mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-14 13:39:10 +00:00
fa60682677
Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Gabriel Krisman Bertazi <krisman@linux.vnet.ibm.com> Reviewed-by: Keith Busch <keith.busch@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2141 lines
52 KiB
C
2141 lines
52 KiB
C
/*
|
|
* NVM Express device driver
|
|
* Copyright (c) 2011-2014, Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list_sort.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pr.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/nvme_ioctl.h>
|
|
#include <linux/t10-pi.h>
|
|
#include <scsi/sg.h>
|
|
#include <asm/unaligned.h>
|
|
|
|
#include "nvme.h"
|
|
#include "fabrics.h"
|
|
|
|
#define NVME_MINORS (1U << MINORBITS)
|
|
|
|
unsigned char admin_timeout = 60;
|
|
module_param(admin_timeout, byte, 0644);
|
|
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
|
|
EXPORT_SYMBOL_GPL(admin_timeout);
|
|
|
|
unsigned char nvme_io_timeout = 30;
|
|
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
|
|
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
|
|
EXPORT_SYMBOL_GPL(nvme_io_timeout);
|
|
|
|
unsigned char shutdown_timeout = 5;
|
|
module_param(shutdown_timeout, byte, 0644);
|
|
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
|
|
|
|
unsigned int nvme_max_retries = 5;
|
|
module_param_named(max_retries, nvme_max_retries, uint, 0644);
|
|
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
|
|
EXPORT_SYMBOL_GPL(nvme_max_retries);
|
|
|
|
static int nvme_char_major;
|
|
module_param(nvme_char_major, int, 0);
|
|
|
|
static LIST_HEAD(nvme_ctrl_list);
|
|
static DEFINE_SPINLOCK(dev_list_lock);
|
|
|
|
static struct class *nvme_class;
|
|
|
|
void nvme_cancel_request(struct request *req, void *data, bool reserved)
|
|
{
|
|
int status;
|
|
|
|
if (!blk_mq_request_started(req))
|
|
return;
|
|
|
|
dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
|
|
"Cancelling I/O %d", req->tag);
|
|
|
|
status = NVME_SC_ABORT_REQ;
|
|
if (blk_queue_dying(req->q))
|
|
status |= NVME_SC_DNR;
|
|
blk_mq_complete_request(req, status);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_cancel_request);
|
|
|
|
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
|
|
enum nvme_ctrl_state new_state)
|
|
{
|
|
enum nvme_ctrl_state old_state;
|
|
bool changed = false;
|
|
|
|
spin_lock_irq(&ctrl->lock);
|
|
|
|
old_state = ctrl->state;
|
|
switch (new_state) {
|
|
case NVME_CTRL_LIVE:
|
|
switch (old_state) {
|
|
case NVME_CTRL_NEW:
|
|
case NVME_CTRL_RESETTING:
|
|
case NVME_CTRL_RECONNECTING:
|
|
changed = true;
|
|
/* FALLTHRU */
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_RESETTING:
|
|
switch (old_state) {
|
|
case NVME_CTRL_NEW:
|
|
case NVME_CTRL_LIVE:
|
|
case NVME_CTRL_RECONNECTING:
|
|
changed = true;
|
|
/* FALLTHRU */
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_RECONNECTING:
|
|
switch (old_state) {
|
|
case NVME_CTRL_LIVE:
|
|
changed = true;
|
|
/* FALLTHRU */
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_DELETING:
|
|
switch (old_state) {
|
|
case NVME_CTRL_LIVE:
|
|
case NVME_CTRL_RESETTING:
|
|
case NVME_CTRL_RECONNECTING:
|
|
changed = true;
|
|
/* FALLTHRU */
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case NVME_CTRL_DEAD:
|
|
switch (old_state) {
|
|
case NVME_CTRL_DELETING:
|
|
changed = true;
|
|
/* FALLTHRU */
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (changed)
|
|
ctrl->state = new_state;
|
|
|
|
spin_unlock_irq(&ctrl->lock);
|
|
|
|
return changed;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
|
|
|
|
static void nvme_free_ns(struct kref *kref)
|
|
{
|
|
struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
|
|
|
|
if (ns->ndev)
|
|
nvme_nvm_unregister(ns);
|
|
|
|
if (ns->disk) {
|
|
spin_lock(&dev_list_lock);
|
|
ns->disk->private_data = NULL;
|
|
spin_unlock(&dev_list_lock);
|
|
}
|
|
|
|
put_disk(ns->disk);
|
|
ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
|
|
nvme_put_ctrl(ns->ctrl);
|
|
kfree(ns);
|
|
}
|
|
|
|
static void nvme_put_ns(struct nvme_ns *ns)
|
|
{
|
|
kref_put(&ns->kref, nvme_free_ns);
|
|
}
|
|
|
|
static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
ns = disk->private_data;
|
|
if (ns) {
|
|
if (!kref_get_unless_zero(&ns->kref))
|
|
goto fail;
|
|
if (!try_module_get(ns->ctrl->ops->module))
|
|
goto fail_put_ns;
|
|
}
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
return ns;
|
|
|
|
fail_put_ns:
|
|
kref_put(&ns->kref, nvme_free_ns);
|
|
fail:
|
|
spin_unlock(&dev_list_lock);
|
|
return NULL;
|
|
}
|
|
|
|
void nvme_requeue_req(struct request *req)
|
|
{
|
|
unsigned long flags;
|
|
|
|
blk_mq_requeue_request(req);
|
|
spin_lock_irqsave(req->q->queue_lock, flags);
|
|
if (!blk_queue_stopped(req->q))
|
|
blk_mq_kick_requeue_list(req->q);
|
|
spin_unlock_irqrestore(req->q->queue_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_requeue_req);
|
|
|
|
struct request *nvme_alloc_request(struct request_queue *q,
|
|
struct nvme_command *cmd, unsigned int flags, int qid)
|
|
{
|
|
struct request *req;
|
|
|
|
if (qid == NVME_QID_ANY) {
|
|
req = blk_mq_alloc_request(q, nvme_is_write(cmd), flags);
|
|
} else {
|
|
req = blk_mq_alloc_request_hctx(q, nvme_is_write(cmd), flags,
|
|
qid ? qid - 1 : 0);
|
|
}
|
|
if (IS_ERR(req))
|
|
return req;
|
|
|
|
req->cmd_type = REQ_TYPE_DRV_PRIV;
|
|
req->cmd_flags |= REQ_FAILFAST_DRIVER;
|
|
req->cmd = (unsigned char *)cmd;
|
|
req->cmd_len = sizeof(struct nvme_command);
|
|
|
|
return req;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_alloc_request);
|
|
|
|
static inline void nvme_setup_flush(struct nvme_ns *ns,
|
|
struct nvme_command *cmnd)
|
|
{
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
cmnd->common.opcode = nvme_cmd_flush;
|
|
cmnd->common.nsid = cpu_to_le32(ns->ns_id);
|
|
}
|
|
|
|
static inline int nvme_setup_discard(struct nvme_ns *ns, struct request *req,
|
|
struct nvme_command *cmnd)
|
|
{
|
|
struct nvme_dsm_range *range;
|
|
struct page *page;
|
|
int offset;
|
|
unsigned int nr_bytes = blk_rq_bytes(req);
|
|
|
|
range = kmalloc(sizeof(*range), GFP_ATOMIC);
|
|
if (!range)
|
|
return BLK_MQ_RQ_QUEUE_BUSY;
|
|
|
|
range->cattr = cpu_to_le32(0);
|
|
range->nlb = cpu_to_le32(nr_bytes >> ns->lba_shift);
|
|
range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
|
|
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
cmnd->dsm.opcode = nvme_cmd_dsm;
|
|
cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
|
|
cmnd->dsm.nr = 0;
|
|
cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
|
|
|
|
req->completion_data = range;
|
|
page = virt_to_page(range);
|
|
offset = offset_in_page(range);
|
|
blk_add_request_payload(req, page, offset, sizeof(*range));
|
|
|
|
/*
|
|
* we set __data_len back to the size of the area to be discarded
|
|
* on disk. This allows us to report completion on the full amount
|
|
* of blocks described by the request.
|
|
*/
|
|
req->__data_len = nr_bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
|
|
struct nvme_command *cmnd)
|
|
{
|
|
u16 control = 0;
|
|
u32 dsmgmt = 0;
|
|
|
|
if (req->cmd_flags & REQ_FUA)
|
|
control |= NVME_RW_FUA;
|
|
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
|
|
control |= NVME_RW_LR;
|
|
|
|
if (req->cmd_flags & REQ_RAHEAD)
|
|
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
|
|
|
|
memset(cmnd, 0, sizeof(*cmnd));
|
|
cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
|
|
cmnd->rw.command_id = req->tag;
|
|
cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
|
|
cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
|
|
cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
|
|
|
|
if (ns->ms) {
|
|
switch (ns->pi_type) {
|
|
case NVME_NS_DPS_PI_TYPE3:
|
|
control |= NVME_RW_PRINFO_PRCHK_GUARD;
|
|
break;
|
|
case NVME_NS_DPS_PI_TYPE1:
|
|
case NVME_NS_DPS_PI_TYPE2:
|
|
control |= NVME_RW_PRINFO_PRCHK_GUARD |
|
|
NVME_RW_PRINFO_PRCHK_REF;
|
|
cmnd->rw.reftag = cpu_to_le32(
|
|
nvme_block_nr(ns, blk_rq_pos(req)));
|
|
break;
|
|
}
|
|
if (!blk_integrity_rq(req))
|
|
control |= NVME_RW_PRINFO_PRACT;
|
|
}
|
|
|
|
cmnd->rw.control = cpu_to_le16(control);
|
|
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
|
|
}
|
|
|
|
int nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
|
|
struct nvme_command *cmd)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (req->cmd_type == REQ_TYPE_DRV_PRIV)
|
|
memcpy(cmd, req->cmd, sizeof(*cmd));
|
|
else if (req_op(req) == REQ_OP_FLUSH)
|
|
nvme_setup_flush(ns, cmd);
|
|
else if (req_op(req) == REQ_OP_DISCARD)
|
|
ret = nvme_setup_discard(ns, req, cmd);
|
|
else
|
|
nvme_setup_rw(ns, req, cmd);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_setup_cmd);
|
|
|
|
/*
|
|
* Returns 0 on success. If the result is negative, it's a Linux error code;
|
|
* if the result is positive, it's an NVM Express status code
|
|
*/
|
|
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
struct nvme_completion *cqe, void *buffer, unsigned bufflen,
|
|
unsigned timeout, int qid, int at_head, int flags)
|
|
{
|
|
struct request *req;
|
|
int ret;
|
|
|
|
req = nvme_alloc_request(q, cmd, flags, qid);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
|
|
req->special = cqe;
|
|
|
|
if (buffer && bufflen) {
|
|
ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
blk_execute_rq(req->q, NULL, req, at_head);
|
|
ret = req->errors;
|
|
out:
|
|
blk_mq_free_request(req);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
|
|
|
|
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
void *buffer, unsigned bufflen)
|
|
{
|
|
return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
|
|
NVME_QID_ANY, 0, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
|
|
|
|
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
void __user *ubuffer, unsigned bufflen,
|
|
void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
|
|
u32 *result, unsigned timeout)
|
|
{
|
|
bool write = nvme_is_write(cmd);
|
|
struct nvme_completion cqe;
|
|
struct nvme_ns *ns = q->queuedata;
|
|
struct gendisk *disk = ns ? ns->disk : NULL;
|
|
struct request *req;
|
|
struct bio *bio = NULL;
|
|
void *meta = NULL;
|
|
int ret;
|
|
|
|
req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
|
|
if (IS_ERR(req))
|
|
return PTR_ERR(req);
|
|
|
|
req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
|
|
req->special = &cqe;
|
|
|
|
if (ubuffer && bufflen) {
|
|
ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
|
|
GFP_KERNEL);
|
|
if (ret)
|
|
goto out;
|
|
bio = req->bio;
|
|
|
|
if (!disk)
|
|
goto submit;
|
|
bio->bi_bdev = bdget_disk(disk, 0);
|
|
if (!bio->bi_bdev) {
|
|
ret = -ENODEV;
|
|
goto out_unmap;
|
|
}
|
|
|
|
if (meta_buffer && meta_len) {
|
|
struct bio_integrity_payload *bip;
|
|
|
|
meta = kmalloc(meta_len, GFP_KERNEL);
|
|
if (!meta) {
|
|
ret = -ENOMEM;
|
|
goto out_unmap;
|
|
}
|
|
|
|
if (write) {
|
|
if (copy_from_user(meta, meta_buffer,
|
|
meta_len)) {
|
|
ret = -EFAULT;
|
|
goto out_free_meta;
|
|
}
|
|
}
|
|
|
|
bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
|
|
if (IS_ERR(bip)) {
|
|
ret = PTR_ERR(bip);
|
|
goto out_free_meta;
|
|
}
|
|
|
|
bip->bip_iter.bi_size = meta_len;
|
|
bip->bip_iter.bi_sector = meta_seed;
|
|
|
|
ret = bio_integrity_add_page(bio, virt_to_page(meta),
|
|
meta_len, offset_in_page(meta));
|
|
if (ret != meta_len) {
|
|
ret = -ENOMEM;
|
|
goto out_free_meta;
|
|
}
|
|
}
|
|
}
|
|
submit:
|
|
blk_execute_rq(req->q, disk, req, 0);
|
|
ret = req->errors;
|
|
if (result)
|
|
*result = le32_to_cpu(cqe.result);
|
|
if (meta && !ret && !write) {
|
|
if (copy_to_user(meta_buffer, meta, meta_len))
|
|
ret = -EFAULT;
|
|
}
|
|
out_free_meta:
|
|
kfree(meta);
|
|
out_unmap:
|
|
if (bio) {
|
|
if (disk && bio->bi_bdev)
|
|
bdput(bio->bi_bdev);
|
|
blk_rq_unmap_user(bio);
|
|
}
|
|
out:
|
|
blk_mq_free_request(req);
|
|
return ret;
|
|
}
|
|
|
|
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
|
|
void __user *ubuffer, unsigned bufflen, u32 *result,
|
|
unsigned timeout)
|
|
{
|
|
return __nvme_submit_user_cmd(q, cmd, ubuffer, bufflen, NULL, 0, 0,
|
|
result, timeout);
|
|
}
|
|
|
|
static void nvme_keep_alive_end_io(struct request *rq, int error)
|
|
{
|
|
struct nvme_ctrl *ctrl = rq->end_io_data;
|
|
|
|
blk_mq_free_request(rq);
|
|
|
|
if (error) {
|
|
dev_err(ctrl->device,
|
|
"failed nvme_keep_alive_end_io error=%d\n", error);
|
|
return;
|
|
}
|
|
|
|
schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
|
|
}
|
|
|
|
static int nvme_keep_alive(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_command c;
|
|
struct request *rq;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.common.opcode = nvme_admin_keep_alive;
|
|
|
|
rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
|
|
NVME_QID_ANY);
|
|
if (IS_ERR(rq))
|
|
return PTR_ERR(rq);
|
|
|
|
rq->timeout = ctrl->kato * HZ;
|
|
rq->end_io_data = ctrl;
|
|
|
|
blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_keep_alive_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
|
|
struct nvme_ctrl, ka_work);
|
|
|
|
if (nvme_keep_alive(ctrl)) {
|
|
/* allocation failure, reset the controller */
|
|
dev_err(ctrl->device, "keep-alive failed\n");
|
|
ctrl->ops->reset_ctrl(ctrl);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (unlikely(ctrl->kato == 0))
|
|
return;
|
|
|
|
INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
|
|
schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
|
|
|
|
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
|
|
{
|
|
if (unlikely(ctrl->kato == 0))
|
|
return;
|
|
|
|
cancel_delayed_work_sync(&ctrl->ka_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
|
|
|
|
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
|
|
{
|
|
struct nvme_command c = { };
|
|
int error;
|
|
|
|
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.cns = cpu_to_le32(NVME_ID_CNS_CTRL);
|
|
|
|
*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
|
|
if (!*id)
|
|
return -ENOMEM;
|
|
|
|
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
|
|
sizeof(struct nvme_id_ctrl));
|
|
if (error)
|
|
kfree(*id);
|
|
return error;
|
|
}
|
|
|
|
static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
|
|
{
|
|
struct nvme_command c = { };
|
|
|
|
c.identify.opcode = nvme_admin_identify;
|
|
c.identify.cns = cpu_to_le32(NVME_ID_CNS_NS_ACTIVE_LIST);
|
|
c.identify.nsid = cpu_to_le32(nsid);
|
|
return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
|
|
}
|
|
|
|
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
|
|
struct nvme_id_ns **id)
|
|
{
|
|
struct nvme_command c = { };
|
|
int error;
|
|
|
|
/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
|
|
c.identify.opcode = nvme_admin_identify,
|
|
c.identify.nsid = cpu_to_le32(nsid),
|
|
|
|
*id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
|
|
if (!*id)
|
|
return -ENOMEM;
|
|
|
|
error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
|
|
sizeof(struct nvme_id_ns));
|
|
if (error)
|
|
kfree(*id);
|
|
return error;
|
|
}
|
|
|
|
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
|
|
void *buffer, size_t buflen, u32 *result)
|
|
{
|
|
struct nvme_command c;
|
|
struct nvme_completion cqe;
|
|
int ret;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_get_features;
|
|
c.features.nsid = cpu_to_le32(nsid);
|
|
c.features.fid = cpu_to_le32(fid);
|
|
|
|
ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe, buffer, buflen, 0,
|
|
NVME_QID_ANY, 0, 0);
|
|
if (ret >= 0 && result)
|
|
*result = le32_to_cpu(cqe.result);
|
|
return ret;
|
|
}
|
|
|
|
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
|
|
void *buffer, size_t buflen, u32 *result)
|
|
{
|
|
struct nvme_command c;
|
|
struct nvme_completion cqe;
|
|
int ret;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.features.opcode = nvme_admin_set_features;
|
|
c.features.fid = cpu_to_le32(fid);
|
|
c.features.dword11 = cpu_to_le32(dword11);
|
|
|
|
ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &cqe,
|
|
buffer, buflen, 0, NVME_QID_ANY, 0, 0);
|
|
if (ret >= 0 && result)
|
|
*result = le32_to_cpu(cqe.result);
|
|
return ret;
|
|
}
|
|
|
|
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log)
|
|
{
|
|
struct nvme_command c = { };
|
|
int error;
|
|
|
|
c.common.opcode = nvme_admin_get_log_page,
|
|
c.common.nsid = cpu_to_le32(0xFFFFFFFF),
|
|
c.common.cdw10[0] = cpu_to_le32(
|
|
(((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
|
|
NVME_LOG_SMART),
|
|
|
|
*log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
|
|
if (!*log)
|
|
return -ENOMEM;
|
|
|
|
error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
|
|
sizeof(struct nvme_smart_log));
|
|
if (error)
|
|
kfree(*log);
|
|
return error;
|
|
}
|
|
|
|
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
|
|
{
|
|
u32 q_count = (*count - 1) | ((*count - 1) << 16);
|
|
u32 result;
|
|
int status, nr_io_queues;
|
|
|
|
status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
|
|
&result);
|
|
if (status < 0)
|
|
return status;
|
|
|
|
/*
|
|
* Degraded controllers might return an error when setting the queue
|
|
* count. We still want to be able to bring them online and offer
|
|
* access to the admin queue, as that might be only way to fix them up.
|
|
*/
|
|
if (status > 0) {
|
|
dev_err(ctrl->dev, "Could not set queue count (%d)\n", status);
|
|
*count = 0;
|
|
} else {
|
|
nr_io_queues = min(result & 0xffff, result >> 16) + 1;
|
|
*count = min(*count, nr_io_queues);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
|
|
|
|
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
|
|
{
|
|
struct nvme_user_io io;
|
|
struct nvme_command c;
|
|
unsigned length, meta_len;
|
|
void __user *metadata;
|
|
|
|
if (copy_from_user(&io, uio, sizeof(io)))
|
|
return -EFAULT;
|
|
if (io.flags)
|
|
return -EINVAL;
|
|
|
|
switch (io.opcode) {
|
|
case nvme_cmd_write:
|
|
case nvme_cmd_read:
|
|
case nvme_cmd_compare:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
length = (io.nblocks + 1) << ns->lba_shift;
|
|
meta_len = (io.nblocks + 1) * ns->ms;
|
|
metadata = (void __user *)(uintptr_t)io.metadata;
|
|
|
|
if (ns->ext) {
|
|
length += meta_len;
|
|
meta_len = 0;
|
|
} else if (meta_len) {
|
|
if ((io.metadata & 3) || !io.metadata)
|
|
return -EINVAL;
|
|
}
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.rw.opcode = io.opcode;
|
|
c.rw.flags = io.flags;
|
|
c.rw.nsid = cpu_to_le32(ns->ns_id);
|
|
c.rw.slba = cpu_to_le64(io.slba);
|
|
c.rw.length = cpu_to_le16(io.nblocks);
|
|
c.rw.control = cpu_to_le16(io.control);
|
|
c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
|
|
c.rw.reftag = cpu_to_le32(io.reftag);
|
|
c.rw.apptag = cpu_to_le16(io.apptag);
|
|
c.rw.appmask = cpu_to_le16(io.appmask);
|
|
|
|
return __nvme_submit_user_cmd(ns->queue, &c,
|
|
(void __user *)(uintptr_t)io.addr, length,
|
|
metadata, meta_len, io.slba, NULL, 0);
|
|
}
|
|
|
|
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
|
|
struct nvme_passthru_cmd __user *ucmd)
|
|
{
|
|
struct nvme_passthru_cmd cmd;
|
|
struct nvme_command c;
|
|
unsigned timeout = 0;
|
|
int status;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
|
|
return -EFAULT;
|
|
if (cmd.flags)
|
|
return -EINVAL;
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.common.opcode = cmd.opcode;
|
|
c.common.flags = cmd.flags;
|
|
c.common.nsid = cpu_to_le32(cmd.nsid);
|
|
c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
|
|
c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
|
|
c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
|
|
c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
|
|
c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
|
|
c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
|
|
c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
|
|
c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
|
|
|
|
if (cmd.timeout_ms)
|
|
timeout = msecs_to_jiffies(cmd.timeout_ms);
|
|
|
|
status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
|
|
(void __user *)(uintptr_t)cmd.addr, cmd.data_len,
|
|
&cmd.result, timeout);
|
|
if (status >= 0) {
|
|
if (put_user(cmd.result, &ucmd->result))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct nvme_ns *ns = bdev->bd_disk->private_data;
|
|
|
|
switch (cmd) {
|
|
case NVME_IOCTL_ID:
|
|
force_successful_syscall_return();
|
|
return ns->ns_id;
|
|
case NVME_IOCTL_ADMIN_CMD:
|
|
return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
|
|
case NVME_IOCTL_IO_CMD:
|
|
return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
|
|
case NVME_IOCTL_SUBMIT_IO:
|
|
return nvme_submit_io(ns, (void __user *)arg);
|
|
#ifdef CONFIG_BLK_DEV_NVME_SCSI
|
|
case SG_GET_VERSION_NUM:
|
|
return nvme_sg_get_version_num((void __user *)arg);
|
|
case SG_IO:
|
|
return nvme_sg_io(ns, (void __user *)arg);
|
|
#endif
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
|
|
unsigned int cmd, unsigned long arg)
|
|
{
|
|
switch (cmd) {
|
|
case SG_IO:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
return nvme_ioctl(bdev, mode, cmd, arg);
|
|
}
|
|
#else
|
|
#define nvme_compat_ioctl NULL
|
|
#endif
|
|
|
|
static int nvme_open(struct block_device *bdev, fmode_t mode)
|
|
{
|
|
return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
|
|
}
|
|
|
|
static void nvme_release(struct gendisk *disk, fmode_t mode)
|
|
{
|
|
struct nvme_ns *ns = disk->private_data;
|
|
|
|
module_put(ns->ctrl->ops->module);
|
|
nvme_put_ns(ns);
|
|
}
|
|
|
|
static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
|
|
{
|
|
/* some standard values */
|
|
geo->heads = 1 << 6;
|
|
geo->sectors = 1 << 5;
|
|
geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INTEGRITY
|
|
static void nvme_init_integrity(struct nvme_ns *ns)
|
|
{
|
|
struct blk_integrity integrity;
|
|
|
|
memset(&integrity, 0, sizeof(integrity));
|
|
switch (ns->pi_type) {
|
|
case NVME_NS_DPS_PI_TYPE3:
|
|
integrity.profile = &t10_pi_type3_crc;
|
|
integrity.tag_size = sizeof(u16) + sizeof(u32);
|
|
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
|
|
break;
|
|
case NVME_NS_DPS_PI_TYPE1:
|
|
case NVME_NS_DPS_PI_TYPE2:
|
|
integrity.profile = &t10_pi_type1_crc;
|
|
integrity.tag_size = sizeof(u16);
|
|
integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
|
|
break;
|
|
default:
|
|
integrity.profile = NULL;
|
|
break;
|
|
}
|
|
integrity.tuple_size = ns->ms;
|
|
blk_integrity_register(ns->disk, &integrity);
|
|
blk_queue_max_integrity_segments(ns->queue, 1);
|
|
}
|
|
#else
|
|
static void nvme_init_integrity(struct nvme_ns *ns)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INTEGRITY */
|
|
|
|
static void nvme_config_discard(struct nvme_ns *ns)
|
|
{
|
|
struct nvme_ctrl *ctrl = ns->ctrl;
|
|
u32 logical_block_size = queue_logical_block_size(ns->queue);
|
|
|
|
if (ctrl->quirks & NVME_QUIRK_DISCARD_ZEROES)
|
|
ns->queue->limits.discard_zeroes_data = 1;
|
|
else
|
|
ns->queue->limits.discard_zeroes_data = 0;
|
|
|
|
ns->queue->limits.discard_alignment = logical_block_size;
|
|
ns->queue->limits.discard_granularity = logical_block_size;
|
|
blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
|
|
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
|
|
}
|
|
|
|
static int nvme_revalidate_ns(struct nvme_ns *ns, struct nvme_id_ns **id)
|
|
{
|
|
if (nvme_identify_ns(ns->ctrl, ns->ns_id, id)) {
|
|
dev_warn(ns->ctrl->dev, "%s: Identify failure\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if ((*id)->ncap == 0) {
|
|
kfree(*id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (ns->ctrl->vs >= NVME_VS(1, 1, 0))
|
|
memcpy(ns->eui, (*id)->eui64, sizeof(ns->eui));
|
|
if (ns->ctrl->vs >= NVME_VS(1, 2, 0))
|
|
memcpy(ns->uuid, (*id)->nguid, sizeof(ns->uuid));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
|
|
{
|
|
struct nvme_ns *ns = disk->private_data;
|
|
u8 lbaf, pi_type;
|
|
u16 old_ms;
|
|
unsigned short bs;
|
|
|
|
old_ms = ns->ms;
|
|
lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
|
|
ns->lba_shift = id->lbaf[lbaf].ds;
|
|
ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
|
|
ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
|
|
|
|
/*
|
|
* If identify namespace failed, use default 512 byte block size so
|
|
* block layer can use before failing read/write for 0 capacity.
|
|
*/
|
|
if (ns->lba_shift == 0)
|
|
ns->lba_shift = 9;
|
|
bs = 1 << ns->lba_shift;
|
|
/* XXX: PI implementation requires metadata equal t10 pi tuple size */
|
|
pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
|
|
id->dps & NVME_NS_DPS_PI_MASK : 0;
|
|
|
|
blk_mq_freeze_queue(disk->queue);
|
|
if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
|
|
ns->ms != old_ms ||
|
|
bs != queue_logical_block_size(disk->queue) ||
|
|
(ns->ms && ns->ext)))
|
|
blk_integrity_unregister(disk);
|
|
|
|
ns->pi_type = pi_type;
|
|
blk_queue_logical_block_size(ns->queue, bs);
|
|
|
|
if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
|
|
nvme_init_integrity(ns);
|
|
if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
|
|
set_capacity(disk, 0);
|
|
else
|
|
set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
|
|
|
|
if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
|
|
nvme_config_discard(ns);
|
|
blk_mq_unfreeze_queue(disk->queue);
|
|
}
|
|
|
|
static int nvme_revalidate_disk(struct gendisk *disk)
|
|
{
|
|
struct nvme_ns *ns = disk->private_data;
|
|
struct nvme_id_ns *id = NULL;
|
|
int ret;
|
|
|
|
if (test_bit(NVME_NS_DEAD, &ns->flags)) {
|
|
set_capacity(disk, 0);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = nvme_revalidate_ns(ns, &id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
__nvme_revalidate_disk(disk, id);
|
|
kfree(id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static char nvme_pr_type(enum pr_type type)
|
|
{
|
|
switch (type) {
|
|
case PR_WRITE_EXCLUSIVE:
|
|
return 1;
|
|
case PR_EXCLUSIVE_ACCESS:
|
|
return 2;
|
|
case PR_WRITE_EXCLUSIVE_REG_ONLY:
|
|
return 3;
|
|
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
|
|
return 4;
|
|
case PR_WRITE_EXCLUSIVE_ALL_REGS:
|
|
return 5;
|
|
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
|
|
return 6;
|
|
default:
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
|
|
u64 key, u64 sa_key, u8 op)
|
|
{
|
|
struct nvme_ns *ns = bdev->bd_disk->private_data;
|
|
struct nvme_command c;
|
|
u8 data[16] = { 0, };
|
|
|
|
put_unaligned_le64(key, &data[0]);
|
|
put_unaligned_le64(sa_key, &data[8]);
|
|
|
|
memset(&c, 0, sizeof(c));
|
|
c.common.opcode = op;
|
|
c.common.nsid = cpu_to_le32(ns->ns_id);
|
|
c.common.cdw10[0] = cpu_to_le32(cdw10);
|
|
|
|
return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
|
|
}
|
|
|
|
static int nvme_pr_register(struct block_device *bdev, u64 old,
|
|
u64 new, unsigned flags)
|
|
{
|
|
u32 cdw10;
|
|
|
|
if (flags & ~PR_FL_IGNORE_KEY)
|
|
return -EOPNOTSUPP;
|
|
|
|
cdw10 = old ? 2 : 0;
|
|
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
|
|
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
|
|
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
|
|
}
|
|
|
|
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
|
|
enum pr_type type, unsigned flags)
|
|
{
|
|
u32 cdw10;
|
|
|
|
if (flags & ~PR_FL_IGNORE_KEY)
|
|
return -EOPNOTSUPP;
|
|
|
|
cdw10 = nvme_pr_type(type) << 8;
|
|
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
|
|
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
|
|
}
|
|
|
|
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
|
|
enum pr_type type, bool abort)
|
|
{
|
|
u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
|
|
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
|
|
}
|
|
|
|
static int nvme_pr_clear(struct block_device *bdev, u64 key)
|
|
{
|
|
u32 cdw10 = 1 | (key ? 1 << 3 : 0);
|
|
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
|
|
}
|
|
|
|
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
|
|
{
|
|
u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
|
|
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
|
|
}
|
|
|
|
static const struct pr_ops nvme_pr_ops = {
|
|
.pr_register = nvme_pr_register,
|
|
.pr_reserve = nvme_pr_reserve,
|
|
.pr_release = nvme_pr_release,
|
|
.pr_preempt = nvme_pr_preempt,
|
|
.pr_clear = nvme_pr_clear,
|
|
};
|
|
|
|
static const struct block_device_operations nvme_fops = {
|
|
.owner = THIS_MODULE,
|
|
.ioctl = nvme_ioctl,
|
|
.compat_ioctl = nvme_compat_ioctl,
|
|
.open = nvme_open,
|
|
.release = nvme_release,
|
|
.getgeo = nvme_getgeo,
|
|
.revalidate_disk= nvme_revalidate_disk,
|
|
.pr_ops = &nvme_pr_ops,
|
|
};
|
|
|
|
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
|
|
{
|
|
unsigned long timeout =
|
|
((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
|
|
u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
|
|
int ret;
|
|
|
|
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
|
|
if (csts == ~0)
|
|
return -ENODEV;
|
|
if ((csts & NVME_CSTS_RDY) == bit)
|
|
break;
|
|
|
|
msleep(100);
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(ctrl->device,
|
|
"Device not ready; aborting %s\n", enabled ?
|
|
"initialisation" : "reset");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If the device has been passed off to us in an enabled state, just clear
|
|
* the enabled bit. The spec says we should set the 'shutdown notification
|
|
* bits', but doing so may cause the device to complete commands to the
|
|
* admin queue ... and we don't know what memory that might be pointing at!
|
|
*/
|
|
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
|
|
{
|
|
int ret;
|
|
|
|
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
|
|
ctrl->ctrl_config &= ~NVME_CC_ENABLE;
|
|
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Checking for ctrl->tagset is a trick to avoid sleeping on module
|
|
* load, since we only need the quirk on reset_controller. Notice
|
|
* that the HGST device needs this delay only in firmware activation
|
|
* procedure; unfortunately we have no (easy) way to verify this.
|
|
*/
|
|
if ((ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) && ctrl->tagset)
|
|
msleep(NVME_QUIRK_DELAY_AMOUNT);
|
|
|
|
return nvme_wait_ready(ctrl, cap, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
|
|
|
|
int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
|
|
{
|
|
/*
|
|
* Default to a 4K page size, with the intention to update this
|
|
* path in the future to accomodate architectures with differing
|
|
* kernel and IO page sizes.
|
|
*/
|
|
unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
|
|
int ret;
|
|
|
|
if (page_shift < dev_page_min) {
|
|
dev_err(ctrl->device,
|
|
"Minimum device page size %u too large for host (%u)\n",
|
|
1 << dev_page_min, 1 << page_shift);
|
|
return -ENODEV;
|
|
}
|
|
|
|
ctrl->page_size = 1 << page_shift;
|
|
|
|
ctrl->ctrl_config = NVME_CC_CSS_NVM;
|
|
ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
|
|
ctrl->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
|
|
ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
|
|
ctrl->ctrl_config |= NVME_CC_ENABLE;
|
|
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
return nvme_wait_ready(ctrl, cap, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
|
|
|
|
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
unsigned long timeout = SHUTDOWN_TIMEOUT + jiffies;
|
|
u32 csts;
|
|
int ret;
|
|
|
|
ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
|
|
ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
|
|
|
|
ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
|
|
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
|
|
break;
|
|
|
|
msleep(100);
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
if (time_after(jiffies, timeout)) {
|
|
dev_err(ctrl->device,
|
|
"Device shutdown incomplete; abort shutdown\n");
|
|
return -ENODEV;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
|
|
|
|
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
|
|
struct request_queue *q)
|
|
{
|
|
bool vwc = false;
|
|
|
|
if (ctrl->max_hw_sectors) {
|
|
u32 max_segments =
|
|
(ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
|
|
|
|
blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
|
|
blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
|
|
}
|
|
if (ctrl->stripe_size)
|
|
blk_queue_chunk_sectors(q, ctrl->stripe_size >> 9);
|
|
blk_queue_virt_boundary(q, ctrl->page_size - 1);
|
|
if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
|
|
vwc = true;
|
|
blk_queue_write_cache(q, vwc, vwc);
|
|
}
|
|
|
|
/*
|
|
* Initialize the cached copies of the Identify data and various controller
|
|
* register in our nvme_ctrl structure. This should be called as soon as
|
|
* the admin queue is fully up and running.
|
|
*/
|
|
int nvme_init_identify(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_id_ctrl *id;
|
|
u64 cap;
|
|
int ret, page_shift;
|
|
u32 max_hw_sectors;
|
|
|
|
ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
|
|
if (ret) {
|
|
dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
|
|
if (ret) {
|
|
dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
page_shift = NVME_CAP_MPSMIN(cap) + 12;
|
|
|
|
if (ctrl->vs >= NVME_VS(1, 1, 0))
|
|
ctrl->subsystem = NVME_CAP_NSSRC(cap);
|
|
|
|
ret = nvme_identify_ctrl(ctrl, &id);
|
|
if (ret) {
|
|
dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
|
|
return -EIO;
|
|
}
|
|
|
|
ctrl->vid = le16_to_cpu(id->vid);
|
|
ctrl->oncs = le16_to_cpup(&id->oncs);
|
|
atomic_set(&ctrl->abort_limit, id->acl + 1);
|
|
ctrl->vwc = id->vwc;
|
|
ctrl->cntlid = le16_to_cpup(&id->cntlid);
|
|
memcpy(ctrl->serial, id->sn, sizeof(id->sn));
|
|
memcpy(ctrl->model, id->mn, sizeof(id->mn));
|
|
memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
|
|
if (id->mdts)
|
|
max_hw_sectors = 1 << (id->mdts + page_shift - 9);
|
|
else
|
|
max_hw_sectors = UINT_MAX;
|
|
ctrl->max_hw_sectors =
|
|
min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
|
|
|
|
if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && id->vs[3]) {
|
|
unsigned int max_hw_sectors;
|
|
|
|
ctrl->stripe_size = 1 << (id->vs[3] + page_shift);
|
|
max_hw_sectors = ctrl->stripe_size >> (page_shift - 9);
|
|
if (ctrl->max_hw_sectors) {
|
|
ctrl->max_hw_sectors = min(max_hw_sectors,
|
|
ctrl->max_hw_sectors);
|
|
} else {
|
|
ctrl->max_hw_sectors = max_hw_sectors;
|
|
}
|
|
}
|
|
|
|
nvme_set_queue_limits(ctrl, ctrl->admin_q);
|
|
ctrl->sgls = le32_to_cpu(id->sgls);
|
|
ctrl->kas = le16_to_cpu(id->kas);
|
|
|
|
if (ctrl->ops->is_fabrics) {
|
|
ctrl->icdoff = le16_to_cpu(id->icdoff);
|
|
ctrl->ioccsz = le32_to_cpu(id->ioccsz);
|
|
ctrl->iorcsz = le32_to_cpu(id->iorcsz);
|
|
ctrl->maxcmd = le16_to_cpu(id->maxcmd);
|
|
|
|
/*
|
|
* In fabrics we need to verify the cntlid matches the
|
|
* admin connect
|
|
*/
|
|
if (ctrl->cntlid != le16_to_cpu(id->cntlid))
|
|
ret = -EINVAL;
|
|
|
|
if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
|
|
dev_err(ctrl->dev,
|
|
"keep-alive support is mandatory for fabrics\n");
|
|
ret = -EINVAL;
|
|
}
|
|
} else {
|
|
ctrl->cntlid = le16_to_cpu(id->cntlid);
|
|
}
|
|
|
|
kfree(id);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_init_identify);
|
|
|
|
static int nvme_dev_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct nvme_ctrl *ctrl;
|
|
int instance = iminor(inode);
|
|
int ret = -ENODEV;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
|
|
if (ctrl->instance != instance)
|
|
continue;
|
|
|
|
if (!ctrl->admin_q) {
|
|
ret = -EWOULDBLOCK;
|
|
break;
|
|
}
|
|
if (!kref_get_unless_zero(&ctrl->kref))
|
|
break;
|
|
file->private_data = ctrl;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nvme_dev_release(struct inode *inode, struct file *file)
|
|
{
|
|
nvme_put_ctrl(file->private_data);
|
|
return 0;
|
|
}
|
|
|
|
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
|
|
{
|
|
struct nvme_ns *ns;
|
|
int ret;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
if (list_empty(&ctrl->namespaces)) {
|
|
ret = -ENOTTY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
|
|
if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
|
|
dev_warn(ctrl->device,
|
|
"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
dev_warn(ctrl->device,
|
|
"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
|
|
kref_get(&ns->kref);
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
|
|
ret = nvme_user_cmd(ctrl, ns, argp);
|
|
nvme_put_ns(ns);
|
|
return ret;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct nvme_ctrl *ctrl = file->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (cmd) {
|
|
case NVME_IOCTL_ADMIN_CMD:
|
|
return nvme_user_cmd(ctrl, NULL, argp);
|
|
case NVME_IOCTL_IO_CMD:
|
|
return nvme_dev_user_cmd(ctrl, argp);
|
|
case NVME_IOCTL_RESET:
|
|
dev_warn(ctrl->device, "resetting controller\n");
|
|
return ctrl->ops->reset_ctrl(ctrl);
|
|
case NVME_IOCTL_SUBSYS_RESET:
|
|
return nvme_reset_subsystem(ctrl);
|
|
case NVME_IOCTL_RESCAN:
|
|
nvme_queue_scan(ctrl);
|
|
return 0;
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static const struct file_operations nvme_dev_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = nvme_dev_open,
|
|
.release = nvme_dev_release,
|
|
.unlocked_ioctl = nvme_dev_ioctl,
|
|
.compat_ioctl = nvme_dev_ioctl,
|
|
};
|
|
|
|
static ssize_t nvme_sysfs_reset(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = ctrl->ops->reset_ctrl(ctrl);
|
|
if (ret < 0)
|
|
return ret;
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
|
|
|
|
static ssize_t nvme_sysfs_rescan(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
|
|
nvme_queue_scan(ctrl);
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
|
|
|
|
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
|
|
struct nvme_ctrl *ctrl = ns->ctrl;
|
|
int serial_len = sizeof(ctrl->serial);
|
|
int model_len = sizeof(ctrl->model);
|
|
|
|
if (memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
|
|
return sprintf(buf, "eui.%16phN\n", ns->uuid);
|
|
|
|
if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
|
|
return sprintf(buf, "eui.%8phN\n", ns->eui);
|
|
|
|
while (ctrl->serial[serial_len - 1] == ' ')
|
|
serial_len--;
|
|
while (ctrl->model[model_len - 1] == ' ')
|
|
model_len--;
|
|
|
|
return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
|
|
serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
|
|
}
|
|
static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
|
|
|
|
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
|
|
return sprintf(buf, "%pU\n", ns->uuid);
|
|
}
|
|
static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
|
|
|
|
static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
|
|
return sprintf(buf, "%8phd\n", ns->eui);
|
|
}
|
|
static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
|
|
|
|
static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
|
|
return sprintf(buf, "%d\n", ns->ns_id);
|
|
}
|
|
static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
|
|
|
|
static struct attribute *nvme_ns_attrs[] = {
|
|
&dev_attr_wwid.attr,
|
|
&dev_attr_uuid.attr,
|
|
&dev_attr_eui.attr,
|
|
&dev_attr_nsid.attr,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
|
|
struct attribute *a, int n)
|
|
{
|
|
struct device *dev = container_of(kobj, struct device, kobj);
|
|
struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
|
|
|
|
if (a == &dev_attr_uuid.attr) {
|
|
if (!memchr_inv(ns->uuid, 0, sizeof(ns->uuid)))
|
|
return 0;
|
|
}
|
|
if (a == &dev_attr_eui.attr) {
|
|
if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
|
|
return 0;
|
|
}
|
|
return a->mode;
|
|
}
|
|
|
|
static const struct attribute_group nvme_ns_attr_group = {
|
|
.attrs = nvme_ns_attrs,
|
|
.is_visible = nvme_ns_attrs_are_visible,
|
|
};
|
|
|
|
#define nvme_show_str_function(field) \
|
|
static ssize_t field##_show(struct device *dev, \
|
|
struct device_attribute *attr, char *buf) \
|
|
{ \
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
|
|
return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field); \
|
|
} \
|
|
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
|
|
|
|
#define nvme_show_int_function(field) \
|
|
static ssize_t field##_show(struct device *dev, \
|
|
struct device_attribute *attr, char *buf) \
|
|
{ \
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
|
|
return sprintf(buf, "%d\n", ctrl->field); \
|
|
} \
|
|
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
|
|
|
|
nvme_show_str_function(model);
|
|
nvme_show_str_function(serial);
|
|
nvme_show_str_function(firmware_rev);
|
|
nvme_show_int_function(cntlid);
|
|
|
|
static ssize_t nvme_sysfs_delete(struct device *dev,
|
|
struct device_attribute *attr, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
|
|
if (device_remove_file_self(dev, attr))
|
|
ctrl->ops->delete_ctrl(ctrl);
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
|
|
|
|
static ssize_t nvme_sysfs_show_transport(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
|
|
}
|
|
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
|
|
|
|
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
|
|
return snprintf(buf, PAGE_SIZE, "%s\n",
|
|
ctrl->ops->get_subsysnqn(ctrl));
|
|
}
|
|
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
|
|
|
|
static ssize_t nvme_sysfs_show_address(struct device *dev,
|
|
struct device_attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
|
|
return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
|
|
}
|
|
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
|
|
|
|
static struct attribute *nvme_dev_attrs[] = {
|
|
&dev_attr_reset_controller.attr,
|
|
&dev_attr_rescan_controller.attr,
|
|
&dev_attr_model.attr,
|
|
&dev_attr_serial.attr,
|
|
&dev_attr_firmware_rev.attr,
|
|
&dev_attr_cntlid.attr,
|
|
&dev_attr_delete_controller.attr,
|
|
&dev_attr_transport.attr,
|
|
&dev_attr_subsysnqn.attr,
|
|
&dev_attr_address.attr,
|
|
NULL
|
|
};
|
|
|
|
#define CHECK_ATTR(ctrl, a, name) \
|
|
if ((a) == &dev_attr_##name.attr && \
|
|
!(ctrl)->ops->get_##name) \
|
|
return 0
|
|
|
|
static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
|
|
struct attribute *a, int n)
|
|
{
|
|
struct device *dev = container_of(kobj, struct device, kobj);
|
|
struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
|
|
|
|
if (a == &dev_attr_delete_controller.attr) {
|
|
if (!ctrl->ops->delete_ctrl)
|
|
return 0;
|
|
}
|
|
|
|
CHECK_ATTR(ctrl, a, subsysnqn);
|
|
CHECK_ATTR(ctrl, a, address);
|
|
|
|
return a->mode;
|
|
}
|
|
|
|
static struct attribute_group nvme_dev_attrs_group = {
|
|
.attrs = nvme_dev_attrs,
|
|
.is_visible = nvme_dev_attrs_are_visible,
|
|
};
|
|
|
|
static const struct attribute_group *nvme_dev_attr_groups[] = {
|
|
&nvme_dev_attrs_group,
|
|
NULL,
|
|
};
|
|
|
|
static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
|
|
{
|
|
struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
|
|
struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
|
|
|
|
return nsa->ns_id - nsb->ns_id;
|
|
}
|
|
|
|
static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns, *ret = NULL;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
if (ns->ns_id == nsid) {
|
|
kref_get(&ns->kref);
|
|
ret = ns;
|
|
break;
|
|
}
|
|
if (ns->ns_id > nsid)
|
|
break;
|
|
}
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns;
|
|
struct gendisk *disk;
|
|
struct nvme_id_ns *id;
|
|
char disk_name[DISK_NAME_LEN];
|
|
int node = dev_to_node(ctrl->dev);
|
|
|
|
ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
|
|
if (!ns)
|
|
return;
|
|
|
|
ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
|
|
if (ns->instance < 0)
|
|
goto out_free_ns;
|
|
|
|
ns->queue = blk_mq_init_queue(ctrl->tagset);
|
|
if (IS_ERR(ns->queue))
|
|
goto out_release_instance;
|
|
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
|
|
ns->queue->queuedata = ns;
|
|
ns->ctrl = ctrl;
|
|
|
|
kref_init(&ns->kref);
|
|
ns->ns_id = nsid;
|
|
ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
|
|
|
|
blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
|
|
nvme_set_queue_limits(ctrl, ns->queue);
|
|
|
|
sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
|
|
|
|
if (nvme_revalidate_ns(ns, &id))
|
|
goto out_free_queue;
|
|
|
|
if (nvme_nvm_ns_supported(ns, id)) {
|
|
if (nvme_nvm_register(ns, disk_name, node,
|
|
&nvme_ns_attr_group)) {
|
|
dev_warn(ctrl->dev, "%s: LightNVM init failure\n",
|
|
__func__);
|
|
goto out_free_id;
|
|
}
|
|
} else {
|
|
disk = alloc_disk_node(0, node);
|
|
if (!disk)
|
|
goto out_free_id;
|
|
|
|
disk->fops = &nvme_fops;
|
|
disk->private_data = ns;
|
|
disk->queue = ns->queue;
|
|
disk->flags = GENHD_FL_EXT_DEVT;
|
|
memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
|
|
ns->disk = disk;
|
|
|
|
__nvme_revalidate_disk(disk, id);
|
|
}
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_add_tail(&ns->list, &ctrl->namespaces);
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
|
|
kref_get(&ctrl->kref);
|
|
|
|
kfree(id);
|
|
|
|
if (ns->ndev)
|
|
return;
|
|
|
|
device_add_disk(ctrl->device, ns->disk);
|
|
if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
|
|
&nvme_ns_attr_group))
|
|
pr_warn("%s: failed to create sysfs group for identification\n",
|
|
ns->disk->disk_name);
|
|
return;
|
|
out_free_id:
|
|
kfree(id);
|
|
out_free_queue:
|
|
blk_cleanup_queue(ns->queue);
|
|
out_release_instance:
|
|
ida_simple_remove(&ctrl->ns_ida, ns->instance);
|
|
out_free_ns:
|
|
kfree(ns);
|
|
}
|
|
|
|
static void nvme_ns_remove(struct nvme_ns *ns)
|
|
{
|
|
if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
|
|
return;
|
|
|
|
if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
|
|
if (blk_get_integrity(ns->disk))
|
|
blk_integrity_unregister(ns->disk);
|
|
sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
|
|
&nvme_ns_attr_group);
|
|
del_gendisk(ns->disk);
|
|
blk_mq_abort_requeue_list(ns->queue);
|
|
blk_cleanup_queue(ns->queue);
|
|
}
|
|
|
|
mutex_lock(&ns->ctrl->namespaces_mutex);
|
|
list_del_init(&ns->list);
|
|
mutex_unlock(&ns->ctrl->namespaces_mutex);
|
|
|
|
nvme_put_ns(ns);
|
|
}
|
|
|
|
static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
ns = nvme_find_get_ns(ctrl, nsid);
|
|
if (ns) {
|
|
if (ns->disk && revalidate_disk(ns->disk))
|
|
nvme_ns_remove(ns);
|
|
nvme_put_ns(ns);
|
|
} else
|
|
nvme_alloc_ns(ctrl, nsid);
|
|
}
|
|
|
|
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
|
|
unsigned nsid)
|
|
{
|
|
struct nvme_ns *ns, *next;
|
|
|
|
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
|
|
if (ns->ns_id > nsid)
|
|
nvme_ns_remove(ns);
|
|
}
|
|
}
|
|
|
|
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
|
|
{
|
|
struct nvme_ns *ns;
|
|
__le32 *ns_list;
|
|
unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
|
|
int ret = 0;
|
|
|
|
ns_list = kzalloc(0x1000, GFP_KERNEL);
|
|
if (!ns_list)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < num_lists; i++) {
|
|
ret = nvme_identify_ns_list(ctrl, prev, ns_list);
|
|
if (ret)
|
|
goto free;
|
|
|
|
for (j = 0; j < min(nn, 1024U); j++) {
|
|
nsid = le32_to_cpu(ns_list[j]);
|
|
if (!nsid)
|
|
goto out;
|
|
|
|
nvme_validate_ns(ctrl, nsid);
|
|
|
|
while (++prev < nsid) {
|
|
ns = nvme_find_get_ns(ctrl, prev);
|
|
if (ns) {
|
|
nvme_ns_remove(ns);
|
|
nvme_put_ns(ns);
|
|
}
|
|
}
|
|
}
|
|
nn -= j;
|
|
}
|
|
out:
|
|
nvme_remove_invalid_namespaces(ctrl, prev);
|
|
free:
|
|
kfree(ns_list);
|
|
return ret;
|
|
}
|
|
|
|
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 1; i <= nn; i++)
|
|
nvme_validate_ns(ctrl, i);
|
|
|
|
nvme_remove_invalid_namespaces(ctrl, nn);
|
|
}
|
|
|
|
static void nvme_scan_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(work, struct nvme_ctrl, scan_work);
|
|
struct nvme_id_ctrl *id;
|
|
unsigned nn;
|
|
|
|
if (ctrl->state != NVME_CTRL_LIVE)
|
|
return;
|
|
|
|
if (nvme_identify_ctrl(ctrl, &id))
|
|
return;
|
|
|
|
nn = le32_to_cpu(id->nn);
|
|
if (ctrl->vs >= NVME_VS(1, 1, 0) &&
|
|
!(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
|
|
if (!nvme_scan_ns_list(ctrl, nn))
|
|
goto done;
|
|
}
|
|
nvme_scan_ns_sequential(ctrl, nn);
|
|
done:
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_sort(NULL, &ctrl->namespaces, ns_cmp);
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
kfree(id);
|
|
}
|
|
|
|
void nvme_queue_scan(struct nvme_ctrl *ctrl)
|
|
{
|
|
/*
|
|
* Do not queue new scan work when a controller is reset during
|
|
* removal.
|
|
*/
|
|
if (ctrl->state == NVME_CTRL_LIVE)
|
|
schedule_work(&ctrl->scan_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_queue_scan);
|
|
|
|
/*
|
|
* This function iterates the namespace list unlocked to allow recovery from
|
|
* controller failure. It is up to the caller to ensure the namespace list is
|
|
* not modified by scan work while this function is executing.
|
|
*/
|
|
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns, *next;
|
|
|
|
/*
|
|
* The dead states indicates the controller was not gracefully
|
|
* disconnected. In that case, we won't be able to flush any data while
|
|
* removing the namespaces' disks; fail all the queues now to avoid
|
|
* potentially having to clean up the failed sync later.
|
|
*/
|
|
if (ctrl->state == NVME_CTRL_DEAD)
|
|
nvme_kill_queues(ctrl);
|
|
|
|
list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
|
|
nvme_ns_remove(ns);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
|
|
|
|
static void nvme_async_event_work(struct work_struct *work)
|
|
{
|
|
struct nvme_ctrl *ctrl =
|
|
container_of(work, struct nvme_ctrl, async_event_work);
|
|
|
|
spin_lock_irq(&ctrl->lock);
|
|
while (ctrl->event_limit > 0) {
|
|
int aer_idx = --ctrl->event_limit;
|
|
|
|
spin_unlock_irq(&ctrl->lock);
|
|
ctrl->ops->submit_async_event(ctrl, aer_idx);
|
|
spin_lock_irq(&ctrl->lock);
|
|
}
|
|
spin_unlock_irq(&ctrl->lock);
|
|
}
|
|
|
|
void nvme_complete_async_event(struct nvme_ctrl *ctrl,
|
|
struct nvme_completion *cqe)
|
|
{
|
|
u16 status = le16_to_cpu(cqe->status) >> 1;
|
|
u32 result = le32_to_cpu(cqe->result);
|
|
|
|
if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
|
|
++ctrl->event_limit;
|
|
schedule_work(&ctrl->async_event_work);
|
|
}
|
|
|
|
if (status != NVME_SC_SUCCESS)
|
|
return;
|
|
|
|
switch (result & 0xff07) {
|
|
case NVME_AER_NOTICE_NS_CHANGED:
|
|
dev_info(ctrl->device, "rescanning\n");
|
|
nvme_queue_scan(ctrl);
|
|
break;
|
|
default:
|
|
dev_warn(ctrl->device, "async event result %08x\n", result);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_complete_async_event);
|
|
|
|
void nvme_queue_async_events(struct nvme_ctrl *ctrl)
|
|
{
|
|
ctrl->event_limit = NVME_NR_AERS;
|
|
schedule_work(&ctrl->async_event_work);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_queue_async_events);
|
|
|
|
static DEFINE_IDA(nvme_instance_ida);
|
|
|
|
static int nvme_set_instance(struct nvme_ctrl *ctrl)
|
|
{
|
|
int instance, error;
|
|
|
|
do {
|
|
if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
|
|
return -ENODEV;
|
|
|
|
spin_lock(&dev_list_lock);
|
|
error = ida_get_new(&nvme_instance_ida, &instance);
|
|
spin_unlock(&dev_list_lock);
|
|
} while (error == -EAGAIN);
|
|
|
|
if (error)
|
|
return -ENODEV;
|
|
|
|
ctrl->instance = instance;
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_release_instance(struct nvme_ctrl *ctrl)
|
|
{
|
|
spin_lock(&dev_list_lock);
|
|
ida_remove(&nvme_instance_ida, ctrl->instance);
|
|
spin_unlock(&dev_list_lock);
|
|
}
|
|
|
|
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
flush_work(&ctrl->async_event_work);
|
|
flush_work(&ctrl->scan_work);
|
|
nvme_remove_namespaces(ctrl);
|
|
|
|
device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
|
|
|
|
spin_lock(&dev_list_lock);
|
|
list_del(&ctrl->node);
|
|
spin_unlock(&dev_list_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
|
|
|
|
static void nvme_free_ctrl(struct kref *kref)
|
|
{
|
|
struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
|
|
|
|
put_device(ctrl->device);
|
|
nvme_release_instance(ctrl);
|
|
ida_destroy(&ctrl->ns_ida);
|
|
|
|
ctrl->ops->free_ctrl(ctrl);
|
|
}
|
|
|
|
void nvme_put_ctrl(struct nvme_ctrl *ctrl)
|
|
{
|
|
kref_put(&ctrl->kref, nvme_free_ctrl);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_put_ctrl);
|
|
|
|
/*
|
|
* Initialize a NVMe controller structures. This needs to be called during
|
|
* earliest initialization so that we have the initialized structured around
|
|
* during probing.
|
|
*/
|
|
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
|
|
const struct nvme_ctrl_ops *ops, unsigned long quirks)
|
|
{
|
|
int ret;
|
|
|
|
ctrl->state = NVME_CTRL_NEW;
|
|
spin_lock_init(&ctrl->lock);
|
|
INIT_LIST_HEAD(&ctrl->namespaces);
|
|
mutex_init(&ctrl->namespaces_mutex);
|
|
kref_init(&ctrl->kref);
|
|
ctrl->dev = dev;
|
|
ctrl->ops = ops;
|
|
ctrl->quirks = quirks;
|
|
INIT_WORK(&ctrl->scan_work, nvme_scan_work);
|
|
INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
|
|
|
|
ret = nvme_set_instance(ctrl);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
|
|
MKDEV(nvme_char_major, ctrl->instance),
|
|
ctrl, nvme_dev_attr_groups,
|
|
"nvme%d", ctrl->instance);
|
|
if (IS_ERR(ctrl->device)) {
|
|
ret = PTR_ERR(ctrl->device);
|
|
goto out_release_instance;
|
|
}
|
|
get_device(ctrl->device);
|
|
ida_init(&ctrl->ns_ida);
|
|
|
|
spin_lock(&dev_list_lock);
|
|
list_add_tail(&ctrl->node, &nvme_ctrl_list);
|
|
spin_unlock(&dev_list_lock);
|
|
|
|
return 0;
|
|
out_release_instance:
|
|
nvme_release_instance(ctrl);
|
|
out:
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
|
|
|
|
/**
|
|
* nvme_kill_queues(): Ends all namespace queues
|
|
* @ctrl: the dead controller that needs to end
|
|
*
|
|
* Call this function when the driver determines it is unable to get the
|
|
* controller in a state capable of servicing IO.
|
|
*/
|
|
void nvme_kill_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
/*
|
|
* Revalidating a dead namespace sets capacity to 0. This will
|
|
* end buffered writers dirtying pages that can't be synced.
|
|
*/
|
|
if (ns->disk && !test_and_set_bit(NVME_NS_DEAD, &ns->flags))
|
|
revalidate_disk(ns->disk);
|
|
|
|
blk_set_queue_dying(ns->queue);
|
|
blk_mq_abort_requeue_list(ns->queue);
|
|
blk_mq_start_stopped_hw_queues(ns->queue, true);
|
|
}
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_kill_queues);
|
|
|
|
void nvme_stop_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
spin_lock_irq(ns->queue->queue_lock);
|
|
queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
|
|
spin_unlock_irq(ns->queue->queue_lock);
|
|
|
|
blk_mq_cancel_requeue_work(ns->queue);
|
|
blk_mq_stop_hw_queues(ns->queue);
|
|
}
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_stop_queues);
|
|
|
|
void nvme_start_queues(struct nvme_ctrl *ctrl)
|
|
{
|
|
struct nvme_ns *ns;
|
|
|
|
mutex_lock(&ctrl->namespaces_mutex);
|
|
list_for_each_entry(ns, &ctrl->namespaces, list) {
|
|
queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
|
|
blk_mq_start_stopped_hw_queues(ns->queue, true);
|
|
blk_mq_kick_requeue_list(ns->queue);
|
|
}
|
|
mutex_unlock(&ctrl->namespaces_mutex);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvme_start_queues);
|
|
|
|
int __init nvme_core_init(void)
|
|
{
|
|
int result;
|
|
|
|
result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
|
|
&nvme_dev_fops);
|
|
if (result < 0)
|
|
return result;
|
|
else if (result > 0)
|
|
nvme_char_major = result;
|
|
|
|
nvme_class = class_create(THIS_MODULE, "nvme");
|
|
if (IS_ERR(nvme_class)) {
|
|
result = PTR_ERR(nvme_class);
|
|
goto unregister_chrdev;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unregister_chrdev:
|
|
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
|
|
return result;
|
|
}
|
|
|
|
void nvme_core_exit(void)
|
|
{
|
|
class_destroy(nvme_class);
|
|
__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION("1.0");
|
|
module_init(nvme_core_init);
|
|
module_exit(nvme_core_exit);
|