mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-03 15:52:00 +00:00
ff7c1d3355
If there is no running transaction in the fs, we needn't start a new one when we want to start sync. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
1784 lines
47 KiB
C
1784 lines
47 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uuid.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "locking.h"
|
|
#include "tree-log.h"
|
|
#include "inode-map.h"
|
|
#include "volumes.h"
|
|
#include "dev-replace.h"
|
|
|
|
#define BTRFS_ROOT_TRANS_TAG 0
|
|
|
|
void put_transaction(struct btrfs_transaction *transaction)
|
|
{
|
|
WARN_ON(atomic_read(&transaction->use_count) == 0);
|
|
if (atomic_dec_and_test(&transaction->use_count)) {
|
|
BUG_ON(!list_empty(&transaction->list));
|
|
WARN_ON(transaction->delayed_refs.root.rb_node);
|
|
memset(transaction, 0, sizeof(*transaction));
|
|
kmem_cache_free(btrfs_transaction_cachep, transaction);
|
|
}
|
|
}
|
|
|
|
static noinline void switch_commit_root(struct btrfs_root *root)
|
|
{
|
|
free_extent_buffer(root->commit_root);
|
|
root->commit_root = btrfs_root_node(root);
|
|
}
|
|
|
|
/*
|
|
* either allocate a new transaction or hop into the existing one
|
|
*/
|
|
static noinline int join_transaction(struct btrfs_root *root, int type)
|
|
{
|
|
struct btrfs_transaction *cur_trans;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
loop:
|
|
/* The file system has been taken offline. No new transactions. */
|
|
if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return -EROFS;
|
|
}
|
|
|
|
if (fs_info->trans_no_join) {
|
|
/*
|
|
* If we are JOIN_NOLOCK we're already committing a current
|
|
* transaction, we just need a handle to deal with something
|
|
* when committing the transaction, such as inode cache and
|
|
* space cache. It is a special case.
|
|
*/
|
|
if (type != TRANS_JOIN_NOLOCK) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
cur_trans = fs_info->running_transaction;
|
|
if (cur_trans) {
|
|
if (cur_trans->aborted) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return cur_trans->aborted;
|
|
}
|
|
atomic_inc(&cur_trans->use_count);
|
|
atomic_inc(&cur_trans->num_writers);
|
|
cur_trans->num_joined++;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
return 0;
|
|
}
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
/*
|
|
* If we are ATTACH, we just want to catch the current transaction,
|
|
* and commit it. If there is no transaction, just return ENOENT.
|
|
*/
|
|
if (type == TRANS_ATTACH)
|
|
return -ENOENT;
|
|
|
|
cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
|
|
if (!cur_trans)
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
if (fs_info->running_transaction) {
|
|
/*
|
|
* someone started a transaction after we unlocked. Make sure
|
|
* to redo the trans_no_join checks above
|
|
*/
|
|
kmem_cache_free(btrfs_transaction_cachep, cur_trans);
|
|
cur_trans = fs_info->running_transaction;
|
|
goto loop;
|
|
} else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
|
|
spin_unlock(&fs_info->trans_lock);
|
|
kmem_cache_free(btrfs_transaction_cachep, cur_trans);
|
|
return -EROFS;
|
|
}
|
|
|
|
atomic_set(&cur_trans->num_writers, 1);
|
|
cur_trans->num_joined = 0;
|
|
init_waitqueue_head(&cur_trans->writer_wait);
|
|
init_waitqueue_head(&cur_trans->commit_wait);
|
|
cur_trans->in_commit = 0;
|
|
cur_trans->blocked = 0;
|
|
/*
|
|
* One for this trans handle, one so it will live on until we
|
|
* commit the transaction.
|
|
*/
|
|
atomic_set(&cur_trans->use_count, 2);
|
|
cur_trans->commit_done = 0;
|
|
cur_trans->start_time = get_seconds();
|
|
|
|
cur_trans->delayed_refs.root = RB_ROOT;
|
|
cur_trans->delayed_refs.num_entries = 0;
|
|
cur_trans->delayed_refs.num_heads_ready = 0;
|
|
cur_trans->delayed_refs.num_heads = 0;
|
|
cur_trans->delayed_refs.flushing = 0;
|
|
cur_trans->delayed_refs.run_delayed_start = 0;
|
|
|
|
/*
|
|
* although the tree mod log is per file system and not per transaction,
|
|
* the log must never go across transaction boundaries.
|
|
*/
|
|
smp_mb();
|
|
if (!list_empty(&fs_info->tree_mod_seq_list))
|
|
WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
|
|
"creating a fresh transaction\n");
|
|
if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
|
|
WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
|
|
"creating a fresh transaction\n");
|
|
atomic_set(&fs_info->tree_mod_seq, 0);
|
|
|
|
spin_lock_init(&cur_trans->commit_lock);
|
|
spin_lock_init(&cur_trans->delayed_refs.lock);
|
|
|
|
INIT_LIST_HEAD(&cur_trans->pending_snapshots);
|
|
list_add_tail(&cur_trans->list, &fs_info->trans_list);
|
|
extent_io_tree_init(&cur_trans->dirty_pages,
|
|
fs_info->btree_inode->i_mapping);
|
|
fs_info->generation++;
|
|
cur_trans->transid = fs_info->generation;
|
|
fs_info->running_transaction = cur_trans;
|
|
cur_trans->aborted = 0;
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this does all the record keeping required to make sure that a reference
|
|
* counted root is properly recorded in a given transaction. This is required
|
|
* to make sure the old root from before we joined the transaction is deleted
|
|
* when the transaction commits
|
|
*/
|
|
static int record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
if (root->ref_cows && root->last_trans < trans->transid) {
|
|
WARN_ON(root == root->fs_info->extent_root);
|
|
WARN_ON(root->commit_root != root->node);
|
|
|
|
/*
|
|
* see below for in_trans_setup usage rules
|
|
* we have the reloc mutex held now, so there
|
|
* is only one writer in this function
|
|
*/
|
|
root->in_trans_setup = 1;
|
|
|
|
/* make sure readers find in_trans_setup before
|
|
* they find our root->last_trans update
|
|
*/
|
|
smp_wmb();
|
|
|
|
spin_lock(&root->fs_info->fs_roots_radix_lock);
|
|
if (root->last_trans == trans->transid) {
|
|
spin_unlock(&root->fs_info->fs_roots_radix_lock);
|
|
return 0;
|
|
}
|
|
radix_tree_tag_set(&root->fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&root->fs_info->fs_roots_radix_lock);
|
|
root->last_trans = trans->transid;
|
|
|
|
/* this is pretty tricky. We don't want to
|
|
* take the relocation lock in btrfs_record_root_in_trans
|
|
* unless we're really doing the first setup for this root in
|
|
* this transaction.
|
|
*
|
|
* Normally we'd use root->last_trans as a flag to decide
|
|
* if we want to take the expensive mutex.
|
|
*
|
|
* But, we have to set root->last_trans before we
|
|
* init the relocation root, otherwise, we trip over warnings
|
|
* in ctree.c. The solution used here is to flag ourselves
|
|
* with root->in_trans_setup. When this is 1, we're still
|
|
* fixing up the reloc trees and everyone must wait.
|
|
*
|
|
* When this is zero, they can trust root->last_trans and fly
|
|
* through btrfs_record_root_in_trans without having to take the
|
|
* lock. smp_wmb() makes sure that all the writes above are
|
|
* done before we pop in the zero below
|
|
*/
|
|
btrfs_init_reloc_root(trans, root);
|
|
smp_wmb();
|
|
root->in_trans_setup = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
if (!root->ref_cows)
|
|
return 0;
|
|
|
|
/*
|
|
* see record_root_in_trans for comments about in_trans_setup usage
|
|
* and barriers
|
|
*/
|
|
smp_rmb();
|
|
if (root->last_trans == trans->transid &&
|
|
!root->in_trans_setup)
|
|
return 0;
|
|
|
|
mutex_lock(&root->fs_info->reloc_mutex);
|
|
record_root_in_trans(trans, root);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* wait for commit against the current transaction to become unblocked
|
|
* when this is done, it is safe to start a new transaction, but the current
|
|
* transaction might not be fully on disk.
|
|
*/
|
|
static void wait_current_trans(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
cur_trans = root->fs_info->running_transaction;
|
|
if (cur_trans && cur_trans->blocked) {
|
|
atomic_inc(&cur_trans->use_count);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
wait_event(root->fs_info->transaction_wait,
|
|
!cur_trans->blocked);
|
|
put_transaction(cur_trans);
|
|
} else {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
}
|
|
}
|
|
|
|
static int may_wait_transaction(struct btrfs_root *root, int type)
|
|
{
|
|
if (root->fs_info->log_root_recovering)
|
|
return 0;
|
|
|
|
if (type == TRANS_USERSPACE)
|
|
return 1;
|
|
|
|
if (type == TRANS_START &&
|
|
!atomic_read(&root->fs_info->open_ioctl_trans))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_trans_handle *
|
|
start_transaction(struct btrfs_root *root, u64 num_items, int type,
|
|
enum btrfs_reserve_flush_enum flush)
|
|
{
|
|
struct btrfs_trans_handle *h;
|
|
struct btrfs_transaction *cur_trans;
|
|
u64 num_bytes = 0;
|
|
int ret;
|
|
u64 qgroup_reserved = 0;
|
|
|
|
if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
|
|
return ERR_PTR(-EROFS);
|
|
|
|
if (current->journal_info) {
|
|
WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
|
|
h = current->journal_info;
|
|
h->use_count++;
|
|
WARN_ON(h->use_count > 2);
|
|
h->orig_rsv = h->block_rsv;
|
|
h->block_rsv = NULL;
|
|
goto got_it;
|
|
}
|
|
|
|
/*
|
|
* Do the reservation before we join the transaction so we can do all
|
|
* the appropriate flushing if need be.
|
|
*/
|
|
if (num_items > 0 && root != root->fs_info->chunk_root) {
|
|
if (root->fs_info->quota_enabled &&
|
|
is_fstree(root->root_key.objectid)) {
|
|
qgroup_reserved = num_items * root->leafsize;
|
|
ret = btrfs_qgroup_reserve(root, qgroup_reserved);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
|
|
ret = btrfs_block_rsv_add(root,
|
|
&root->fs_info->trans_block_rsv,
|
|
num_bytes, flush);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
again:
|
|
h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
|
|
if (!h)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* If we are JOIN_NOLOCK we're already committing a transaction and
|
|
* waiting on this guy, so we don't need to do the sb_start_intwrite
|
|
* because we're already holding a ref. We need this because we could
|
|
* have raced in and did an fsync() on a file which can kick a commit
|
|
* and then we deadlock with somebody doing a freeze.
|
|
*
|
|
* If we are ATTACH, it means we just want to catch the current
|
|
* transaction and commit it, so we needn't do sb_start_intwrite().
|
|
*/
|
|
if (type < TRANS_JOIN_NOLOCK)
|
|
sb_start_intwrite(root->fs_info->sb);
|
|
|
|
if (may_wait_transaction(root, type))
|
|
wait_current_trans(root);
|
|
|
|
do {
|
|
ret = join_transaction(root, type);
|
|
if (ret == -EBUSY)
|
|
wait_current_trans(root);
|
|
} while (ret == -EBUSY);
|
|
|
|
if (ret < 0) {
|
|
/* We must get the transaction if we are JOIN_NOLOCK. */
|
|
BUG_ON(type == TRANS_JOIN_NOLOCK);
|
|
|
|
if (type < TRANS_JOIN_NOLOCK)
|
|
sb_end_intwrite(root->fs_info->sb);
|
|
kmem_cache_free(btrfs_trans_handle_cachep, h);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
cur_trans = root->fs_info->running_transaction;
|
|
|
|
h->transid = cur_trans->transid;
|
|
h->transaction = cur_trans;
|
|
h->blocks_used = 0;
|
|
h->bytes_reserved = 0;
|
|
h->root = root;
|
|
h->delayed_ref_updates = 0;
|
|
h->use_count = 1;
|
|
h->adding_csums = 0;
|
|
h->block_rsv = NULL;
|
|
h->orig_rsv = NULL;
|
|
h->aborted = 0;
|
|
h->qgroup_reserved = qgroup_reserved;
|
|
h->delayed_ref_elem.seq = 0;
|
|
h->type = type;
|
|
INIT_LIST_HEAD(&h->qgroup_ref_list);
|
|
INIT_LIST_HEAD(&h->new_bgs);
|
|
|
|
smp_mb();
|
|
if (cur_trans->blocked && may_wait_transaction(root, type)) {
|
|
btrfs_commit_transaction(h, root);
|
|
goto again;
|
|
}
|
|
|
|
if (num_bytes) {
|
|
trace_btrfs_space_reservation(root->fs_info, "transaction",
|
|
h->transid, num_bytes, 1);
|
|
h->block_rsv = &root->fs_info->trans_block_rsv;
|
|
h->bytes_reserved = num_bytes;
|
|
}
|
|
|
|
got_it:
|
|
btrfs_record_root_in_trans(h, root);
|
|
|
|
if (!current->journal_info && type != TRANS_USERSPACE)
|
|
current->journal_info = h;
|
|
return h;
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
|
|
int num_items)
|
|
{
|
|
return start_transaction(root, num_items, TRANS_START,
|
|
BTRFS_RESERVE_FLUSH_ALL);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_transaction_lflush(
|
|
struct btrfs_root *root, int num_items)
|
|
{
|
|
return start_transaction(root, num_items, TRANS_START,
|
|
BTRFS_RESERVE_FLUSH_LIMIT);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN, 0);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_USERSPACE, 0);
|
|
}
|
|
|
|
struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
|
|
{
|
|
return start_transaction(root, 0, TRANS_ATTACH, 0);
|
|
}
|
|
|
|
/* wait for a transaction commit to be fully complete */
|
|
static noinline void wait_for_commit(struct btrfs_root *root,
|
|
struct btrfs_transaction *commit)
|
|
{
|
|
wait_event(commit->commit_wait, commit->commit_done);
|
|
}
|
|
|
|
int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
|
|
{
|
|
struct btrfs_transaction *cur_trans = NULL, *t;
|
|
int ret;
|
|
|
|
ret = 0;
|
|
if (transid) {
|
|
if (transid <= root->fs_info->last_trans_committed)
|
|
goto out;
|
|
|
|
/* find specified transaction */
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_for_each_entry(t, &root->fs_info->trans_list, list) {
|
|
if (t->transid == transid) {
|
|
cur_trans = t;
|
|
atomic_inc(&cur_trans->use_count);
|
|
break;
|
|
}
|
|
if (t->transid > transid)
|
|
break;
|
|
}
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
ret = -EINVAL;
|
|
if (!cur_trans)
|
|
goto out; /* bad transid */
|
|
} else {
|
|
/* find newest transaction that is committing | committed */
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_for_each_entry_reverse(t, &root->fs_info->trans_list,
|
|
list) {
|
|
if (t->in_commit) {
|
|
if (t->commit_done)
|
|
break;
|
|
cur_trans = t;
|
|
atomic_inc(&cur_trans->use_count);
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
if (!cur_trans)
|
|
goto out; /* nothing committing|committed */
|
|
}
|
|
|
|
wait_for_commit(root, cur_trans);
|
|
|
|
put_transaction(cur_trans);
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_throttle(struct btrfs_root *root)
|
|
{
|
|
if (!atomic_read(&root->fs_info->open_ioctl_trans))
|
|
wait_current_trans(root);
|
|
}
|
|
|
|
static int should_end_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
|
|
return ret ? 1 : 0;
|
|
}
|
|
|
|
int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
int updates;
|
|
int err;
|
|
|
|
smp_mb();
|
|
if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
|
|
return 1;
|
|
|
|
updates = trans->delayed_ref_updates;
|
|
trans->delayed_ref_updates = 0;
|
|
if (updates) {
|
|
err = btrfs_run_delayed_refs(trans, root, updates);
|
|
if (err) /* Error code will also eval true */
|
|
return err;
|
|
}
|
|
|
|
return should_end_transaction(trans, root);
|
|
}
|
|
|
|
static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int throttle)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
int count = 0;
|
|
int lock = (trans->type != TRANS_JOIN_NOLOCK);
|
|
int err = 0;
|
|
|
|
if (--trans->use_count) {
|
|
trans->block_rsv = trans->orig_rsv;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* do the qgroup accounting as early as possible
|
|
*/
|
|
err = btrfs_delayed_refs_qgroup_accounting(trans, info);
|
|
|
|
btrfs_trans_release_metadata(trans, root);
|
|
trans->block_rsv = NULL;
|
|
/*
|
|
* the same root has to be passed to start_transaction and
|
|
* end_transaction. Subvolume quota depends on this.
|
|
*/
|
|
WARN_ON(trans->root != root);
|
|
|
|
if (trans->qgroup_reserved) {
|
|
btrfs_qgroup_free(root, trans->qgroup_reserved);
|
|
trans->qgroup_reserved = 0;
|
|
}
|
|
|
|
if (!list_empty(&trans->new_bgs))
|
|
btrfs_create_pending_block_groups(trans, root);
|
|
|
|
while (count < 2) {
|
|
unsigned long cur = trans->delayed_ref_updates;
|
|
trans->delayed_ref_updates = 0;
|
|
if (cur &&
|
|
trans->transaction->delayed_refs.num_heads_ready > 64) {
|
|
trans->delayed_ref_updates = 0;
|
|
btrfs_run_delayed_refs(trans, root, cur);
|
|
} else {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
btrfs_trans_release_metadata(trans, root);
|
|
trans->block_rsv = NULL;
|
|
|
|
if (!list_empty(&trans->new_bgs))
|
|
btrfs_create_pending_block_groups(trans, root);
|
|
|
|
if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
|
|
should_end_transaction(trans, root)) {
|
|
trans->transaction->blocked = 1;
|
|
smp_wmb();
|
|
}
|
|
|
|
if (lock && cur_trans->blocked && !cur_trans->in_commit) {
|
|
if (throttle) {
|
|
/*
|
|
* We may race with somebody else here so end up having
|
|
* to call end_transaction on ourselves again, so inc
|
|
* our use_count.
|
|
*/
|
|
trans->use_count++;
|
|
return btrfs_commit_transaction(trans, root);
|
|
} else {
|
|
wake_up_process(info->transaction_kthread);
|
|
}
|
|
}
|
|
|
|
if (trans->type < TRANS_JOIN_NOLOCK)
|
|
sb_end_intwrite(root->fs_info->sb);
|
|
|
|
WARN_ON(cur_trans != info->running_transaction);
|
|
WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
|
|
atomic_dec(&cur_trans->num_writers);
|
|
|
|
smp_mb();
|
|
if (waitqueue_active(&cur_trans->writer_wait))
|
|
wake_up(&cur_trans->writer_wait);
|
|
put_transaction(cur_trans);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
if (throttle)
|
|
btrfs_run_delayed_iputs(root);
|
|
|
|
if (trans->aborted ||
|
|
root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
|
|
err = -EIO;
|
|
}
|
|
assert_qgroups_uptodate(trans);
|
|
|
|
memset(trans, 0, sizeof(*trans));
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
return err;
|
|
}
|
|
|
|
int btrfs_end_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
ret = __btrfs_end_transaction(trans, root, 0);
|
|
if (ret)
|
|
return ret;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
ret = __btrfs_end_transaction(trans, root, 1);
|
|
if (ret)
|
|
return ret;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
return __btrfs_end_transaction(trans, root, 1);
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are sent to disk but does not wait on them
|
|
*/
|
|
int btrfs_write_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages, int mark)
|
|
{
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
mark, &cached_state)) {
|
|
convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
|
|
mark, &cached_state, GFP_NOFS);
|
|
cached_state = NULL;
|
|
err = filemap_fdatawrite_range(mapping, start, end);
|
|
if (err)
|
|
werr = err;
|
|
cond_resched();
|
|
start = end + 1;
|
|
}
|
|
if (err)
|
|
werr = err;
|
|
return werr;
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are on disk for transaction or log commit. We wait
|
|
* on all the pages and clear them from the dirty pages state tree
|
|
*/
|
|
int btrfs_wait_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages, int mark)
|
|
{
|
|
int err = 0;
|
|
int werr = 0;
|
|
struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
|
|
struct extent_state *cached_state = NULL;
|
|
u64 start = 0;
|
|
u64 end;
|
|
|
|
while (!find_first_extent_bit(dirty_pages, start, &start, &end,
|
|
EXTENT_NEED_WAIT, &cached_state)) {
|
|
clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
|
|
0, 0, &cached_state, GFP_NOFS);
|
|
err = filemap_fdatawait_range(mapping, start, end);
|
|
if (err)
|
|
werr = err;
|
|
cond_resched();
|
|
start = end + 1;
|
|
}
|
|
if (err)
|
|
werr = err;
|
|
return werr;
|
|
}
|
|
|
|
/*
|
|
* when btree blocks are allocated, they have some corresponding bits set for
|
|
* them in one of two extent_io trees. This is used to make sure all of
|
|
* those extents are on disk for transaction or log commit
|
|
*/
|
|
int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
|
|
struct extent_io_tree *dirty_pages, int mark)
|
|
{
|
|
int ret;
|
|
int ret2;
|
|
|
|
ret = btrfs_write_marked_extents(root, dirty_pages, mark);
|
|
ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
|
|
|
|
if (ret)
|
|
return ret;
|
|
if (ret2)
|
|
return ret2;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
if (!trans || !trans->transaction) {
|
|
struct inode *btree_inode;
|
|
btree_inode = root->fs_info->btree_inode;
|
|
return filemap_write_and_wait(btree_inode->i_mapping);
|
|
}
|
|
return btrfs_write_and_wait_marked_extents(root,
|
|
&trans->transaction->dirty_pages,
|
|
EXTENT_DIRTY);
|
|
}
|
|
|
|
/*
|
|
* this is used to update the root pointer in the tree of tree roots.
|
|
*
|
|
* But, in the case of the extent allocation tree, updating the root
|
|
* pointer may allocate blocks which may change the root of the extent
|
|
* allocation tree.
|
|
*
|
|
* So, this loops and repeats and makes sure the cowonly root didn't
|
|
* change while the root pointer was being updated in the metadata.
|
|
*/
|
|
static int update_cowonly_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
u64 old_root_bytenr;
|
|
u64 old_root_used;
|
|
struct btrfs_root *tree_root = root->fs_info->tree_root;
|
|
|
|
old_root_used = btrfs_root_used(&root->root_item);
|
|
btrfs_write_dirty_block_groups(trans, root);
|
|
|
|
while (1) {
|
|
old_root_bytenr = btrfs_root_bytenr(&root->root_item);
|
|
if (old_root_bytenr == root->node->start &&
|
|
old_root_used == btrfs_root_used(&root->root_item))
|
|
break;
|
|
|
|
btrfs_set_root_node(&root->root_item, root->node);
|
|
ret = btrfs_update_root(trans, tree_root,
|
|
&root->root_key,
|
|
&root->root_item);
|
|
if (ret)
|
|
return ret;
|
|
|
|
old_root_used = btrfs_root_used(&root->root_item);
|
|
ret = btrfs_write_dirty_block_groups(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (root != root->fs_info->extent_root)
|
|
switch_commit_root(root);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* update all the cowonly tree roots on disk
|
|
*
|
|
* The error handling in this function may not be obvious. Any of the
|
|
* failures will cause the file system to go offline. We still need
|
|
* to clean up the delayed refs.
|
|
*/
|
|
static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct list_head *next;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
eb = btrfs_lock_root_node(fs_info->tree_root);
|
|
ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
|
|
0, &eb);
|
|
btrfs_tree_unlock(eb);
|
|
free_extent_buffer(eb);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_run_dev_stats(trans, root->fs_info);
|
|
WARN_ON(ret);
|
|
ret = btrfs_run_dev_replace(trans, root->fs_info);
|
|
WARN_ON(ret);
|
|
|
|
ret = btrfs_run_qgroups(trans, root->fs_info);
|
|
BUG_ON(ret);
|
|
|
|
/* run_qgroups might have added some more refs */
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
BUG_ON(ret);
|
|
|
|
while (!list_empty(&fs_info->dirty_cowonly_roots)) {
|
|
next = fs_info->dirty_cowonly_roots.next;
|
|
list_del_init(next);
|
|
root = list_entry(next, struct btrfs_root, dirty_list);
|
|
|
|
ret = update_cowonly_root(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
down_write(&fs_info->extent_commit_sem);
|
|
switch_commit_root(fs_info->extent_root);
|
|
up_write(&fs_info->extent_commit_sem);
|
|
|
|
btrfs_after_dev_replace_commit(fs_info);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* dead roots are old snapshots that need to be deleted. This allocates
|
|
* a dirty root struct and adds it into the list of dead roots that need to
|
|
* be deleted
|
|
*/
|
|
int btrfs_add_dead_root(struct btrfs_root *root)
|
|
{
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_add(&root->root_list, &root->fs_info->dead_roots);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* update all the cowonly tree roots on disk
|
|
*/
|
|
static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root *gang[8];
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int i;
|
|
int ret;
|
|
int err = 0;
|
|
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
while (1) {
|
|
ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
|
|
(void **)gang, 0,
|
|
ARRAY_SIZE(gang),
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
if (ret == 0)
|
|
break;
|
|
for (i = 0; i < ret; i++) {
|
|
root = gang[i];
|
|
radix_tree_tag_clear(&fs_info->fs_roots_radix,
|
|
(unsigned long)root->root_key.objectid,
|
|
BTRFS_ROOT_TRANS_TAG);
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
|
|
btrfs_free_log(trans, root);
|
|
btrfs_update_reloc_root(trans, root);
|
|
btrfs_orphan_commit_root(trans, root);
|
|
|
|
btrfs_save_ino_cache(root, trans);
|
|
|
|
/* see comments in should_cow_block() */
|
|
root->force_cow = 0;
|
|
smp_wmb();
|
|
|
|
if (root->commit_root != root->node) {
|
|
mutex_lock(&root->fs_commit_mutex);
|
|
switch_commit_root(root);
|
|
btrfs_unpin_free_ino(root);
|
|
mutex_unlock(&root->fs_commit_mutex);
|
|
|
|
btrfs_set_root_node(&root->root_item,
|
|
root->node);
|
|
}
|
|
|
|
err = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key,
|
|
&root->root_item);
|
|
spin_lock(&fs_info->fs_roots_radix_lock);
|
|
if (err)
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&fs_info->fs_roots_radix_lock);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* defrag a given btree. If cacheonly == 1, this won't read from the disk,
|
|
* otherwise every leaf in the btree is read and defragged.
|
|
*/
|
|
int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
if (xchg(&root->defrag_running, 1))
|
|
return 0;
|
|
|
|
while (1) {
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
ret = btrfs_defrag_leaves(trans, root, cacheonly);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
btrfs_btree_balance_dirty(info->tree_root);
|
|
cond_resched();
|
|
|
|
if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
|
|
break;
|
|
}
|
|
root->defrag_running = 0;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* new snapshots need to be created at a very specific time in the
|
|
* transaction commit. This does the actual creation
|
|
*/
|
|
static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info,
|
|
struct btrfs_pending_snapshot *pending)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *new_root_item;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root = pending->root;
|
|
struct btrfs_root *parent_root;
|
|
struct btrfs_block_rsv *rsv;
|
|
struct inode *parent_inode;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dir_item *dir_item;
|
|
struct dentry *parent;
|
|
struct dentry *dentry;
|
|
struct extent_buffer *tmp;
|
|
struct extent_buffer *old;
|
|
struct timespec cur_time = CURRENT_TIME;
|
|
int ret;
|
|
u64 to_reserve = 0;
|
|
u64 index = 0;
|
|
u64 objectid;
|
|
u64 root_flags;
|
|
uuid_le new_uuid;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = pending->error = -ENOMEM;
|
|
goto path_alloc_fail;
|
|
}
|
|
|
|
new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
|
|
if (!new_root_item) {
|
|
ret = pending->error = -ENOMEM;
|
|
goto root_item_alloc_fail;
|
|
}
|
|
|
|
ret = btrfs_find_free_objectid(tree_root, &objectid);
|
|
if (ret) {
|
|
pending->error = ret;
|
|
goto no_free_objectid;
|
|
}
|
|
|
|
btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
|
|
|
|
if (to_reserve > 0) {
|
|
ret = btrfs_block_rsv_add(root, &pending->block_rsv,
|
|
to_reserve,
|
|
BTRFS_RESERVE_NO_FLUSH);
|
|
if (ret) {
|
|
pending->error = ret;
|
|
goto no_free_objectid;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
|
|
objectid, pending->inherit);
|
|
if (ret) {
|
|
pending->error = ret;
|
|
goto no_free_objectid;
|
|
}
|
|
|
|
key.objectid = objectid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
|
|
rsv = trans->block_rsv;
|
|
trans->block_rsv = &pending->block_rsv;
|
|
|
|
dentry = pending->dentry;
|
|
parent = dget_parent(dentry);
|
|
parent_inode = parent->d_inode;
|
|
parent_root = BTRFS_I(parent_inode)->root;
|
|
record_root_in_trans(trans, parent_root);
|
|
|
|
/*
|
|
* insert the directory item
|
|
*/
|
|
ret = btrfs_set_inode_index(parent_inode, &index);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
|
|
/* check if there is a file/dir which has the same name. */
|
|
dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
|
|
btrfs_ino(parent_inode),
|
|
dentry->d_name.name,
|
|
dentry->d_name.len, 0);
|
|
if (dir_item != NULL && !IS_ERR(dir_item)) {
|
|
pending->error = -EEXIST;
|
|
goto fail;
|
|
} else if (IS_ERR(dir_item)) {
|
|
ret = PTR_ERR(dir_item);
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* pull in the delayed directory update
|
|
* and the delayed inode item
|
|
* otherwise we corrupt the FS during
|
|
* snapshot
|
|
*/
|
|
ret = btrfs_run_delayed_items(trans, root);
|
|
if (ret) { /* Transaction aborted */
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
record_root_in_trans(trans, root);
|
|
btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
|
|
memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
|
|
btrfs_check_and_init_root_item(new_root_item);
|
|
|
|
root_flags = btrfs_root_flags(new_root_item);
|
|
if (pending->readonly)
|
|
root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
|
|
else
|
|
root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
|
|
btrfs_set_root_flags(new_root_item, root_flags);
|
|
|
|
btrfs_set_root_generation_v2(new_root_item,
|
|
trans->transid);
|
|
uuid_le_gen(&new_uuid);
|
|
memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
|
|
memcpy(new_root_item->parent_uuid, root->root_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
|
|
new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
|
|
btrfs_set_root_otransid(new_root_item, trans->transid);
|
|
memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
|
|
memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
|
|
btrfs_set_root_stransid(new_root_item, 0);
|
|
btrfs_set_root_rtransid(new_root_item, 0);
|
|
|
|
old = btrfs_lock_root_node(root);
|
|
ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
|
|
if (ret) {
|
|
btrfs_tree_unlock(old);
|
|
free_extent_buffer(old);
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_set_lock_blocking(old);
|
|
|
|
ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
|
|
/* clean up in any case */
|
|
btrfs_tree_unlock(old);
|
|
free_extent_buffer(old);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/* see comments in should_cow_block() */
|
|
root->force_cow = 1;
|
|
smp_wmb();
|
|
|
|
btrfs_set_root_node(new_root_item, tmp);
|
|
/* record when the snapshot was created in key.offset */
|
|
key.offset = trans->transid;
|
|
ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
|
|
btrfs_tree_unlock(tmp);
|
|
free_extent_buffer(tmp);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* insert root back/forward references
|
|
*/
|
|
ret = btrfs_add_root_ref(trans, tree_root, objectid,
|
|
parent_root->root_key.objectid,
|
|
btrfs_ino(parent_inode), index,
|
|
dentry->d_name.name, dentry->d_name.len);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
key.offset = (u64)-1;
|
|
pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
|
|
if (IS_ERR(pending->snap)) {
|
|
ret = PTR_ERR(pending->snap);
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_reloc_post_snapshot(trans, pending);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = btrfs_insert_dir_item(trans, parent_root,
|
|
dentry->d_name.name, dentry->d_name.len,
|
|
parent_inode, &key,
|
|
BTRFS_FT_DIR, index);
|
|
/* We have check then name at the beginning, so it is impossible. */
|
|
BUG_ON(ret == -EEXIST);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto fail;
|
|
}
|
|
|
|
btrfs_i_size_write(parent_inode, parent_inode->i_size +
|
|
dentry->d_name.len * 2);
|
|
parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
|
|
ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
fail:
|
|
dput(parent);
|
|
trans->block_rsv = rsv;
|
|
no_free_objectid:
|
|
kfree(new_root_item);
|
|
root_item_alloc_fail:
|
|
btrfs_free_path(path);
|
|
path_alloc_fail:
|
|
btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* create all the snapshots we've scheduled for creation
|
|
*/
|
|
static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_pending_snapshot *pending;
|
|
struct list_head *head = &trans->transaction->pending_snapshots;
|
|
|
|
list_for_each_entry(pending, head, list)
|
|
create_pending_snapshot(trans, fs_info, pending);
|
|
return 0;
|
|
}
|
|
|
|
static void update_super_roots(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_super_block *super;
|
|
|
|
super = root->fs_info->super_copy;
|
|
|
|
root_item = &root->fs_info->chunk_root->root_item;
|
|
super->chunk_root = root_item->bytenr;
|
|
super->chunk_root_generation = root_item->generation;
|
|
super->chunk_root_level = root_item->level;
|
|
|
|
root_item = &root->fs_info->tree_root->root_item;
|
|
super->root = root_item->bytenr;
|
|
super->generation = root_item->generation;
|
|
super->root_level = root_item->level;
|
|
if (btrfs_test_opt(root, SPACE_CACHE))
|
|
super->cache_generation = root_item->generation;
|
|
}
|
|
|
|
int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
|
|
{
|
|
int ret = 0;
|
|
spin_lock(&info->trans_lock);
|
|
if (info->running_transaction)
|
|
ret = info->running_transaction->in_commit;
|
|
spin_unlock(&info->trans_lock);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_transaction_blocked(struct btrfs_fs_info *info)
|
|
{
|
|
int ret = 0;
|
|
spin_lock(&info->trans_lock);
|
|
if (info->running_transaction)
|
|
ret = info->running_transaction->blocked;
|
|
spin_unlock(&info->trans_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* wait for the current transaction commit to start and block subsequent
|
|
* transaction joins
|
|
*/
|
|
static void wait_current_trans_commit_start(struct btrfs_root *root,
|
|
struct btrfs_transaction *trans)
|
|
{
|
|
wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
|
|
}
|
|
|
|
/*
|
|
* wait for the current transaction to start and then become unblocked.
|
|
* caller holds ref.
|
|
*/
|
|
static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
|
|
struct btrfs_transaction *trans)
|
|
{
|
|
wait_event(root->fs_info->transaction_wait,
|
|
trans->commit_done || (trans->in_commit && !trans->blocked));
|
|
}
|
|
|
|
/*
|
|
* commit transactions asynchronously. once btrfs_commit_transaction_async
|
|
* returns, any subsequent transaction will not be allowed to join.
|
|
*/
|
|
struct btrfs_async_commit {
|
|
struct btrfs_trans_handle *newtrans;
|
|
struct btrfs_root *root;
|
|
struct delayed_work work;
|
|
};
|
|
|
|
static void do_async_commit(struct work_struct *work)
|
|
{
|
|
struct btrfs_async_commit *ac =
|
|
container_of(work, struct btrfs_async_commit, work.work);
|
|
|
|
/*
|
|
* We've got freeze protection passed with the transaction.
|
|
* Tell lockdep about it.
|
|
*/
|
|
if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
|
|
rwsem_acquire_read(
|
|
&ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
|
|
0, 1, _THIS_IP_);
|
|
|
|
current->journal_info = ac->newtrans;
|
|
|
|
btrfs_commit_transaction(ac->newtrans, ac->root);
|
|
kfree(ac);
|
|
}
|
|
|
|
int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
int wait_for_unblock)
|
|
{
|
|
struct btrfs_async_commit *ac;
|
|
struct btrfs_transaction *cur_trans;
|
|
|
|
ac = kmalloc(sizeof(*ac), GFP_NOFS);
|
|
if (!ac)
|
|
return -ENOMEM;
|
|
|
|
INIT_DELAYED_WORK(&ac->work, do_async_commit);
|
|
ac->root = root;
|
|
ac->newtrans = btrfs_join_transaction(root);
|
|
if (IS_ERR(ac->newtrans)) {
|
|
int err = PTR_ERR(ac->newtrans);
|
|
kfree(ac);
|
|
return err;
|
|
}
|
|
|
|
/* take transaction reference */
|
|
cur_trans = trans->transaction;
|
|
atomic_inc(&cur_trans->use_count);
|
|
|
|
btrfs_end_transaction(trans, root);
|
|
|
|
/*
|
|
* Tell lockdep we've released the freeze rwsem, since the
|
|
* async commit thread will be the one to unlock it.
|
|
*/
|
|
if (trans->type < TRANS_JOIN_NOLOCK)
|
|
rwsem_release(
|
|
&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
|
|
1, _THIS_IP_);
|
|
|
|
schedule_delayed_work(&ac->work, 0);
|
|
|
|
/* wait for transaction to start and unblock */
|
|
if (wait_for_unblock)
|
|
wait_current_trans_commit_start_and_unblock(root, cur_trans);
|
|
else
|
|
wait_current_trans_commit_start(root, cur_trans);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
put_transaction(cur_trans);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void cleanup_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int err)
|
|
{
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
|
|
WARN_ON(trans->use_count > 1);
|
|
|
|
btrfs_abort_transaction(trans, root, err);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_del_init(&cur_trans->list);
|
|
if (cur_trans == root->fs_info->running_transaction) {
|
|
root->fs_info->running_transaction = NULL;
|
|
root->fs_info->trans_no_join = 0;
|
|
}
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
btrfs_cleanup_one_transaction(trans->transaction, root);
|
|
|
|
put_transaction(cur_trans);
|
|
put_transaction(cur_trans);
|
|
|
|
trace_btrfs_transaction_commit(root);
|
|
|
|
btrfs_scrub_continue(root);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
}
|
|
|
|
static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
|
|
int snap_pending = 0;
|
|
int ret;
|
|
|
|
if (!flush_on_commit) {
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
if (!list_empty(&trans->transaction->pending_snapshots))
|
|
snap_pending = 1;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
}
|
|
|
|
if (flush_on_commit || snap_pending) {
|
|
btrfs_start_delalloc_inodes(root, 1);
|
|
btrfs_wait_ordered_extents(root, 1);
|
|
}
|
|
|
|
ret = btrfs_run_delayed_items(trans, root);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* running the delayed items may have added new refs. account
|
|
* them now so that they hinder processing of more delayed refs
|
|
* as little as possible.
|
|
*/
|
|
btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
|
|
|
|
/*
|
|
* rename don't use btrfs_join_transaction, so, once we
|
|
* set the transaction to blocked above, we aren't going
|
|
* to get any new ordered operations. We can safely run
|
|
* it here and no for sure that nothing new will be added
|
|
* to the list
|
|
*/
|
|
btrfs_run_ordered_operations(root, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* btrfs_transaction state sequence:
|
|
* in_commit = 0, blocked = 0 (initial)
|
|
* in_commit = 1, blocked = 1
|
|
* blocked = 0
|
|
* commit_done = 1
|
|
*/
|
|
int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
unsigned long joined = 0;
|
|
struct btrfs_transaction *cur_trans = trans->transaction;
|
|
struct btrfs_transaction *prev_trans = NULL;
|
|
DEFINE_WAIT(wait);
|
|
int ret;
|
|
int should_grow = 0;
|
|
unsigned long now = get_seconds();
|
|
|
|
ret = btrfs_run_ordered_operations(root, 0);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, root, ret);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
if (cur_trans->aborted) {
|
|
ret = cur_trans->aborted;
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/* make a pass through all the delayed refs we have so far
|
|
* any runnings procs may add more while we are here
|
|
*/
|
|
ret = btrfs_run_delayed_refs(trans, root, 0);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
btrfs_trans_release_metadata(trans, root);
|
|
trans->block_rsv = NULL;
|
|
|
|
cur_trans = trans->transaction;
|
|
|
|
/*
|
|
* set the flushing flag so procs in this transaction have to
|
|
* start sending their work down.
|
|
*/
|
|
cur_trans->delayed_refs.flushing = 1;
|
|
|
|
if (!list_empty(&trans->new_bgs))
|
|
btrfs_create_pending_block_groups(trans, root);
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, 0);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
spin_lock(&cur_trans->commit_lock);
|
|
if (cur_trans->in_commit) {
|
|
spin_unlock(&cur_trans->commit_lock);
|
|
atomic_inc(&cur_trans->use_count);
|
|
ret = btrfs_end_transaction(trans, root);
|
|
|
|
wait_for_commit(root, cur_trans);
|
|
|
|
put_transaction(cur_trans);
|
|
|
|
return ret;
|
|
}
|
|
|
|
trans->transaction->in_commit = 1;
|
|
trans->transaction->blocked = 1;
|
|
spin_unlock(&cur_trans->commit_lock);
|
|
wake_up(&root->fs_info->transaction_blocked_wait);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
if (cur_trans->list.prev != &root->fs_info->trans_list) {
|
|
prev_trans = list_entry(cur_trans->list.prev,
|
|
struct btrfs_transaction, list);
|
|
if (!prev_trans->commit_done) {
|
|
atomic_inc(&prev_trans->use_count);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
wait_for_commit(root, prev_trans);
|
|
|
|
put_transaction(prev_trans);
|
|
} else {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
}
|
|
} else {
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
}
|
|
|
|
if (!btrfs_test_opt(root, SSD) &&
|
|
(now < cur_trans->start_time || now - cur_trans->start_time < 1))
|
|
should_grow = 1;
|
|
|
|
do {
|
|
joined = cur_trans->num_joined;
|
|
|
|
WARN_ON(cur_trans != trans->transaction);
|
|
|
|
ret = btrfs_flush_all_pending_stuffs(trans, root);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
prepare_to_wait(&cur_trans->writer_wait, &wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
if (atomic_read(&cur_trans->num_writers) > 1)
|
|
schedule_timeout(MAX_SCHEDULE_TIMEOUT);
|
|
else if (should_grow)
|
|
schedule_timeout(1);
|
|
|
|
finish_wait(&cur_trans->writer_wait, &wait);
|
|
} while (atomic_read(&cur_trans->num_writers) > 1 ||
|
|
(should_grow && cur_trans->num_joined != joined));
|
|
|
|
ret = btrfs_flush_all_pending_stuffs(trans, root);
|
|
if (ret)
|
|
goto cleanup_transaction;
|
|
|
|
/*
|
|
* Ok now we need to make sure to block out any other joins while we
|
|
* commit the transaction. We could have started a join before setting
|
|
* no_join so make sure to wait for num_writers to == 1 again.
|
|
*/
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
root->fs_info->trans_no_join = 1;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
wait_event(cur_trans->writer_wait,
|
|
atomic_read(&cur_trans->num_writers) == 1);
|
|
|
|
/*
|
|
* the reloc mutex makes sure that we stop
|
|
* the balancing code from coming in and moving
|
|
* extents around in the middle of the commit
|
|
*/
|
|
mutex_lock(&root->fs_info->reloc_mutex);
|
|
|
|
/*
|
|
* We needn't worry about the delayed items because we will
|
|
* deal with them in create_pending_snapshot(), which is the
|
|
* core function of the snapshot creation.
|
|
*/
|
|
ret = create_pending_snapshots(trans, root->fs_info);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/*
|
|
* We insert the dir indexes of the snapshots and update the inode
|
|
* of the snapshots' parents after the snapshot creation, so there
|
|
* are some delayed items which are not dealt with. Now deal with
|
|
* them.
|
|
*
|
|
* We needn't worry that this operation will corrupt the snapshots,
|
|
* because all the tree which are snapshoted will be forced to COW
|
|
* the nodes and leaves.
|
|
*/
|
|
ret = btrfs_run_delayed_items(trans, root);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/*
|
|
* make sure none of the code above managed to slip in a
|
|
* delayed item
|
|
*/
|
|
btrfs_assert_delayed_root_empty(root);
|
|
|
|
WARN_ON(cur_trans != trans->transaction);
|
|
|
|
btrfs_scrub_pause(root);
|
|
/* btrfs_commit_tree_roots is responsible for getting the
|
|
* various roots consistent with each other. Every pointer
|
|
* in the tree of tree roots has to point to the most up to date
|
|
* root for every subvolume and other tree. So, we have to keep
|
|
* the tree logging code from jumping in and changing any
|
|
* of the trees.
|
|
*
|
|
* At this point in the commit, there can't be any tree-log
|
|
* writers, but a little lower down we drop the trans mutex
|
|
* and let new people in. By holding the tree_log_mutex
|
|
* from now until after the super is written, we avoid races
|
|
* with the tree-log code.
|
|
*/
|
|
mutex_lock(&root->fs_info->tree_log_mutex);
|
|
|
|
ret = commit_fs_roots(trans, root);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/* commit_fs_roots gets rid of all the tree log roots, it is now
|
|
* safe to free the root of tree log roots
|
|
*/
|
|
btrfs_free_log_root_tree(trans, root->fs_info);
|
|
|
|
ret = commit_cowonly_roots(trans, root);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
btrfs_prepare_extent_commit(trans, root);
|
|
|
|
cur_trans = root->fs_info->running_transaction;
|
|
|
|
btrfs_set_root_node(&root->fs_info->tree_root->root_item,
|
|
root->fs_info->tree_root->node);
|
|
switch_commit_root(root->fs_info->tree_root);
|
|
|
|
btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
|
|
root->fs_info->chunk_root->node);
|
|
switch_commit_root(root->fs_info->chunk_root);
|
|
|
|
assert_qgroups_uptodate(trans);
|
|
update_super_roots(root);
|
|
|
|
if (!root->fs_info->log_root_recovering) {
|
|
btrfs_set_super_log_root(root->fs_info->super_copy, 0);
|
|
btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
|
|
}
|
|
|
|
memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
|
|
sizeof(*root->fs_info->super_copy));
|
|
|
|
trans->transaction->blocked = 0;
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
root->fs_info->running_transaction = NULL;
|
|
root->fs_info->trans_no_join = 0;
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
mutex_unlock(&root->fs_info->reloc_mutex);
|
|
|
|
wake_up(&root->fs_info->transaction_wait);
|
|
|
|
ret = btrfs_write_and_wait_transaction(trans, root);
|
|
if (ret) {
|
|
btrfs_error(root->fs_info, ret,
|
|
"Error while writing out transaction.");
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
ret = write_ctree_super(trans, root, 0);
|
|
if (ret) {
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
goto cleanup_transaction;
|
|
}
|
|
|
|
/*
|
|
* the super is written, we can safely allow the tree-loggers
|
|
* to go about their business
|
|
*/
|
|
mutex_unlock(&root->fs_info->tree_log_mutex);
|
|
|
|
btrfs_finish_extent_commit(trans, root);
|
|
|
|
cur_trans->commit_done = 1;
|
|
|
|
root->fs_info->last_trans_committed = cur_trans->transid;
|
|
|
|
wake_up(&cur_trans->commit_wait);
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
list_del_init(&cur_trans->list);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
|
|
put_transaction(cur_trans);
|
|
put_transaction(cur_trans);
|
|
|
|
if (trans->type < TRANS_JOIN_NOLOCK)
|
|
sb_end_intwrite(root->fs_info->sb);
|
|
|
|
trace_btrfs_transaction_commit(root);
|
|
|
|
btrfs_scrub_continue(root);
|
|
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
|
|
kmem_cache_free(btrfs_trans_handle_cachep, trans);
|
|
|
|
if (current != root->fs_info->transaction_kthread)
|
|
btrfs_run_delayed_iputs(root);
|
|
|
|
return ret;
|
|
|
|
cleanup_transaction:
|
|
btrfs_trans_release_metadata(trans, root);
|
|
trans->block_rsv = NULL;
|
|
btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
|
|
// WARN_ON(1);
|
|
if (current->journal_info == trans)
|
|
current->journal_info = NULL;
|
|
cleanup_transaction(trans, root, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* interface function to delete all the snapshots we have scheduled for deletion
|
|
*/
|
|
int btrfs_clean_old_snapshots(struct btrfs_root *root)
|
|
{
|
|
LIST_HEAD(list);
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
spin_lock(&fs_info->trans_lock);
|
|
list_splice_init(&fs_info->dead_roots, &list);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
while (!list_empty(&list)) {
|
|
int ret;
|
|
|
|
root = list_entry(list.next, struct btrfs_root, root_list);
|
|
list_del(&root->root_list);
|
|
|
|
btrfs_kill_all_delayed_nodes(root);
|
|
|
|
if (btrfs_header_backref_rev(root->node) <
|
|
BTRFS_MIXED_BACKREF_REV)
|
|
ret = btrfs_drop_snapshot(root, NULL, 0, 0);
|
|
else
|
|
ret =btrfs_drop_snapshot(root, NULL, 1, 0);
|
|
BUG_ON(ret < 0);
|
|
}
|
|
return 0;
|
|
}
|