mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-25 03:59:29 +00:00
8a5b403d71
In the irqchip and EFI code, we have what basically amounts to a quirk to work around a peculiarity in the GICv3 architecture, which permits the system memory address of LPI tables to be programmable only once after a CPU reset. This means kexec kernels must use the same memory as the first kernel, and thus ensure that this memory has not been given out for other purposes by the time the ITS init code runs, which is not very early for secondary CPUs. On systems with many CPUs, these reservations could overflow the memblock reservation table, and this was addressed in commit: eff896288872 ("efi/arm: Defer persistent reservations until after paging_init()") However, this turns out to have made things worse, since the allocation of page tables and heap space for the resized memblock reservation table itself may overwrite the regions we are attempting to reserve, which may cause all kinds of corruption, also considering that the ITS will still be poking bits into that memory in response to incoming MSIs. So instead, let's grow the static memblock reservation table on such systems so it can accommodate these reservations at an earlier time. This will permit us to revert the above commit in a subsequent patch. [ mingo: Minor cleanups. ] Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Will Deacon <will.deacon@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20190215123333.21209-2-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024 lines
56 KiB
C
2024 lines
56 KiB
C
/*
|
|
* Procedures for maintaining information about logical memory blocks.
|
|
*
|
|
* Peter Bergner, IBM Corp. June 2001.
|
|
* Copyright (C) 2001 Peter Bergner.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/poison.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/memblock.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <linux/io.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#define INIT_MEMBLOCK_REGIONS 128
|
|
#define INIT_PHYSMEM_REGIONS 4
|
|
|
|
#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
|
|
# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
|
|
#endif
|
|
|
|
/**
|
|
* DOC: memblock overview
|
|
*
|
|
* Memblock is a method of managing memory regions during the early
|
|
* boot period when the usual kernel memory allocators are not up and
|
|
* running.
|
|
*
|
|
* Memblock views the system memory as collections of contiguous
|
|
* regions. There are several types of these collections:
|
|
*
|
|
* * ``memory`` - describes the physical memory available to the
|
|
* kernel; this may differ from the actual physical memory installed
|
|
* in the system, for instance when the memory is restricted with
|
|
* ``mem=`` command line parameter
|
|
* * ``reserved`` - describes the regions that were allocated
|
|
* * ``physmap`` - describes the actual physical memory regardless of
|
|
* the possible restrictions; the ``physmap`` type is only available
|
|
* on some architectures.
|
|
*
|
|
* Each region is represented by :c:type:`struct memblock_region` that
|
|
* defines the region extents, its attributes and NUMA node id on NUMA
|
|
* systems. Every memory type is described by the :c:type:`struct
|
|
* memblock_type` which contains an array of memory regions along with
|
|
* the allocator metadata. The memory types are nicely wrapped with
|
|
* :c:type:`struct memblock`. This structure is statically initialzed
|
|
* at build time. The region arrays for the "memory" and "reserved"
|
|
* types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
|
|
* "physmap" type to %INIT_PHYSMEM_REGIONS.
|
|
* The :c:func:`memblock_allow_resize` enables automatic resizing of
|
|
* the region arrays during addition of new regions. This feature
|
|
* should be used with care so that memory allocated for the region
|
|
* array will not overlap with areas that should be reserved, for
|
|
* example initrd.
|
|
*
|
|
* The early architecture setup should tell memblock what the physical
|
|
* memory layout is by using :c:func:`memblock_add` or
|
|
* :c:func:`memblock_add_node` functions. The first function does not
|
|
* assign the region to a NUMA node and it is appropriate for UMA
|
|
* systems. Yet, it is possible to use it on NUMA systems as well and
|
|
* assign the region to a NUMA node later in the setup process using
|
|
* :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
|
|
* performs such an assignment directly.
|
|
*
|
|
* Once memblock is setup the memory can be allocated using either
|
|
* memblock or bootmem APIs.
|
|
*
|
|
* As the system boot progresses, the architecture specific
|
|
* :c:func:`mem_init` function frees all the memory to the buddy page
|
|
* allocator.
|
|
*
|
|
* If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
|
|
* memblock data structures will be discarded after the system
|
|
* initialization compltes.
|
|
*/
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES
|
|
struct pglist_data __refdata contig_page_data;
|
|
EXPORT_SYMBOL(contig_page_data);
|
|
#endif
|
|
|
|
unsigned long max_low_pfn;
|
|
unsigned long min_low_pfn;
|
|
unsigned long max_pfn;
|
|
unsigned long long max_possible_pfn;
|
|
|
|
static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
|
|
static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
|
|
#endif
|
|
|
|
struct memblock memblock __initdata_memblock = {
|
|
.memory.regions = memblock_memory_init_regions,
|
|
.memory.cnt = 1, /* empty dummy entry */
|
|
.memory.max = INIT_MEMBLOCK_REGIONS,
|
|
.memory.name = "memory",
|
|
|
|
.reserved.regions = memblock_reserved_init_regions,
|
|
.reserved.cnt = 1, /* empty dummy entry */
|
|
.reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
|
|
.reserved.name = "reserved",
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
.physmem.regions = memblock_physmem_init_regions,
|
|
.physmem.cnt = 1, /* empty dummy entry */
|
|
.physmem.max = INIT_PHYSMEM_REGIONS,
|
|
.physmem.name = "physmem",
|
|
#endif
|
|
|
|
.bottom_up = false,
|
|
.current_limit = MEMBLOCK_ALLOC_ANYWHERE,
|
|
};
|
|
|
|
int memblock_debug __initdata_memblock;
|
|
static bool system_has_some_mirror __initdata_memblock = false;
|
|
static int memblock_can_resize __initdata_memblock;
|
|
static int memblock_memory_in_slab __initdata_memblock = 0;
|
|
static int memblock_reserved_in_slab __initdata_memblock = 0;
|
|
|
|
enum memblock_flags __init_memblock choose_memblock_flags(void)
|
|
{
|
|
return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
|
|
}
|
|
|
|
/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
|
|
static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
|
|
{
|
|
return *size = min(*size, PHYS_ADDR_MAX - base);
|
|
}
|
|
|
|
/*
|
|
* Address comparison utilities
|
|
*/
|
|
static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
|
|
phys_addr_t base2, phys_addr_t size2)
|
|
{
|
|
return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
|
|
}
|
|
|
|
bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < type->cnt; i++)
|
|
if (memblock_addrs_overlap(base, size, type->regions[i].base,
|
|
type->regions[i].size))
|
|
break;
|
|
return i < type->cnt;
|
|
}
|
|
|
|
/**
|
|
* __memblock_find_range_bottom_up - find free area utility in bottom-up
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
* @flags: pick from blocks based on memory attributes
|
|
*
|
|
* Utility called from memblock_find_in_range_node(), find free area bottom-up.
|
|
*
|
|
* Return:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
static phys_addr_t __init_memblock
|
|
__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
|
|
phys_addr_t size, phys_addr_t align, int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
phys_addr_t this_start, this_end, cand;
|
|
u64 i;
|
|
|
|
for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
|
|
this_start = clamp(this_start, start, end);
|
|
this_end = clamp(this_end, start, end);
|
|
|
|
cand = round_up(this_start, align);
|
|
if (cand < this_end && this_end - cand >= size)
|
|
return cand;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __memblock_find_range_top_down - find free area utility, in top-down
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
* @flags: pick from blocks based on memory attributes
|
|
*
|
|
* Utility called from memblock_find_in_range_node(), find free area top-down.
|
|
*
|
|
* Return:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
static phys_addr_t __init_memblock
|
|
__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
|
|
phys_addr_t size, phys_addr_t align, int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
phys_addr_t this_start, this_end, cand;
|
|
u64 i;
|
|
|
|
for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
|
|
NULL) {
|
|
this_start = clamp(this_start, start, end);
|
|
this_end = clamp(this_end, start, end);
|
|
|
|
if (this_end < size)
|
|
continue;
|
|
|
|
cand = round_down(this_end - size, align);
|
|
if (cand >= this_start)
|
|
return cand;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_find_in_range_node - find free area in given range and node
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
* @flags: pick from blocks based on memory attributes
|
|
*
|
|
* Find @size free area aligned to @align in the specified range and node.
|
|
*
|
|
* When allocation direction is bottom-up, the @start should be greater
|
|
* than the end of the kernel image. Otherwise, it will be trimmed. The
|
|
* reason is that we want the bottom-up allocation just near the kernel
|
|
* image so it is highly likely that the allocated memory and the kernel
|
|
* will reside in the same node.
|
|
*
|
|
* If bottom-up allocation failed, will try to allocate memory top-down.
|
|
*
|
|
* Return:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t start,
|
|
phys_addr_t end, int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
phys_addr_t kernel_end, ret;
|
|
|
|
/* pump up @end */
|
|
if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
|
|
end == MEMBLOCK_ALLOC_KASAN)
|
|
end = memblock.current_limit;
|
|
|
|
/* avoid allocating the first page */
|
|
start = max_t(phys_addr_t, start, PAGE_SIZE);
|
|
end = max(start, end);
|
|
kernel_end = __pa_symbol(_end);
|
|
|
|
/*
|
|
* try bottom-up allocation only when bottom-up mode
|
|
* is set and @end is above the kernel image.
|
|
*/
|
|
if (memblock_bottom_up() && end > kernel_end) {
|
|
phys_addr_t bottom_up_start;
|
|
|
|
/* make sure we will allocate above the kernel */
|
|
bottom_up_start = max(start, kernel_end);
|
|
|
|
/* ok, try bottom-up allocation first */
|
|
ret = __memblock_find_range_bottom_up(bottom_up_start, end,
|
|
size, align, nid, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* we always limit bottom-up allocation above the kernel,
|
|
* but top-down allocation doesn't have the limit, so
|
|
* retrying top-down allocation may succeed when bottom-up
|
|
* allocation failed.
|
|
*
|
|
* bottom-up allocation is expected to be fail very rarely,
|
|
* so we use WARN_ONCE() here to see the stack trace if
|
|
* fail happens.
|
|
*/
|
|
WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
|
|
"memblock: bottom-up allocation failed, memory hotremove may be affected\n");
|
|
}
|
|
|
|
return __memblock_find_range_top_down(start, end, size, align, nid,
|
|
flags);
|
|
}
|
|
|
|
/**
|
|
* memblock_find_in_range - find free area in given range
|
|
* @start: start of candidate range
|
|
* @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
|
|
* %MEMBLOCK_ALLOC_ACCESSIBLE
|
|
* @size: size of free area to find
|
|
* @align: alignment of free area to find
|
|
*
|
|
* Find @size free area aligned to @align in the specified range.
|
|
*
|
|
* Return:
|
|
* Found address on success, 0 on failure.
|
|
*/
|
|
phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
|
|
phys_addr_t end, phys_addr_t size,
|
|
phys_addr_t align)
|
|
{
|
|
phys_addr_t ret;
|
|
enum memblock_flags flags = choose_memblock_flags();
|
|
|
|
again:
|
|
ret = memblock_find_in_range_node(size, align, start, end,
|
|
NUMA_NO_NODE, flags);
|
|
|
|
if (!ret && (flags & MEMBLOCK_MIRROR)) {
|
|
pr_warn("Could not allocate %pap bytes of mirrored memory\n",
|
|
&size);
|
|
flags &= ~MEMBLOCK_MIRROR;
|
|
goto again;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
|
|
{
|
|
type->total_size -= type->regions[r].size;
|
|
memmove(&type->regions[r], &type->regions[r + 1],
|
|
(type->cnt - (r + 1)) * sizeof(type->regions[r]));
|
|
type->cnt--;
|
|
|
|
/* Special case for empty arrays */
|
|
if (type->cnt == 0) {
|
|
WARN_ON(type->total_size != 0);
|
|
type->cnt = 1;
|
|
type->regions[0].base = 0;
|
|
type->regions[0].size = 0;
|
|
type->regions[0].flags = 0;
|
|
memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
|
|
/**
|
|
* memblock_discard - discard memory and reserved arrays if they were allocated
|
|
*/
|
|
void __init memblock_discard(void)
|
|
{
|
|
phys_addr_t addr, size;
|
|
|
|
if (memblock.reserved.regions != memblock_reserved_init_regions) {
|
|
addr = __pa(memblock.reserved.regions);
|
|
size = PAGE_ALIGN(sizeof(struct memblock_region) *
|
|
memblock.reserved.max);
|
|
__memblock_free_late(addr, size);
|
|
}
|
|
|
|
if (memblock.memory.regions != memblock_memory_init_regions) {
|
|
addr = __pa(memblock.memory.regions);
|
|
size = PAGE_ALIGN(sizeof(struct memblock_region) *
|
|
memblock.memory.max);
|
|
__memblock_free_late(addr, size);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* memblock_double_array - double the size of the memblock regions array
|
|
* @type: memblock type of the regions array being doubled
|
|
* @new_area_start: starting address of memory range to avoid overlap with
|
|
* @new_area_size: size of memory range to avoid overlap with
|
|
*
|
|
* Double the size of the @type regions array. If memblock is being used to
|
|
* allocate memory for a new reserved regions array and there is a previously
|
|
* allocated memory range [@new_area_start, @new_area_start + @new_area_size]
|
|
* waiting to be reserved, ensure the memory used by the new array does
|
|
* not overlap.
|
|
*
|
|
* Return:
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int __init_memblock memblock_double_array(struct memblock_type *type,
|
|
phys_addr_t new_area_start,
|
|
phys_addr_t new_area_size)
|
|
{
|
|
struct memblock_region *new_array, *old_array;
|
|
phys_addr_t old_alloc_size, new_alloc_size;
|
|
phys_addr_t old_size, new_size, addr, new_end;
|
|
int use_slab = slab_is_available();
|
|
int *in_slab;
|
|
|
|
/* We don't allow resizing until we know about the reserved regions
|
|
* of memory that aren't suitable for allocation
|
|
*/
|
|
if (!memblock_can_resize)
|
|
return -1;
|
|
|
|
/* Calculate new doubled size */
|
|
old_size = type->max * sizeof(struct memblock_region);
|
|
new_size = old_size << 1;
|
|
/*
|
|
* We need to allocated new one align to PAGE_SIZE,
|
|
* so we can free them completely later.
|
|
*/
|
|
old_alloc_size = PAGE_ALIGN(old_size);
|
|
new_alloc_size = PAGE_ALIGN(new_size);
|
|
|
|
/* Retrieve the slab flag */
|
|
if (type == &memblock.memory)
|
|
in_slab = &memblock_memory_in_slab;
|
|
else
|
|
in_slab = &memblock_reserved_in_slab;
|
|
|
|
/* Try to find some space for it.
|
|
*
|
|
* WARNING: We assume that either slab_is_available() and we use it or
|
|
* we use MEMBLOCK for allocations. That means that this is unsafe to
|
|
* use when bootmem is currently active (unless bootmem itself is
|
|
* implemented on top of MEMBLOCK which isn't the case yet)
|
|
*
|
|
* This should however not be an issue for now, as we currently only
|
|
* call into MEMBLOCK while it's still active, or much later when slab
|
|
* is active for memory hotplug operations
|
|
*/
|
|
if (use_slab) {
|
|
new_array = kmalloc(new_size, GFP_KERNEL);
|
|
addr = new_array ? __pa(new_array) : 0;
|
|
} else {
|
|
/* only exclude range when trying to double reserved.regions */
|
|
if (type != &memblock.reserved)
|
|
new_area_start = new_area_size = 0;
|
|
|
|
addr = memblock_find_in_range(new_area_start + new_area_size,
|
|
memblock.current_limit,
|
|
new_alloc_size, PAGE_SIZE);
|
|
if (!addr && new_area_size)
|
|
addr = memblock_find_in_range(0,
|
|
min(new_area_start, memblock.current_limit),
|
|
new_alloc_size, PAGE_SIZE);
|
|
|
|
new_array = addr ? __va(addr) : NULL;
|
|
}
|
|
if (!addr) {
|
|
pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
|
|
type->name, type->max, type->max * 2);
|
|
return -1;
|
|
}
|
|
|
|
new_end = addr + new_size - 1;
|
|
memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
|
|
type->name, type->max * 2, &addr, &new_end);
|
|
|
|
/*
|
|
* Found space, we now need to move the array over before we add the
|
|
* reserved region since it may be our reserved array itself that is
|
|
* full.
|
|
*/
|
|
memcpy(new_array, type->regions, old_size);
|
|
memset(new_array + type->max, 0, old_size);
|
|
old_array = type->regions;
|
|
type->regions = new_array;
|
|
type->max <<= 1;
|
|
|
|
/* Free old array. We needn't free it if the array is the static one */
|
|
if (*in_slab)
|
|
kfree(old_array);
|
|
else if (old_array != memblock_memory_init_regions &&
|
|
old_array != memblock_reserved_init_regions)
|
|
memblock_free(__pa(old_array), old_alloc_size);
|
|
|
|
/*
|
|
* Reserve the new array if that comes from the memblock. Otherwise, we
|
|
* needn't do it
|
|
*/
|
|
if (!use_slab)
|
|
BUG_ON(memblock_reserve(addr, new_alloc_size));
|
|
|
|
/* Update slab flag */
|
|
*in_slab = use_slab;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_merge_regions - merge neighboring compatible regions
|
|
* @type: memblock type to scan
|
|
*
|
|
* Scan @type and merge neighboring compatible regions.
|
|
*/
|
|
static void __init_memblock memblock_merge_regions(struct memblock_type *type)
|
|
{
|
|
int i = 0;
|
|
|
|
/* cnt never goes below 1 */
|
|
while (i < type->cnt - 1) {
|
|
struct memblock_region *this = &type->regions[i];
|
|
struct memblock_region *next = &type->regions[i + 1];
|
|
|
|
if (this->base + this->size != next->base ||
|
|
memblock_get_region_node(this) !=
|
|
memblock_get_region_node(next) ||
|
|
this->flags != next->flags) {
|
|
BUG_ON(this->base + this->size > next->base);
|
|
i++;
|
|
continue;
|
|
}
|
|
|
|
this->size += next->size;
|
|
/* move forward from next + 1, index of which is i + 2 */
|
|
memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
|
|
type->cnt--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* memblock_insert_region - insert new memblock region
|
|
* @type: memblock type to insert into
|
|
* @idx: index for the insertion point
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: node id of the new region
|
|
* @flags: flags of the new region
|
|
*
|
|
* Insert new memblock region [@base, @base + @size) into @type at @idx.
|
|
* @type must already have extra room to accommodate the new region.
|
|
*/
|
|
static void __init_memblock memblock_insert_region(struct memblock_type *type,
|
|
int idx, phys_addr_t base,
|
|
phys_addr_t size,
|
|
int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
struct memblock_region *rgn = &type->regions[idx];
|
|
|
|
BUG_ON(type->cnt >= type->max);
|
|
memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
|
|
rgn->base = base;
|
|
rgn->size = size;
|
|
rgn->flags = flags;
|
|
memblock_set_region_node(rgn, nid);
|
|
type->cnt++;
|
|
type->total_size += size;
|
|
}
|
|
|
|
/**
|
|
* memblock_add_range - add new memblock region
|
|
* @type: memblock type to add new region into
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: nid of the new region
|
|
* @flags: flags of the new region
|
|
*
|
|
* Add new memblock region [@base, @base + @size) into @type. The new region
|
|
* is allowed to overlap with existing ones - overlaps don't affect already
|
|
* existing regions. @type is guaranteed to be minimal (all neighbouring
|
|
* compatible regions are merged) after the addition.
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_add_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size,
|
|
int nid, enum memblock_flags flags)
|
|
{
|
|
bool insert = false;
|
|
phys_addr_t obase = base;
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
int idx, nr_new;
|
|
struct memblock_region *rgn;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
/* special case for empty array */
|
|
if (type->regions[0].size == 0) {
|
|
WARN_ON(type->cnt != 1 || type->total_size);
|
|
type->regions[0].base = base;
|
|
type->regions[0].size = size;
|
|
type->regions[0].flags = flags;
|
|
memblock_set_region_node(&type->regions[0], nid);
|
|
type->total_size = size;
|
|
return 0;
|
|
}
|
|
repeat:
|
|
/*
|
|
* The following is executed twice. Once with %false @insert and
|
|
* then with %true. The first counts the number of regions needed
|
|
* to accommodate the new area. The second actually inserts them.
|
|
*/
|
|
base = obase;
|
|
nr_new = 0;
|
|
|
|
for_each_memblock_type(idx, type, rgn) {
|
|
phys_addr_t rbase = rgn->base;
|
|
phys_addr_t rend = rbase + rgn->size;
|
|
|
|
if (rbase >= end)
|
|
break;
|
|
if (rend <= base)
|
|
continue;
|
|
/*
|
|
* @rgn overlaps. If it separates the lower part of new
|
|
* area, insert that portion.
|
|
*/
|
|
if (rbase > base) {
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
WARN_ON(nid != memblock_get_region_node(rgn));
|
|
#endif
|
|
WARN_ON(flags != rgn->flags);
|
|
nr_new++;
|
|
if (insert)
|
|
memblock_insert_region(type, idx++, base,
|
|
rbase - base, nid,
|
|
flags);
|
|
}
|
|
/* area below @rend is dealt with, forget about it */
|
|
base = min(rend, end);
|
|
}
|
|
|
|
/* insert the remaining portion */
|
|
if (base < end) {
|
|
nr_new++;
|
|
if (insert)
|
|
memblock_insert_region(type, idx, base, end - base,
|
|
nid, flags);
|
|
}
|
|
|
|
if (!nr_new)
|
|
return 0;
|
|
|
|
/*
|
|
* If this was the first round, resize array and repeat for actual
|
|
* insertions; otherwise, merge and return.
|
|
*/
|
|
if (!insert) {
|
|
while (type->cnt + nr_new > type->max)
|
|
if (memblock_double_array(type, obase, size) < 0)
|
|
return -ENOMEM;
|
|
insert = true;
|
|
goto repeat;
|
|
} else {
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* memblock_add_node - add new memblock region within a NUMA node
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
* @nid: nid of the new region
|
|
*
|
|
* Add new memblock region [@base, @base + @size) to the "memory"
|
|
* type. See memblock_add_range() description for mode details
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
|
|
int nid)
|
|
{
|
|
return memblock_add_range(&memblock.memory, base, size, nid, 0);
|
|
}
|
|
|
|
/**
|
|
* memblock_add - add new memblock region
|
|
* @base: base address of the new region
|
|
* @size: size of the new region
|
|
*
|
|
* Add new memblock region [@base, @base + @size) to the "memory"
|
|
* type. See memblock_add_range() description for mode details
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
|
|
}
|
|
|
|
/**
|
|
* memblock_isolate_range - isolate given range into disjoint memblocks
|
|
* @type: memblock type to isolate range for
|
|
* @base: base of range to isolate
|
|
* @size: size of range to isolate
|
|
* @start_rgn: out parameter for the start of isolated region
|
|
* @end_rgn: out parameter for the end of isolated region
|
|
*
|
|
* Walk @type and ensure that regions don't cross the boundaries defined by
|
|
* [@base, @base + @size). Crossing regions are split at the boundaries,
|
|
* which may create at most two more regions. The index of the first
|
|
* region inside the range is returned in *@start_rgn and end in *@end_rgn.
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
static int __init_memblock memblock_isolate_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size,
|
|
int *start_rgn, int *end_rgn)
|
|
{
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
int idx;
|
|
struct memblock_region *rgn;
|
|
|
|
*start_rgn = *end_rgn = 0;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
/* we'll create at most two more regions */
|
|
while (type->cnt + 2 > type->max)
|
|
if (memblock_double_array(type, base, size) < 0)
|
|
return -ENOMEM;
|
|
|
|
for_each_memblock_type(idx, type, rgn) {
|
|
phys_addr_t rbase = rgn->base;
|
|
phys_addr_t rend = rbase + rgn->size;
|
|
|
|
if (rbase >= end)
|
|
break;
|
|
if (rend <= base)
|
|
continue;
|
|
|
|
if (rbase < base) {
|
|
/*
|
|
* @rgn intersects from below. Split and continue
|
|
* to process the next region - the new top half.
|
|
*/
|
|
rgn->base = base;
|
|
rgn->size -= base - rbase;
|
|
type->total_size -= base - rbase;
|
|
memblock_insert_region(type, idx, rbase, base - rbase,
|
|
memblock_get_region_node(rgn),
|
|
rgn->flags);
|
|
} else if (rend > end) {
|
|
/*
|
|
* @rgn intersects from above. Split and redo the
|
|
* current region - the new bottom half.
|
|
*/
|
|
rgn->base = end;
|
|
rgn->size -= end - rbase;
|
|
type->total_size -= end - rbase;
|
|
memblock_insert_region(type, idx--, rbase, end - rbase,
|
|
memblock_get_region_node(rgn),
|
|
rgn->flags);
|
|
} else {
|
|
/* @rgn is fully contained, record it */
|
|
if (!*end_rgn)
|
|
*start_rgn = idx;
|
|
*end_rgn = idx + 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init_memblock memblock_remove_range(struct memblock_type *type,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = end_rgn - 1; i >= start_rgn; i--)
|
|
memblock_remove_region(type, i);
|
|
return 0;
|
|
}
|
|
|
|
int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
return memblock_remove_range(&memblock.memory, base, size);
|
|
}
|
|
|
|
/**
|
|
* memblock_free - free boot memory block
|
|
* @base: phys starting address of the boot memory block
|
|
* @size: size of the boot memory block in bytes
|
|
*
|
|
* Free boot memory block previously allocated by memblock_alloc_xx() API.
|
|
* The freeing memory will not be released to the buddy allocator.
|
|
*/
|
|
int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
kmemleak_free_part_phys(base, size);
|
|
return memblock_remove_range(&memblock.reserved, base, size);
|
|
}
|
|
|
|
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t end = base + size - 1;
|
|
|
|
memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
|
|
&base, &end, (void *)_RET_IP_);
|
|
|
|
return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
|
|
}
|
|
|
|
/**
|
|
* memblock_setclr_flag - set or clear flag for a memory region
|
|
* @base: base address of the region
|
|
* @size: size of the region
|
|
* @set: set or clear the flag
|
|
* @flag: the flag to udpate
|
|
*
|
|
* This function isolates region [@base, @base + @size), and sets/clears flag
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
static int __init_memblock memblock_setclr_flag(phys_addr_t base,
|
|
phys_addr_t size, int set, int flag)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
int i, ret, start_rgn, end_rgn;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = start_rgn; i < end_rgn; i++)
|
|
if (set)
|
|
memblock_set_region_flags(&type->regions[i], flag);
|
|
else
|
|
memblock_clear_region_flags(&type->regions[i], flag);
|
|
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
|
|
}
|
|
|
|
/**
|
|
* memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
|
|
}
|
|
|
|
/**
|
|
* memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
system_has_some_mirror = true;
|
|
|
|
return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
|
|
}
|
|
|
|
/**
|
|
* memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
|
|
}
|
|
|
|
/**
|
|
* memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
|
|
* @base: the base phys addr of the region
|
|
* @size: the size of the region
|
|
*
|
|
* Return: 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
|
|
}
|
|
|
|
/**
|
|
* __next_reserved_mem_region - next function for for_each_reserved_region()
|
|
* @idx: pointer to u64 loop variable
|
|
* @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
|
|
* @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
|
|
*
|
|
* Iterate over all reserved memory regions.
|
|
*/
|
|
void __init_memblock __next_reserved_mem_region(u64 *idx,
|
|
phys_addr_t *out_start,
|
|
phys_addr_t *out_end)
|
|
{
|
|
struct memblock_type *type = &memblock.reserved;
|
|
|
|
if (*idx < type->cnt) {
|
|
struct memblock_region *r = &type->regions[*idx];
|
|
phys_addr_t base = r->base;
|
|
phys_addr_t size = r->size;
|
|
|
|
if (out_start)
|
|
*out_start = base;
|
|
if (out_end)
|
|
*out_end = base + size - 1;
|
|
|
|
*idx += 1;
|
|
return;
|
|
}
|
|
|
|
/* signal end of iteration */
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
/**
|
|
* __next__mem_range - next function for for_each_free_mem_range() etc.
|
|
* @idx: pointer to u64 loop variable
|
|
* @nid: node selector, %NUMA_NO_NODE for all nodes
|
|
* @flags: pick from blocks based on memory attributes
|
|
* @type_a: pointer to memblock_type from where the range is taken
|
|
* @type_b: pointer to memblock_type which excludes memory from being taken
|
|
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
|
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
|
* @out_nid: ptr to int for nid of the range, can be %NULL
|
|
*
|
|
* Find the first area from *@idx which matches @nid, fill the out
|
|
* parameters, and update *@idx for the next iteration. The lower 32bit of
|
|
* *@idx contains index into type_a and the upper 32bit indexes the
|
|
* areas before each region in type_b. For example, if type_b regions
|
|
* look like the following,
|
|
*
|
|
* 0:[0-16), 1:[32-48), 2:[128-130)
|
|
*
|
|
* The upper 32bit indexes the following regions.
|
|
*
|
|
* 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
|
|
*
|
|
* As both region arrays are sorted, the function advances the two indices
|
|
* in lockstep and returns each intersection.
|
|
*/
|
|
void __init_memblock __next_mem_range(u64 *idx, int nid,
|
|
enum memblock_flags flags,
|
|
struct memblock_type *type_a,
|
|
struct memblock_type *type_b,
|
|
phys_addr_t *out_start,
|
|
phys_addr_t *out_end, int *out_nid)
|
|
{
|
|
int idx_a = *idx & 0xffffffff;
|
|
int idx_b = *idx >> 32;
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES,
|
|
"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
for (; idx_a < type_a->cnt; idx_a++) {
|
|
struct memblock_region *m = &type_a->regions[idx_a];
|
|
|
|
phys_addr_t m_start = m->base;
|
|
phys_addr_t m_end = m->base + m->size;
|
|
int m_nid = memblock_get_region_node(m);
|
|
|
|
/* only memory regions are associated with nodes, check it */
|
|
if (nid != NUMA_NO_NODE && nid != m_nid)
|
|
continue;
|
|
|
|
/* skip hotpluggable memory regions if needed */
|
|
if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
|
|
continue;
|
|
|
|
/* if we want mirror memory skip non-mirror memory regions */
|
|
if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
|
|
continue;
|
|
|
|
/* skip nomap memory unless we were asked for it explicitly */
|
|
if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
|
|
continue;
|
|
|
|
if (!type_b) {
|
|
if (out_start)
|
|
*out_start = m_start;
|
|
if (out_end)
|
|
*out_end = m_end;
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
idx_a++;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
|
|
/* scan areas before each reservation */
|
|
for (; idx_b < type_b->cnt + 1; idx_b++) {
|
|
struct memblock_region *r;
|
|
phys_addr_t r_start;
|
|
phys_addr_t r_end;
|
|
|
|
r = &type_b->regions[idx_b];
|
|
r_start = idx_b ? r[-1].base + r[-1].size : 0;
|
|
r_end = idx_b < type_b->cnt ?
|
|
r->base : PHYS_ADDR_MAX;
|
|
|
|
/*
|
|
* if idx_b advanced past idx_a,
|
|
* break out to advance idx_a
|
|
*/
|
|
if (r_start >= m_end)
|
|
break;
|
|
/* if the two regions intersect, we're done */
|
|
if (m_start < r_end) {
|
|
if (out_start)
|
|
*out_start =
|
|
max(m_start, r_start);
|
|
if (out_end)
|
|
*out_end = min(m_end, r_end);
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
/*
|
|
* The region which ends first is
|
|
* advanced for the next iteration.
|
|
*/
|
|
if (m_end <= r_end)
|
|
idx_a++;
|
|
else
|
|
idx_b++;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* signal end of iteration */
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
/**
|
|
* __next_mem_range_rev - generic next function for for_each_*_range_rev()
|
|
*
|
|
* @idx: pointer to u64 loop variable
|
|
* @nid: node selector, %NUMA_NO_NODE for all nodes
|
|
* @flags: pick from blocks based on memory attributes
|
|
* @type_a: pointer to memblock_type from where the range is taken
|
|
* @type_b: pointer to memblock_type which excludes memory from being taken
|
|
* @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
|
|
* @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
|
|
* @out_nid: ptr to int for nid of the range, can be %NULL
|
|
*
|
|
* Finds the next range from type_a which is not marked as unsuitable
|
|
* in type_b.
|
|
*
|
|
* Reverse of __next_mem_range().
|
|
*/
|
|
void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
|
|
enum memblock_flags flags,
|
|
struct memblock_type *type_a,
|
|
struct memblock_type *type_b,
|
|
phys_addr_t *out_start,
|
|
phys_addr_t *out_end, int *out_nid)
|
|
{
|
|
int idx_a = *idx & 0xffffffff;
|
|
int idx_b = *idx >> 32;
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
if (*idx == (u64)ULLONG_MAX) {
|
|
idx_a = type_a->cnt - 1;
|
|
if (type_b != NULL)
|
|
idx_b = type_b->cnt;
|
|
else
|
|
idx_b = 0;
|
|
}
|
|
|
|
for (; idx_a >= 0; idx_a--) {
|
|
struct memblock_region *m = &type_a->regions[idx_a];
|
|
|
|
phys_addr_t m_start = m->base;
|
|
phys_addr_t m_end = m->base + m->size;
|
|
int m_nid = memblock_get_region_node(m);
|
|
|
|
/* only memory regions are associated with nodes, check it */
|
|
if (nid != NUMA_NO_NODE && nid != m_nid)
|
|
continue;
|
|
|
|
/* skip hotpluggable memory regions if needed */
|
|
if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
|
|
continue;
|
|
|
|
/* if we want mirror memory skip non-mirror memory regions */
|
|
if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
|
|
continue;
|
|
|
|
/* skip nomap memory unless we were asked for it explicitly */
|
|
if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
|
|
continue;
|
|
|
|
if (!type_b) {
|
|
if (out_start)
|
|
*out_start = m_start;
|
|
if (out_end)
|
|
*out_end = m_end;
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
idx_a--;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
|
|
/* scan areas before each reservation */
|
|
for (; idx_b >= 0; idx_b--) {
|
|
struct memblock_region *r;
|
|
phys_addr_t r_start;
|
|
phys_addr_t r_end;
|
|
|
|
r = &type_b->regions[idx_b];
|
|
r_start = idx_b ? r[-1].base + r[-1].size : 0;
|
|
r_end = idx_b < type_b->cnt ?
|
|
r->base : PHYS_ADDR_MAX;
|
|
/*
|
|
* if idx_b advanced past idx_a,
|
|
* break out to advance idx_a
|
|
*/
|
|
|
|
if (r_end <= m_start)
|
|
break;
|
|
/* if the two regions intersect, we're done */
|
|
if (m_end > r_start) {
|
|
if (out_start)
|
|
*out_start = max(m_start, r_start);
|
|
if (out_end)
|
|
*out_end = min(m_end, r_end);
|
|
if (out_nid)
|
|
*out_nid = m_nid;
|
|
if (m_start >= r_start)
|
|
idx_a--;
|
|
else
|
|
idx_b--;
|
|
*idx = (u32)idx_a | (u64)idx_b << 32;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
/* signal end of iteration */
|
|
*idx = ULLONG_MAX;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
/*
|
|
* Common iterator interface used to define for_each_mem_pfn_range().
|
|
*/
|
|
void __init_memblock __next_mem_pfn_range(int *idx, int nid,
|
|
unsigned long *out_start_pfn,
|
|
unsigned long *out_end_pfn, int *out_nid)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
struct memblock_region *r;
|
|
|
|
while (++*idx < type->cnt) {
|
|
r = &type->regions[*idx];
|
|
|
|
if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
|
|
continue;
|
|
if (nid == MAX_NUMNODES || nid == r->nid)
|
|
break;
|
|
}
|
|
if (*idx >= type->cnt) {
|
|
*idx = -1;
|
|
return;
|
|
}
|
|
|
|
if (out_start_pfn)
|
|
*out_start_pfn = PFN_UP(r->base);
|
|
if (out_end_pfn)
|
|
*out_end_pfn = PFN_DOWN(r->base + r->size);
|
|
if (out_nid)
|
|
*out_nid = r->nid;
|
|
}
|
|
|
|
/**
|
|
* memblock_set_node - set node ID on memblock regions
|
|
* @base: base of area to set node ID for
|
|
* @size: size of area to set node ID for
|
|
* @type: memblock type to set node ID for
|
|
* @nid: node ID to set
|
|
*
|
|
* Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
|
|
* Regions which cross the area boundaries are split as necessary.
|
|
*
|
|
* Return:
|
|
* 0 on success, -errno on failure.
|
|
*/
|
|
int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
|
|
struct memblock_type *type, int nid)
|
|
{
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = start_rgn; i < end_rgn; i++)
|
|
memblock_set_region_node(&type->regions[i], nid);
|
|
|
|
memblock_merge_regions(type);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
|
|
static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t start,
|
|
phys_addr_t end, int nid,
|
|
enum memblock_flags flags)
|
|
{
|
|
phys_addr_t found;
|
|
|
|
if (!align) {
|
|
/* Can't use WARNs this early in boot on powerpc */
|
|
dump_stack();
|
|
align = SMP_CACHE_BYTES;
|
|
}
|
|
|
|
found = memblock_find_in_range_node(size, align, start, end, nid,
|
|
flags);
|
|
if (found && !memblock_reserve(found, size)) {
|
|
/*
|
|
* The min_count is set to 0 so that memblock allocations are
|
|
* never reported as leaks.
|
|
*/
|
|
kmemleak_alloc_phys(found, size, 0, 0);
|
|
return found;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t start, phys_addr_t end,
|
|
enum memblock_flags flags)
|
|
{
|
|
return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
|
|
flags);
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t max_addr,
|
|
int nid, enum memblock_flags flags)
|
|
{
|
|
return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
|
|
}
|
|
|
|
phys_addr_t __init memblock_phys_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
enum memblock_flags flags = choose_memblock_flags();
|
|
phys_addr_t ret;
|
|
|
|
again:
|
|
ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
|
|
nid, flags);
|
|
|
|
if (!ret && (flags & MEMBLOCK_MIRROR)) {
|
|
flags &= ~MEMBLOCK_MIRROR;
|
|
goto again;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
|
|
{
|
|
return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
|
|
MEMBLOCK_NONE);
|
|
}
|
|
|
|
phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
|
|
{
|
|
phys_addr_t alloc;
|
|
|
|
alloc = __memblock_alloc_base(size, align, max_addr);
|
|
|
|
if (alloc == 0)
|
|
panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
|
|
&size, &max_addr);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
phys_addr_t __init memblock_phys_alloc(phys_addr_t size, phys_addr_t align)
|
|
{
|
|
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
|
}
|
|
|
|
phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
|
|
{
|
|
phys_addr_t res = memblock_phys_alloc_nid(size, align, nid);
|
|
|
|
if (res)
|
|
return res;
|
|
return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
|
}
|
|
|
|
/**
|
|
* memblock_alloc_internal - allocate boot memory block
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region to allocate (phys address)
|
|
* @max_addr: the upper bound of the memory region to allocate (phys address)
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* The @min_addr limit is dropped if it can not be satisfied and the allocation
|
|
* will fall back to memory below @min_addr. Also, allocation may fall back
|
|
* to any node in the system if the specified node can not
|
|
* hold the requested memory.
|
|
*
|
|
* The allocation is performed from memory region limited by
|
|
* memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
|
|
*
|
|
* The phys address of allocated boot memory block is converted to virtual and
|
|
* allocated memory is reset to 0.
|
|
*
|
|
* In addition, function sets the min_count to 0 using kmemleak_alloc for
|
|
* allocated boot memory block, so that it is never reported as leaks.
|
|
*
|
|
* Return:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
static void * __init memblock_alloc_internal(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
phys_addr_t alloc;
|
|
void *ptr;
|
|
enum memblock_flags flags = choose_memblock_flags();
|
|
|
|
if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
/*
|
|
* Detect any accidental use of these APIs after slab is ready, as at
|
|
* this moment memblock may be deinitialized already and its
|
|
* internal data may be destroyed (after execution of memblock_free_all)
|
|
*/
|
|
if (WARN_ON_ONCE(slab_is_available()))
|
|
return kzalloc_node(size, GFP_NOWAIT, nid);
|
|
|
|
if (!align) {
|
|
dump_stack();
|
|
align = SMP_CACHE_BYTES;
|
|
}
|
|
|
|
if (max_addr > memblock.current_limit)
|
|
max_addr = memblock.current_limit;
|
|
again:
|
|
alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
|
|
nid, flags);
|
|
if (alloc && !memblock_reserve(alloc, size))
|
|
goto done;
|
|
|
|
if (nid != NUMA_NO_NODE) {
|
|
alloc = memblock_find_in_range_node(size, align, min_addr,
|
|
max_addr, NUMA_NO_NODE,
|
|
flags);
|
|
if (alloc && !memblock_reserve(alloc, size))
|
|
goto done;
|
|
}
|
|
|
|
if (min_addr) {
|
|
min_addr = 0;
|
|
goto again;
|
|
}
|
|
|
|
if (flags & MEMBLOCK_MIRROR) {
|
|
flags &= ~MEMBLOCK_MIRROR;
|
|
pr_warn("Could not allocate %pap bytes of mirrored memory\n",
|
|
&size);
|
|
goto again;
|
|
}
|
|
|
|
return NULL;
|
|
done:
|
|
ptr = phys_to_virt(alloc);
|
|
|
|
/* Skip kmemleak for kasan_init() due to high volume. */
|
|
if (max_addr != MEMBLOCK_ALLOC_KASAN)
|
|
/*
|
|
* The min_count is set to 0 so that bootmem allocated
|
|
* blocks are never reported as leaks. This is because many
|
|
* of these blocks are only referred via the physical
|
|
* address which is not looked up by kmemleak.
|
|
*/
|
|
kmemleak_alloc(ptr, size, 0, 0);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/**
|
|
* memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
|
|
* memory and without panicking
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region from where the allocation
|
|
* is preferred (phys address)
|
|
* @max_addr: the upper bound of the memory region from where the allocation
|
|
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
|
|
* allocate only from memory limited by memblock.current_limit value
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Public function, provides additional debug information (including caller
|
|
* info), if enabled. Does not zero allocated memory, does not panic if request
|
|
* cannot be satisfied.
|
|
*
|
|
* Return:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
void * __init memblock_alloc_try_nid_raw(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
void *ptr;
|
|
|
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
|
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
|
&max_addr, (void *)_RET_IP_);
|
|
|
|
ptr = memblock_alloc_internal(size, align,
|
|
min_addr, max_addr, nid);
|
|
if (ptr && size > 0)
|
|
page_init_poison(ptr, size);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
/**
|
|
* memblock_alloc_try_nid_nopanic - allocate boot memory block
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region from where the allocation
|
|
* is preferred (phys address)
|
|
* @max_addr: the upper bound of the memory region from where the allocation
|
|
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
|
|
* allocate only from memory limited by memblock.current_limit value
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Public function, provides additional debug information (including caller
|
|
* info), if enabled. This function zeroes the allocated memory.
|
|
*
|
|
* Return:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
void * __init memblock_alloc_try_nid_nopanic(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
void *ptr;
|
|
|
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
|
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
|
&max_addr, (void *)_RET_IP_);
|
|
|
|
ptr = memblock_alloc_internal(size, align,
|
|
min_addr, max_addr, nid);
|
|
if (ptr)
|
|
memset(ptr, 0, size);
|
|
return ptr;
|
|
}
|
|
|
|
/**
|
|
* memblock_alloc_try_nid - allocate boot memory block with panicking
|
|
* @size: size of memory block to be allocated in bytes
|
|
* @align: alignment of the region and block's size
|
|
* @min_addr: the lower bound of the memory region from where the allocation
|
|
* is preferred (phys address)
|
|
* @max_addr: the upper bound of the memory region from where the allocation
|
|
* is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
|
|
* allocate only from memory limited by memblock.current_limit value
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* Public panicking version of memblock_alloc_try_nid_nopanic()
|
|
* which provides debug information (including caller info), if enabled,
|
|
* and panics if the request can not be satisfied.
|
|
*
|
|
* Return:
|
|
* Virtual address of allocated memory block on success, NULL on failure.
|
|
*/
|
|
void * __init memblock_alloc_try_nid(
|
|
phys_addr_t size, phys_addr_t align,
|
|
phys_addr_t min_addr, phys_addr_t max_addr,
|
|
int nid)
|
|
{
|
|
void *ptr;
|
|
|
|
memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
|
|
__func__, (u64)size, (u64)align, nid, &min_addr,
|
|
&max_addr, (void *)_RET_IP_);
|
|
ptr = memblock_alloc_internal(size, align,
|
|
min_addr, max_addr, nid);
|
|
if (ptr) {
|
|
memset(ptr, 0, size);
|
|
return ptr;
|
|
}
|
|
|
|
panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
|
|
__func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __memblock_free_late - free bootmem block pages directly to buddy allocator
|
|
* @base: phys starting address of the boot memory block
|
|
* @size: size of the boot memory block in bytes
|
|
*
|
|
* This is only useful when the bootmem allocator has already been torn
|
|
* down, but we are still initializing the system. Pages are released directly
|
|
* to the buddy allocator, no bootmem metadata is updated because it is gone.
|
|
*/
|
|
void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
phys_addr_t cursor, end;
|
|
|
|
end = base + size - 1;
|
|
memblock_dbg("%s: [%pa-%pa] %pF\n",
|
|
__func__, &base, &end, (void *)_RET_IP_);
|
|
kmemleak_free_part_phys(base, size);
|
|
cursor = PFN_UP(base);
|
|
end = PFN_DOWN(base + size);
|
|
|
|
for (; cursor < end; cursor++) {
|
|
memblock_free_pages(pfn_to_page(cursor), cursor, 0);
|
|
totalram_pages_inc();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remaining API functions
|
|
*/
|
|
|
|
phys_addr_t __init_memblock memblock_phys_mem_size(void)
|
|
{
|
|
return memblock.memory.total_size;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_reserved_size(void)
|
|
{
|
|
return memblock.reserved.total_size;
|
|
}
|
|
|
|
phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
|
|
{
|
|
unsigned long pages = 0;
|
|
struct memblock_region *r;
|
|
unsigned long start_pfn, end_pfn;
|
|
|
|
for_each_memblock(memory, r) {
|
|
start_pfn = memblock_region_memory_base_pfn(r);
|
|
end_pfn = memblock_region_memory_end_pfn(r);
|
|
start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
|
|
end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
|
|
pages += end_pfn - start_pfn;
|
|
}
|
|
|
|
return PFN_PHYS(pages);
|
|
}
|
|
|
|
/* lowest address */
|
|
phys_addr_t __init_memblock memblock_start_of_DRAM(void)
|
|
{
|
|
return memblock.memory.regions[0].base;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_end_of_DRAM(void)
|
|
{
|
|
int idx = memblock.memory.cnt - 1;
|
|
|
|
return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
|
|
}
|
|
|
|
static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
|
|
{
|
|
phys_addr_t max_addr = PHYS_ADDR_MAX;
|
|
struct memblock_region *r;
|
|
|
|
/*
|
|
* translate the memory @limit size into the max address within one of
|
|
* the memory memblock regions, if the @limit exceeds the total size
|
|
* of those regions, max_addr will keep original value PHYS_ADDR_MAX
|
|
*/
|
|
for_each_memblock(memory, r) {
|
|
if (limit <= r->size) {
|
|
max_addr = r->base + limit;
|
|
break;
|
|
}
|
|
limit -= r->size;
|
|
}
|
|
|
|
return max_addr;
|
|
}
|
|
|
|
void __init memblock_enforce_memory_limit(phys_addr_t limit)
|
|
{
|
|
phys_addr_t max_addr = PHYS_ADDR_MAX;
|
|
|
|
if (!limit)
|
|
return;
|
|
|
|
max_addr = __find_max_addr(limit);
|
|
|
|
/* @limit exceeds the total size of the memory, do nothing */
|
|
if (max_addr == PHYS_ADDR_MAX)
|
|
return;
|
|
|
|
/* truncate both memory and reserved regions */
|
|
memblock_remove_range(&memblock.memory, max_addr,
|
|
PHYS_ADDR_MAX);
|
|
memblock_remove_range(&memblock.reserved, max_addr,
|
|
PHYS_ADDR_MAX);
|
|
}
|
|
|
|
void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int start_rgn, end_rgn;
|
|
int i, ret;
|
|
|
|
if (!size)
|
|
return;
|
|
|
|
ret = memblock_isolate_range(&memblock.memory, base, size,
|
|
&start_rgn, &end_rgn);
|
|
if (ret)
|
|
return;
|
|
|
|
/* remove all the MAP regions */
|
|
for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
|
|
if (!memblock_is_nomap(&memblock.memory.regions[i]))
|
|
memblock_remove_region(&memblock.memory, i);
|
|
|
|
for (i = start_rgn - 1; i >= 0; i--)
|
|
if (!memblock_is_nomap(&memblock.memory.regions[i]))
|
|
memblock_remove_region(&memblock.memory, i);
|
|
|
|
/* truncate the reserved regions */
|
|
memblock_remove_range(&memblock.reserved, 0, base);
|
|
memblock_remove_range(&memblock.reserved,
|
|
base + size, PHYS_ADDR_MAX);
|
|
}
|
|
|
|
void __init memblock_mem_limit_remove_map(phys_addr_t limit)
|
|
{
|
|
phys_addr_t max_addr;
|
|
|
|
if (!limit)
|
|
return;
|
|
|
|
max_addr = __find_max_addr(limit);
|
|
|
|
/* @limit exceeds the total size of the memory, do nothing */
|
|
if (max_addr == PHYS_ADDR_MAX)
|
|
return;
|
|
|
|
memblock_cap_memory_range(0, max_addr);
|
|
}
|
|
|
|
static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
|
|
{
|
|
unsigned int left = 0, right = type->cnt;
|
|
|
|
do {
|
|
unsigned int mid = (right + left) / 2;
|
|
|
|
if (addr < type->regions[mid].base)
|
|
right = mid;
|
|
else if (addr >= (type->regions[mid].base +
|
|
type->regions[mid].size))
|
|
left = mid + 1;
|
|
else
|
|
return mid;
|
|
} while (left < right);
|
|
return -1;
|
|
}
|
|
|
|
bool __init_memblock memblock_is_reserved(phys_addr_t addr)
|
|
{
|
|
return memblock_search(&memblock.reserved, addr) != -1;
|
|
}
|
|
|
|
bool __init_memblock memblock_is_memory(phys_addr_t addr)
|
|
{
|
|
return memblock_search(&memblock.memory, addr) != -1;
|
|
}
|
|
|
|
bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
|
|
{
|
|
int i = memblock_search(&memblock.memory, addr);
|
|
|
|
if (i == -1)
|
|
return false;
|
|
return !memblock_is_nomap(&memblock.memory.regions[i]);
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
|
|
unsigned long *start_pfn, unsigned long *end_pfn)
|
|
{
|
|
struct memblock_type *type = &memblock.memory;
|
|
int mid = memblock_search(type, PFN_PHYS(pfn));
|
|
|
|
if (mid == -1)
|
|
return -1;
|
|
|
|
*start_pfn = PFN_DOWN(type->regions[mid].base);
|
|
*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
|
|
|
|
return type->regions[mid].nid;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* memblock_is_region_memory - check if a region is a subset of memory
|
|
* @base: base of region to check
|
|
* @size: size of region to check
|
|
*
|
|
* Check if the region [@base, @base + @size) is a subset of a memory block.
|
|
*
|
|
* Return:
|
|
* 0 if false, non-zero if true
|
|
*/
|
|
bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
int idx = memblock_search(&memblock.memory, base);
|
|
phys_addr_t end = base + memblock_cap_size(base, &size);
|
|
|
|
if (idx == -1)
|
|
return false;
|
|
return (memblock.memory.regions[idx].base +
|
|
memblock.memory.regions[idx].size) >= end;
|
|
}
|
|
|
|
/**
|
|
* memblock_is_region_reserved - check if a region intersects reserved memory
|
|
* @base: base of region to check
|
|
* @size: size of region to check
|
|
*
|
|
* Check if the region [@base, @base + @size) intersects a reserved
|
|
* memory block.
|
|
*
|
|
* Return:
|
|
* True if they intersect, false if not.
|
|
*/
|
|
bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
|
|
{
|
|
memblock_cap_size(base, &size);
|
|
return memblock_overlaps_region(&memblock.reserved, base, size);
|
|
}
|
|
|
|
void __init_memblock memblock_trim_memory(phys_addr_t align)
|
|
{
|
|
phys_addr_t start, end, orig_start, orig_end;
|
|
struct memblock_region *r;
|
|
|
|
for_each_memblock(memory, r) {
|
|
orig_start = r->base;
|
|
orig_end = r->base + r->size;
|
|
start = round_up(orig_start, align);
|
|
end = round_down(orig_end, align);
|
|
|
|
if (start == orig_start && end == orig_end)
|
|
continue;
|
|
|
|
if (start < end) {
|
|
r->base = start;
|
|
r->size = end - start;
|
|
} else {
|
|
memblock_remove_region(&memblock.memory,
|
|
r - memblock.memory.regions);
|
|
r--;
|
|
}
|
|
}
|
|
}
|
|
|
|
void __init_memblock memblock_set_current_limit(phys_addr_t limit)
|
|
{
|
|
memblock.current_limit = limit;
|
|
}
|
|
|
|
phys_addr_t __init_memblock memblock_get_current_limit(void)
|
|
{
|
|
return memblock.current_limit;
|
|
}
|
|
|
|
static void __init_memblock memblock_dump(struct memblock_type *type)
|
|
{
|
|
phys_addr_t base, end, size;
|
|
enum memblock_flags flags;
|
|
int idx;
|
|
struct memblock_region *rgn;
|
|
|
|
pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
|
|
|
|
for_each_memblock_type(idx, type, rgn) {
|
|
char nid_buf[32] = "";
|
|
|
|
base = rgn->base;
|
|
size = rgn->size;
|
|
end = base + size - 1;
|
|
flags = rgn->flags;
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
if (memblock_get_region_node(rgn) != MAX_NUMNODES)
|
|
snprintf(nid_buf, sizeof(nid_buf), " on node %d",
|
|
memblock_get_region_node(rgn));
|
|
#endif
|
|
pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
|
|
type->name, idx, &base, &end, &size, nid_buf, flags);
|
|
}
|
|
}
|
|
|
|
void __init_memblock __memblock_dump_all(void)
|
|
{
|
|
pr_info("MEMBLOCK configuration:\n");
|
|
pr_info(" memory size = %pa reserved size = %pa\n",
|
|
&memblock.memory.total_size,
|
|
&memblock.reserved.total_size);
|
|
|
|
memblock_dump(&memblock.memory);
|
|
memblock_dump(&memblock.reserved);
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
memblock_dump(&memblock.physmem);
|
|
#endif
|
|
}
|
|
|
|
void __init memblock_allow_resize(void)
|
|
{
|
|
memblock_can_resize = 1;
|
|
}
|
|
|
|
static int __init early_memblock(char *p)
|
|
{
|
|
if (p && strstr(p, "debug"))
|
|
memblock_debug = 1;
|
|
return 0;
|
|
}
|
|
early_param("memblock", early_memblock);
|
|
|
|
static void __init __free_pages_memory(unsigned long start, unsigned long end)
|
|
{
|
|
int order;
|
|
|
|
while (start < end) {
|
|
order = min(MAX_ORDER - 1UL, __ffs(start));
|
|
|
|
while (start + (1UL << order) > end)
|
|
order--;
|
|
|
|
memblock_free_pages(pfn_to_page(start), start, order);
|
|
|
|
start += (1UL << order);
|
|
}
|
|
}
|
|
|
|
static unsigned long __init __free_memory_core(phys_addr_t start,
|
|
phys_addr_t end)
|
|
{
|
|
unsigned long start_pfn = PFN_UP(start);
|
|
unsigned long end_pfn = min_t(unsigned long,
|
|
PFN_DOWN(end), max_low_pfn);
|
|
|
|
if (start_pfn >= end_pfn)
|
|
return 0;
|
|
|
|
__free_pages_memory(start_pfn, end_pfn);
|
|
|
|
return end_pfn - start_pfn;
|
|
}
|
|
|
|
static unsigned long __init free_low_memory_core_early(void)
|
|
{
|
|
unsigned long count = 0;
|
|
phys_addr_t start, end;
|
|
u64 i;
|
|
|
|
memblock_clear_hotplug(0, -1);
|
|
|
|
for_each_reserved_mem_region(i, &start, &end)
|
|
reserve_bootmem_region(start, end);
|
|
|
|
/*
|
|
* We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
|
|
* because in some case like Node0 doesn't have RAM installed
|
|
* low ram will be on Node1
|
|
*/
|
|
for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
|
|
NULL)
|
|
count += __free_memory_core(start, end);
|
|
|
|
return count;
|
|
}
|
|
|
|
static int reset_managed_pages_done __initdata;
|
|
|
|
void reset_node_managed_pages(pg_data_t *pgdat)
|
|
{
|
|
struct zone *z;
|
|
|
|
for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
|
|
atomic_long_set(&z->managed_pages, 0);
|
|
}
|
|
|
|
void __init reset_all_zones_managed_pages(void)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
|
|
if (reset_managed_pages_done)
|
|
return;
|
|
|
|
for_each_online_pgdat(pgdat)
|
|
reset_node_managed_pages(pgdat);
|
|
|
|
reset_managed_pages_done = 1;
|
|
}
|
|
|
|
/**
|
|
* memblock_free_all - release free pages to the buddy allocator
|
|
*
|
|
* Return: the number of pages actually released.
|
|
*/
|
|
unsigned long __init memblock_free_all(void)
|
|
{
|
|
unsigned long pages;
|
|
|
|
reset_all_zones_managed_pages();
|
|
|
|
pages = free_low_memory_core_early();
|
|
totalram_pages_add(pages);
|
|
|
|
return pages;
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
|
|
|
|
static int memblock_debug_show(struct seq_file *m, void *private)
|
|
{
|
|
struct memblock_type *type = m->private;
|
|
struct memblock_region *reg;
|
|
int i;
|
|
phys_addr_t end;
|
|
|
|
for (i = 0; i < type->cnt; i++) {
|
|
reg = &type->regions[i];
|
|
end = reg->base + reg->size - 1;
|
|
|
|
seq_printf(m, "%4d: ", i);
|
|
seq_printf(m, "%pa..%pa\n", ®->base, &end);
|
|
}
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(memblock_debug);
|
|
|
|
static int __init memblock_init_debugfs(void)
|
|
{
|
|
struct dentry *root = debugfs_create_dir("memblock", NULL);
|
|
if (!root)
|
|
return -ENXIO;
|
|
debugfs_create_file("memory", 0444, root,
|
|
&memblock.memory, &memblock_debug_fops);
|
|
debugfs_create_file("reserved", 0444, root,
|
|
&memblock.reserved, &memblock_debug_fops);
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
|
|
debugfs_create_file("physmem", 0444, root,
|
|
&memblock.physmem, &memblock_debug_fops);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
__initcall(memblock_init_debugfs);
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|