mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-30 13:38:40 +00:00
ab75dc02c1
Panic() invokes printk() to add a \n internally, so panic arguments should not themselves end in \n. Panic invocations in arch/mips and elsewhere are inconsistently sometimes terminating in \n, sometimes not. Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
432 lines
12 KiB
C
432 lines
12 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2005-2009, 2010 Cavium Networks
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/msi.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/octeon/octeon.h>
|
|
#include <asm/octeon/cvmx-npi-defs.h>
|
|
#include <asm/octeon/cvmx-pci-defs.h>
|
|
#include <asm/octeon/cvmx-npei-defs.h>
|
|
#include <asm/octeon/cvmx-pexp-defs.h>
|
|
#include <asm/octeon/pci-octeon.h>
|
|
|
|
/*
|
|
* Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
|
|
* in use.
|
|
*/
|
|
static u64 msi_free_irq_bitmask[4];
|
|
|
|
/*
|
|
* Each bit in msi_multiple_irq_bitmask tells that the device using
|
|
* this bit in msi_free_irq_bitmask is also using the next bit. This
|
|
* is used so we can disable all of the MSI interrupts when a device
|
|
* uses multiple.
|
|
*/
|
|
static u64 msi_multiple_irq_bitmask[4];
|
|
|
|
/*
|
|
* This lock controls updates to msi_free_irq_bitmask and
|
|
* msi_multiple_irq_bitmask.
|
|
*/
|
|
static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
|
|
|
|
/*
|
|
* Number of MSI IRQs used. This variable is set up in
|
|
* the module init time.
|
|
*/
|
|
static int msi_irq_size;
|
|
|
|
/**
|
|
* Called when a driver request MSI interrupts instead of the
|
|
* legacy INT A-D. This routine will allocate multiple interrupts
|
|
* for MSI devices that support them. A device can override this by
|
|
* programming the MSI control bits [6:4] before calling
|
|
* pci_enable_msi().
|
|
*
|
|
* @dev: Device requesting MSI interrupts
|
|
* @desc: MSI descriptor
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
|
|
{
|
|
struct msi_msg msg;
|
|
u16 control;
|
|
int configured_private_bits;
|
|
int request_private_bits;
|
|
int irq = 0;
|
|
int irq_step;
|
|
u64 search_mask;
|
|
int index;
|
|
|
|
/*
|
|
* Read the MSI config to figure out how many IRQs this device
|
|
* wants. Most devices only want 1, which will give
|
|
* configured_private_bits and request_private_bits equal 0.
|
|
*/
|
|
pci_read_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
|
|
&control);
|
|
|
|
/*
|
|
* If the number of private bits has been configured then use
|
|
* that value instead of the requested number. This gives the
|
|
* driver the chance to override the number of interrupts
|
|
* before calling pci_enable_msi().
|
|
*/
|
|
configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
|
|
if (configured_private_bits == 0) {
|
|
/* Nothing is configured, so use the hardware requested size */
|
|
request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
|
|
} else {
|
|
/*
|
|
* Use the number of configured bits, assuming the
|
|
* driver wanted to override the hardware request
|
|
* value.
|
|
*/
|
|
request_private_bits = configured_private_bits;
|
|
}
|
|
|
|
/*
|
|
* The PCI 2.3 spec mandates that there are at most 32
|
|
* interrupts. If this device asks for more, only give it one.
|
|
*/
|
|
if (request_private_bits > 5)
|
|
request_private_bits = 0;
|
|
|
|
try_only_one:
|
|
/*
|
|
* The IRQs have to be aligned on a power of two based on the
|
|
* number being requested.
|
|
*/
|
|
irq_step = 1 << request_private_bits;
|
|
|
|
/* Mask with one bit for each IRQ */
|
|
search_mask = (1 << irq_step) - 1;
|
|
|
|
/*
|
|
* We're going to search msi_free_irq_bitmask_lock for zero
|
|
* bits. This represents an MSI interrupt number that isn't in
|
|
* use.
|
|
*/
|
|
spin_lock(&msi_free_irq_bitmask_lock);
|
|
for (index = 0; index < msi_irq_size/64; index++) {
|
|
for (irq = 0; irq < 64; irq += irq_step) {
|
|
if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
|
|
msi_free_irq_bitmask[index] |= search_mask << irq;
|
|
msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
|
|
goto msi_irq_allocated;
|
|
}
|
|
}
|
|
}
|
|
msi_irq_allocated:
|
|
spin_unlock(&msi_free_irq_bitmask_lock);
|
|
|
|
/* Make sure the search for available interrupts didn't fail */
|
|
if (irq >= 64) {
|
|
if (request_private_bits) {
|
|
pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
|
|
1 << request_private_bits);
|
|
request_private_bits = 0;
|
|
goto try_only_one;
|
|
} else
|
|
panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
|
|
}
|
|
|
|
/* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
|
|
irq += index*64;
|
|
irq += OCTEON_IRQ_MSI_BIT0;
|
|
|
|
switch (octeon_dma_bar_type) {
|
|
case OCTEON_DMA_BAR_TYPE_SMALL:
|
|
/* When not using big bar, Bar 0 is based at 128MB */
|
|
msg.address_lo =
|
|
((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
|
|
msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
|
|
case OCTEON_DMA_BAR_TYPE_BIG:
|
|
/* When using big bar, Bar 0 is based at 0 */
|
|
msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
|
|
msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
|
|
break;
|
|
case OCTEON_DMA_BAR_TYPE_PCIE:
|
|
/* When using PCIe, Bar 0 is based at 0 */
|
|
/* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
|
|
msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
|
|
msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
|
|
break;
|
|
default:
|
|
panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
|
|
}
|
|
msg.data = irq - OCTEON_IRQ_MSI_BIT0;
|
|
|
|
/* Update the number of IRQs the device has available to it */
|
|
control &= ~PCI_MSI_FLAGS_QSIZE;
|
|
control |= request_private_bits << 4;
|
|
pci_write_config_word(dev, desc->msi_attrib.pos + PCI_MSI_FLAGS,
|
|
control);
|
|
|
|
irq_set_msi_desc(irq, desc);
|
|
write_msi_msg(irq, &msg);
|
|
return 0;
|
|
}
|
|
|
|
int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
|
|
{
|
|
struct msi_desc *entry;
|
|
int ret;
|
|
|
|
/*
|
|
* MSI-X is not supported.
|
|
*/
|
|
if (type == PCI_CAP_ID_MSIX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If an architecture wants to support multiple MSI, it needs to
|
|
* override arch_setup_msi_irqs()
|
|
*/
|
|
if (type == PCI_CAP_ID_MSI && nvec > 1)
|
|
return 1;
|
|
|
|
list_for_each_entry(entry, &dev->msi_list, list) {
|
|
ret = arch_setup_msi_irq(dev, entry);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret > 0)
|
|
return -ENOSPC;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Called when a device no longer needs its MSI interrupts. All
|
|
* MSI interrupts for the device are freed.
|
|
*
|
|
* @irq: The devices first irq number. There may be multple in sequence.
|
|
*/
|
|
void arch_teardown_msi_irq(unsigned int irq)
|
|
{
|
|
int number_irqs;
|
|
u64 bitmask;
|
|
int index = 0;
|
|
int irq0;
|
|
|
|
if ((irq < OCTEON_IRQ_MSI_BIT0)
|
|
|| (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
|
|
panic("arch_teardown_msi_irq: Attempted to teardown illegal "
|
|
"MSI interrupt (%d)", irq);
|
|
|
|
irq -= OCTEON_IRQ_MSI_BIT0;
|
|
index = irq / 64;
|
|
irq0 = irq % 64;
|
|
|
|
/*
|
|
* Count the number of IRQs we need to free by looking at the
|
|
* msi_multiple_irq_bitmask. Each bit set means that the next
|
|
* IRQ is also owned by this device.
|
|
*/
|
|
number_irqs = 0;
|
|
while ((irq0 + number_irqs < 64) &&
|
|
(msi_multiple_irq_bitmask[index]
|
|
& (1ull << (irq0 + number_irqs))))
|
|
number_irqs++;
|
|
number_irqs++;
|
|
/* Mask with one bit for each IRQ */
|
|
bitmask = (1 << number_irqs) - 1;
|
|
/* Shift the mask to the correct bit location */
|
|
bitmask <<= irq0;
|
|
if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
|
|
panic("arch_teardown_msi_irq: Attempted to teardown MSI "
|
|
"interrupt (%d) not in use", irq);
|
|
|
|
/* Checks are done, update the in use bitmask */
|
|
spin_lock(&msi_free_irq_bitmask_lock);
|
|
msi_free_irq_bitmask[index] &= ~bitmask;
|
|
msi_multiple_irq_bitmask[index] &= ~bitmask;
|
|
spin_unlock(&msi_free_irq_bitmask_lock);
|
|
}
|
|
|
|
static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
|
|
|
|
static u64 msi_rcv_reg[4];
|
|
static u64 mis_ena_reg[4];
|
|
|
|
static void octeon_irq_msi_enable_pcie(struct irq_data *data)
|
|
{
|
|
u64 en;
|
|
unsigned long flags;
|
|
int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
|
|
int irq_index = msi_number >> 6;
|
|
int irq_bit = msi_number & 0x3f;
|
|
|
|
raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
|
|
en = cvmx_read_csr(mis_ena_reg[irq_index]);
|
|
en |= 1ull << irq_bit;
|
|
cvmx_write_csr(mis_ena_reg[irq_index], en);
|
|
cvmx_read_csr(mis_ena_reg[irq_index]);
|
|
raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
|
|
}
|
|
|
|
static void octeon_irq_msi_disable_pcie(struct irq_data *data)
|
|
{
|
|
u64 en;
|
|
unsigned long flags;
|
|
int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
|
|
int irq_index = msi_number >> 6;
|
|
int irq_bit = msi_number & 0x3f;
|
|
|
|
raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
|
|
en = cvmx_read_csr(mis_ena_reg[irq_index]);
|
|
en &= ~(1ull << irq_bit);
|
|
cvmx_write_csr(mis_ena_reg[irq_index], en);
|
|
cvmx_read_csr(mis_ena_reg[irq_index]);
|
|
raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
|
|
}
|
|
|
|
static struct irq_chip octeon_irq_chip_msi_pcie = {
|
|
.name = "MSI",
|
|
.irq_enable = octeon_irq_msi_enable_pcie,
|
|
.irq_disable = octeon_irq_msi_disable_pcie,
|
|
};
|
|
|
|
static void octeon_irq_msi_enable_pci(struct irq_data *data)
|
|
{
|
|
/*
|
|
* Octeon PCI doesn't have the ability to mask/unmask MSI
|
|
* interrupts individually. Instead of masking/unmasking them
|
|
* in groups of 16, we simple assume MSI devices are well
|
|
* behaved. MSI interrupts are always enable and the ACK is
|
|
* assumed to be enough
|
|
*/
|
|
}
|
|
|
|
static void octeon_irq_msi_disable_pci(struct irq_data *data)
|
|
{
|
|
/* See comment in enable */
|
|
}
|
|
|
|
static struct irq_chip octeon_irq_chip_msi_pci = {
|
|
.name = "MSI",
|
|
.irq_enable = octeon_irq_msi_enable_pci,
|
|
.irq_disable = octeon_irq_msi_disable_pci,
|
|
};
|
|
|
|
/*
|
|
* Called by the interrupt handling code when an MSI interrupt
|
|
* occurs.
|
|
*/
|
|
static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
|
|
{
|
|
int irq;
|
|
int bit;
|
|
|
|
bit = fls64(msi_bits);
|
|
if (bit) {
|
|
bit--;
|
|
/* Acknowledge it first. */
|
|
cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
|
|
|
|
irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
|
|
do_IRQ(irq);
|
|
return IRQ_HANDLED;
|
|
}
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
#define OCTEON_MSI_INT_HANDLER_X(x) \
|
|
static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \
|
|
{ \
|
|
u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \
|
|
return __octeon_msi_do_interrupt((x), msi_bits); \
|
|
}
|
|
|
|
/*
|
|
* Create octeon_msi_interrupt{0-3} function body
|
|
*/
|
|
OCTEON_MSI_INT_HANDLER_X(0);
|
|
OCTEON_MSI_INT_HANDLER_X(1);
|
|
OCTEON_MSI_INT_HANDLER_X(2);
|
|
OCTEON_MSI_INT_HANDLER_X(3);
|
|
|
|
/*
|
|
* Initializes the MSI interrupt handling code
|
|
*/
|
|
int __init octeon_msi_initialize(void)
|
|
{
|
|
int irq;
|
|
struct irq_chip *msi;
|
|
|
|
if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
|
|
msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
|
|
msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
|
|
msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
|
|
msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
|
|
mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
|
|
mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
|
|
mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
|
|
mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
|
|
msi = &octeon_irq_chip_msi_pcie;
|
|
} else {
|
|
msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
|
|
#define INVALID_GENERATE_ADE 0x8700000000000000ULL;
|
|
msi_rcv_reg[1] = INVALID_GENERATE_ADE;
|
|
msi_rcv_reg[2] = INVALID_GENERATE_ADE;
|
|
msi_rcv_reg[3] = INVALID_GENERATE_ADE;
|
|
mis_ena_reg[0] = INVALID_GENERATE_ADE;
|
|
mis_ena_reg[1] = INVALID_GENERATE_ADE;
|
|
mis_ena_reg[2] = INVALID_GENERATE_ADE;
|
|
mis_ena_reg[3] = INVALID_GENERATE_ADE;
|
|
msi = &octeon_irq_chip_msi_pci;
|
|
}
|
|
|
|
for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
|
|
irq_set_chip_and_handler(irq, msi, handle_simple_irq);
|
|
|
|
if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
|
|
if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
|
|
0, "MSI[0:63]", octeon_msi_interrupt0))
|
|
panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
|
|
|
|
if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
|
|
0, "MSI[64:127]", octeon_msi_interrupt1))
|
|
panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
|
|
|
|
if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
|
|
0, "MSI[127:191]", octeon_msi_interrupt2))
|
|
panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
|
|
|
|
if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
|
|
0, "MSI[192:255]", octeon_msi_interrupt3))
|
|
panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
|
|
|
|
msi_irq_size = 256;
|
|
} else if (octeon_is_pci_host()) {
|
|
if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
|
|
0, "MSI[0:15]", octeon_msi_interrupt0))
|
|
panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
|
|
|
|
if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
|
|
0, "MSI[16:31]", octeon_msi_interrupt0))
|
|
panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
|
|
|
|
if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
|
|
0, "MSI[32:47]", octeon_msi_interrupt0))
|
|
panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
|
|
|
|
if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
|
|
0, "MSI[48:63]", octeon_msi_interrupt0))
|
|
panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
|
|
msi_irq_size = 64;
|
|
}
|
|
return 0;
|
|
}
|
|
subsys_initcall(octeon_msi_initialize);
|