr == addr))
|
|
goto out;
|
|
old_len = new_len;
|
|
}
|
|
|
|
/*
|
|
* Ok, we need to grow.. or relocate.
|
|
*/
|
|
ret = -EFAULT;
|
|
vma = find_vma(mm, addr);
|
|
if (!vma || vma->vm_start > addr)
|
|
goto out;
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
/* We can't remap across vm area boundaries */
|
|
if (old_len > vma->vm_end - addr)
|
|
goto out;
|
|
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)) {
|
|
if (new_len > old_len)
|
|
goto out;
|
|
}
|
|
if (vma->vm_flags & VM_LOCKED) {
|
|
unsigned long locked, lock_limit;
|
|
locked = mm->locked_vm << PAGE_SHIFT;
|
|
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
|
|
locked += new_len - old_len;
|
|
ret = -EAGAIN;
|
|
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
|
|
goto out;
|
|
}
|
|
if (!may_expand_vm(mm, (new_len - old_len) >> PAGE_SHIFT)) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (vma->vm_flags & VM_ACCOUNT) {
|
|
charged = (new_len - old_len) >> PAGE_SHIFT;
|
|
if (security_vm_enough_memory(charged))
|
|
goto out_nc;
|
|
}
|
|
|
|
/* old_len exactly to the end of the area..
|
|
* And we're not relocating the area.
|
|
*/
|
|
if (old_len == vma->vm_end - addr &&
|
|
!((flags & MREMAP_FIXED) && (addr != new_addr)) &&
|
|
(old_len != new_len || !(flags & MREMAP_MAYMOVE))) {
|
|
unsigned long max_addr = TASK_SIZE;
|
|
if (vma->vm_next)
|
|
max_addr = vma->vm_next->vm_start;
|
|
/* can we just expand the current mapping? */
|
|
if (max_addr - addr >= new_len) {
|
|
int pages = (new_len - old_len) >> PAGE_SHIFT;
|
|
|
|
vma_adjust(vma, vma->vm_start,
|
|
addr + new_len, vma->vm_pgoff, NULL);
|
|
|
|
mm->total_vm += pages;
|
|
vm_stat_account(mm, vma->vm_flags, vma->vm_file, pages);
|
|
if (vma->vm_flags & VM_LOCKED) {
|
|
mm->locked_vm += pages;
|
|
make_pages_present(addr + old_len,
|
|
addr + new_len);
|
|
}
|
|
ret = addr;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We weren't able to just expand or shrink the area,
|
|
* we need to create a new one and move it..
|
|
*/
|
|
ret = -ENOMEM;
|
|
if (flags & MREMAP_MAYMOVE) {
|
|
if (!(flags & MREMAP_FIXED)) {
|
|
unsigned long map_flags = 0;
|
|
if (vma->vm_flags & VM_MAYSHARE)
|
|
map_flags |= MAP_SHARED;
|
|
|
|
new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
|
|
vma->vm_pgoff, map_flags);
|
|
if (new_addr & ~PAGE_MASK) {
|
|
ret = new_addr;
|
|
goto out;
|
|
}
|
|
|
|
ret = security_file_mmap(NULL, 0, 0, 0, new_addr, 1);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
ret = move_vma(vma, addr, old_len, new_len, new_addr);
|
|
}
|
|
out:
|
|
if (ret & ~PAGE_MASK)
|
|
vm_unacct_memory(charged);
|
|
out_nc:
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage unsigned long sys_mremap(unsigned long addr,
|
|
unsigned long old_len, unsigned long new_len,
|
|
unsigned long flags, unsigned long new_addr)
|
|
{
|
|
unsigned long ret;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
ret = do_mremap(addr, old_len, new_len, flags, new_addr);
|
|
up_write(¤t->mm->mmap_sem);
|
|
return ret;
|
|
}
|