linux/drivers/lguest
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00
..
x86 percpu: make misc percpu symbols unique 2009-10-29 22:34:14 +09:00
core.c include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h 2010-03-30 22:02:32 +09:00
hypercalls.c lguest: update commentry 2009-07-30 16:03:46 +09:30
interrupts_and_traps.c headers: remove sched.h from interrupt.h 2009-10-11 11:20:58 -07:00
Kconfig lguest: use eventfds for device notification 2009-06-12 22:27:10 +09:30
lg.h include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h 2010-03-30 22:02:32 +09:00
lguest_device.c include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h 2010-03-30 22:02:32 +09:00
lguest_user.c include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h 2010-03-30 22:02:32 +09:00
Makefile
page_tables.c include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h 2010-03-30 22:02:32 +09:00
README
segments.c lguest: fix bug in setting guest GDT entry 2010-01-04 12:33:33 -08:00

Welcome, friend reader, to lguest.

Lguest is an adventure, with you, the reader, as Hero.  I can't think of many
5000-line projects which offer both such capability and glimpses of future
potential; it is an exciting time to be delving into the source!

But be warned; this is an arduous journey of several hours or more!  And as we
know, all true Heroes are driven by a Noble Goal.  Thus I offer a Beer (or
equivalent) to anyone I meet who has completed this documentation.

So get comfortable and keep your wits about you (both quick and humorous).
Along your way to the Noble Goal, you will also gain masterly insight into
lguest, and hypervisors and x86 virtualization in general.

Our Quest is in seven parts: (best read with C highlighting turned on)

I) Preparation
	- In which our potential hero is flown quickly over the landscape for a
	  taste of its scope.  Suitable for the armchair coders and other such
	  persons of faint constitution.

II) Guest
	- Where we encounter the first tantalising wisps of code, and come to
	  understand the details of the life of a Guest kernel.

III) Drivers
	- Whereby the Guest finds its voice and become useful, and our
	  understanding of the Guest is completed.

IV) Launcher
	- Where we trace back to the creation of the Guest, and thus begin our
	  understanding of the Host.

V) Host
	- Where we master the Host code, through a long and tortuous journey.
	  Indeed, it is here that our hero is tested in the Bit of Despair.

VI) Switcher
	- Where our understanding of the intertwined nature of Guests and Hosts
	  is completed.

VII) Mastery
	- Where our fully fledged hero grapples with the Great Question:
	  "What next?"

make Preparation!
Rusty Russell.