xxHash/xxh3.h
Yann Collet d9b65e78e1 added test case for #222
and a simpler fix : just init bufferedSize to 0 after consumption.
2019-07-03 14:23:43 -07:00

1257 lines
48 KiB
C

/*
xxHash - Extremely Fast Hash algorithm
Development source file for `xxh3`
Copyright (C) 2019-present, Yann Collet.
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
You can contact the author at :
- xxHash source repository : https://github.com/Cyan4973/xxHash
*/
/* Note :
This file is separated for development purposes.
It will be integrated into `xxhash.c` when development phase is complete.
*/
#ifndef XXH3_H
#define XXH3_H
/* === Dependencies === */
#undef XXH_INLINE_ALL /* in case it's already defined */
#define XXH_INLINE_ALL
#include "xxhash.h"
#undef NDEBUG /* avoid redefinition */
#define NDEBUG /* disable assert (release mode) */
#include <assert.h>
#ifndef NDEBUG
# define NDEBUG
# define UNDEF_NDEBUG
# include <assert.h>
#endif
/* === Compiler specifics === */
#if !(defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) /* < C99 */
# define restrict /* disable */
#endif
#if defined(__GNUC__)
# if defined(__AVX2__)
# include <immintrin.h>
# elif defined(__SSE2__)
# include <emmintrin.h>
# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
# define inline __inline__ /* clang bug */
# include <arm_neon.h>
# undef inline
# endif
#elif defined(_MSC_VER)
# include <intrin.h>
#endif
/* ==========================================
* Vectorization detection
* ========================================== */
#define XXH_SCALAR 0
#define XXH_SSE2 1
#define XXH_AVX2 2
#define XXH_NEON 3
#define XXH_VSX 4
#ifndef XXH_VECTOR /* can be defined on command line */
# if defined(__AVX2__)
# define XXH_VECTOR XXH_AVX2
# elif defined(__SSE2__) || defined(_M_AMD64) || defined(_M_X64) || (defined(_M_IX86_FP) && (_M_IX86_FP == 2))
# define XXH_VECTOR XXH_SSE2
# elif defined(__GNUC__) /* msvc support maybe later */ \
&& (defined(__ARM_NEON__) || defined(__ARM_NEON)) \
&& defined(__LITTLE_ENDIAN__) /* ARM big endian is a thing */
# define XXH_VECTOR XXH_NEON
# elif defined(__PPC64__) && defined(__VSX__) && defined(__GNUC__)
# define XXH_VECTOR XXH_VSX
# else
# define XXH_VECTOR XXH_SCALAR
# endif
#endif
/* control alignment of accumulator,
* for compatibility with fast vector loads */
#ifndef XXH_ACC_ALIGN
# if XXH_VECTOR == 0 /* scalar */
# define XXH_ACC_ALIGN 8
# elif XXH_VECTOR == 1 /* sse2 */
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == 2 /* avx2 */
# define XXH_ACC_ALIGN 32
# elif XXH_VECTOR == 3 /* neon */
# define XXH_ACC_ALIGN 16
# elif XXH_VECTOR == 4 /* vsx */
# define XXH_ACC_ALIGN 16
# endif
#endif
/* U64 XXH_mult32to64(U32 a, U64 b) { return (U64)a * (U64)b; } */
#ifdef _MSC_VER
# include <intrin.h>
/* MSVC doesn't do a good job with the mull detection. */
# define XXH_mult32to64 __emulu
#else
# define XXH_mult32to64(x, y) ((U64)((x) & 0xFFFFFFFF) * (U64)((y) & 0xFFFFFFFF))
#endif
/* VSX stuff */
#if XXH_VECTOR == XXH_VSX
# include <altivec.h>
# undef vector
typedef __vector unsigned long long U64x2;
typedef __vector unsigned U32x4;
/* Adapted from https://github.com/google/highwayhash/blob/master/highwayhash/hh_vsx.h. */
XXH_FORCE_INLINE U64x2 XXH_vsxMultOdd(U32x4 a, U32x4 b) {
U64x2 result;
__asm__("vmulouw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
return result;
}
XXH_FORCE_INLINE U64x2 XXH_vsxMultEven(U32x4 a, U32x4 b) {
U64x2 result;
__asm__("vmuleuw %0, %1, %2" : "=v" (result) : "v" (a), "v" (b));
return result;
}
#endif
/* ==========================================
* XXH3 default settings
* ========================================== */
#define XXH_SECRET_DEFAULT_SIZE 192 /* minimum XXH3_SECRET_SIZE_MIN */
#if (XXH_SECRET_DEFAULT_SIZE < XXH3_SECRET_SIZE_MIN)
# error "default keyset is not large enough"
#endif
XXH_ALIGN(64) static const BYTE kSecret[XXH_SECRET_DEFAULT_SIZE] = {
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
};
#if defined(__GNUC__) && defined(__i386__)
/* GCC is stupid and tries to vectorize this.
* This tells GCC that it is wrong. */
__attribute__((__target__("no-sse")))
#endif
static U64
XXH3_mul128_fold64(U64 ll1, U64 ll2)
{
#if defined(__SIZEOF_INT128__) || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
__uint128_t lll = (__uint128_t)ll1 * ll2;
return (U64)lll ^ (U64)(lll >> 64);
#elif defined(_M_X64) || defined(_M_IA64)
#ifndef _MSC_VER
# pragma intrinsic(_umul128)
#endif
U64 llhigh;
U64 const lllow = _umul128(ll1, ll2, &llhigh);
return lllow ^ llhigh;
/* We have to do it out manually on 32-bit.
* This is a modified, unrolled, widened, and optimized version of the
* mulqdu routine from Hacker's Delight.
*
* https://www.hackersdelight.org/hdcodetxt/mulqdu.c.txt
*
* This was modified to use U32->U64 multiplication instead
* of U16->U32, to add the high and low values in the end,
* be endian-independent, and I added a partial assembly
* implementation for ARM. */
/* An easy 128-bit folding multiply on ARMv6T2 and ARMv7-A/R can be done with
* the mighty umaal (Unsigned Multiply Accumulate Accumulate Long) which takes 4 cycles
* or less, doing a long multiply and adding two 32-bit integers:
*
* void umaal(U32 *RdLo, U32 *RdHi, U32 Rn, U32 Rm)
* {
* U64 prodAcc = (U64)Rn * (U64)Rm;
* prodAcc += *RdLo;
* prodAcc += *RdHi;
* *RdLo = prodAcc & 0xFFFFFFFF;
* *RdHi = prodAcc >> 32;
* }
*
* This is compared to umlal which adds to a single 64-bit integer:
*
* void umlal(U32 *RdLo, U32 *RdHi, U32 Rn, U32 Rm)
* {
* U64 prodAcc = (U64)Rn * (U64)Rm;
* prodAcc += (*RdLo | ((U64)*RdHi << 32);
* *RdLo = prodAcc & 0xFFFFFFFF;
* *RdHi = prodAcc >> 32;
* }
*
* Getting the compiler to emit them is like pulling teeth, and checking
* for it is annoying because ARMv7-M lacks this instruction. However, it
* is worth it, because this is an otherwise expensive operation. */
/* GCC-compatible, ARMv6t2 or ARMv7+, non-M variant, and 32-bit */
#elif defined(__GNUC__) /* GCC-compatible */ \
&& defined(__ARM_ARCH) && !defined(__aarch64__) && !defined(__arm64__) /* 32-bit ARM */\
&& !defined(__ARM_ARCH_7M__) /* <- Not ARMv7-M vv*/ \
&& !(defined(__TARGET_ARCH_ARM) && __TARGET_ARCH_ARM == 0 && __TARGET_ARCH_THUMB == 4) \
&& (defined(__ARM_ARCH_6T2__) || __ARM_ARCH > 6) /* ARMv6T2 or later */
U32 w[4] = { 0 };
U32 u[2] = { (U32)(ll1 >> 32), (U32)ll1 };
U32 v[2] = { (U32)(ll2 >> 32), (U32)ll2 };
U32 k;
/* U64 t = (U64)u[1] * (U64)v[1];
* w[3] = t & 0xFFFFFFFF;
* k = t >> 32; */
__asm__("umull %0, %1, %2, %3"
: "=r" (w[3]), "=r" (k)
: "r" (u[1]), "r" (v[1]));
/* t = (U64)u[0] * (U64)v[1] + w[2] + k;
* w[2] = t & 0xFFFFFFFF;
* k = t >> 32; */
__asm__("umaal %0, %1, %2, %3"
: "+r" (w[2]), "+r" (k)
: "r" (u[0]), "r" (v[1]));
w[1] = k;
k = 0;
/* t = (U64)u[1] * (U64)v[0] + w[2] + k;
* w[2] = t & 0xFFFFFFFF;
* k = t >> 32; */
__asm__("umaal %0, %1, %2, %3"
: "+r" (w[2]), "+r" (k)
: "r" (u[1]), "r" (v[0]));
/* t = (U64)u[0] * (U64)v[0] + w[1] + k;
* w[1] = t & 0xFFFFFFFF;
* k = t >> 32; */
__asm__("umaal %0, %1, %2, %3"
: "+r" (w[1]), "+r" (k)
: "r" (u[0]), "r" (v[0]));
w[0] = k;
return (w[1] | ((U64)w[0] << 32)) ^ (w[3] | ((U64)w[2] << 32));
#else /* Portable scalar version */
/* emulate 64x64->128b multiplication, using four 32x32->64 */
U32 const h1 = (U32)(ll1 >> 32);
U32 const h2 = (U32)(ll2 >> 32);
U32 const l1 = (U32)ll1;
U32 const l2 = (U32)ll2;
U64 const llh = XXH_mult32to64(h1, h2);
U64 const llm1 = XXH_mult32to64(l1, h2);
U64 const llm2 = XXH_mult32to64(h1, l2);
U64 const lll = XXH_mult32to64(l1, l2);
U64 const t = lll + (llm1 << 32);
U64 const carry1 = t < lll;
U64 const lllow = t + (llm2 << 32);
U64 const carry2 = lllow < t;
U64 const llhigh = llh + (llm1 >> 32) + (llm2 >> 32) + carry1 + carry2;
return llhigh ^ lllow;
#endif
}
static XXH64_hash_t XXH3_avalanche(U64 h64)
{
h64 ^= h64 >> 37;
h64 *= PRIME64_3;
h64 ^= h64 >> 32;
return h64;
}
/* ==========================================
* Short keys
* ========================================== */
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_1to3_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
{
assert(data != NULL);
assert(len > 1 && len <= 3);
assert(keyPtr != NULL);
{ BYTE const c1 = ((const BYTE*)data)[0];
BYTE const c2 = ((const BYTE*)data)[len >> 1];
BYTE const c3 = ((const BYTE*)data)[len - 1];
U32 const combined = ((U32)c1) + (((U32)c2) << 8) + (((U32)c3) << 16) + (((U32)len) << 24);
U64 const keyed = (U64)combined ^ (XXH_readLE32(keyPtr) + seed);
U64 const mixed = keyed * PRIME64_1;
return XXH3_avalanche(mixed);
}
}
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_4to8_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
{
assert(data != NULL);
assert(key != NULL);
assert(len >= 4 && len <= 8);
{ U32 const in1 = XXH_readLE32(data);
U32 const in2 = XXH_readLE32((const BYTE*)data + len - 4);
U64 const in64 = in1 + ((U64)in2 << 32);
U64 const keyed = in64 ^ (XXH_readLE64(keyPtr) + seed);
U64 const mix64 = len + ((keyed ^ (keyed >> 51)) * PRIME32_1);
return XXH3_avalanche((mix64 ^ (mix64 >> 47)) * PRIME64_2);
}
}
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_9to16_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
{
assert(data != NULL);
assert(key != NULL);
assert(len >= 9 && len <= 16);
{ const U64* const key64 = (const U64*) keyPtr;
U64 const ll1 = XXH_readLE64(data) ^ (XXH_readLE64(key64) + seed);
U64 const ll2 = XXH_readLE64((const BYTE*)data + len - 8) ^ (XXH_readLE64(key64+1) - seed);
U64 const acc = len + (ll1 + ll2) + XXH3_mul128_fold64(ll1, ll2);
return XXH3_avalanche(acc);
}
}
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_0to16_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
{
assert(data != NULL);
assert(len <= 16);
{ if (len > 8) return XXH3_len_9to16_64b(data, len, keyPtr, seed);
if (len >= 4) return XXH3_len_4to8_64b(data, len, keyPtr, seed);
if (len) return XXH3_len_1to3_64b(data, len, keyPtr, seed);
return 0;
}
}
/* === Long Keys === */
#define STRIPE_LEN 64
#define XXH_SECRET_CONSUME_RATE 8 /* nb of secret bytes consumed at each accumulation */
#define ACC_NB (STRIPE_LEN / sizeof(U64))
XXH_FORCE_INLINE void
XXH3_accumulate_512(void* restrict acc, const void* restrict data, const void* restrict key)
{
#if (XXH_VECTOR == XXH_AVX2)
assert(((size_t)acc) & 31 == 0);
{ XXH_ALIGN(32) __m256i* const xacc = (__m256i *) acc;
const __m256i* const xdata = (const __m256i *) data; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
const __m256i* const xkey = (const __m256i *) key; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this type */
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
__m256i const d = _mm256_loadu_si256 (xdata+i);
__m256i const k = _mm256_loadu_si256 (xkey+i);
__m256i const dk = _mm256_xor_si256 (d,k); /* uint32 dk[8] = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
__m256i const mul = _mm256_mul_epu32 (dk, _mm256_shuffle_epi32 (dk, 0x31)); /* uint64 mul[4] = {dk0*dk1, dk2*dk3, ...} */
__m256i const add = _mm256_add_epi64(d, xacc[i]);
xacc[i] = _mm256_add_epi64(mul, add);
} }
#elif (XXH_VECTOR == XXH_SSE2)
assert(((size_t)acc) & 15 == 0);
{ XXH_ALIGN(16) __m128i* const xacc = (__m128i *) acc; /* presumed */
const __m128i* const xdata = (const __m128i *) data; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
const __m128i* const xkey = (const __m128i *) key; /* not really aligned, just for ptr arithmetic, and because _mm_loadu_si128() requires this type */
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
__m128i const d = _mm_loadu_si128 (xdata+i);
__m128i const k = _mm_loadu_si128 (xkey+i);
__m128i const dk = _mm_xor_si128 (d,k); /* uint32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */
__m128i const mul = _mm_mul_epu32 (dk, _mm_shuffle_epi32 (dk, 0x31)); /* uint64 mul[2] = {dk0*dk1,dk2*dk3} */
__m128i const add = _mm_add_epi64(d, xacc[i]);
xacc[i] = _mm_add_epi64(mul, add);
} }
#elif (XXH_VECTOR == XXH_NEON)
assert((((size_t)acc) & 15) == 0);
{
XXH_ALIGN(16) uint64x2_t* const xacc = (uint64x2_t *) acc;
/* We don't use a uint32x4_t pointer because it causes bus errors on ARMv7. */
uint32_t const* const xdata = (const uint32_t *) data;
uint32_t const* const xkey = (const uint32_t *) key;
size_t i;
for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
#if !defined(__aarch64__) && !defined(__arm64__) && defined(__GNUC__) /* ARM32-specific hack */
/* vzip on ARMv7 Clang generates a lot of vmovs (technically vorrs) without this.
* vzip on 32-bit ARM NEON will overwrite the original register, and I think that Clang
* assumes I don't want to destroy it and tries to make a copy. This slows down the code
* a lot.
* aarch64 not only uses an entirely different syntax, but it requires three
* instructions...
* ext v1.16B, v0.16B, #8 // select high bits because aarch64 can't address them directly
* zip1 v3.2s, v0.2s, v1.2s // first zip
* zip2 v2.2s, v0.2s, v1.2s // second zip
* ...to do what ARM does in one:
* vzip.32 d0, d1 // Interleave high and low bits and overwrite. */
/* data_vec = xdata[i]; */
uint32x4_t const data_vec = vld1q_u32(xdata + (i * 4));
/* key_vec = xkey[i]; */
uint32x4_t const key_vec = vld1q_u32(xkey + (i * 4));
/* data_key = data_vec ^ key_vec; */
uint32x4_t data_key;
/* Add first to prevent register swaps */
/* xacc[i] += data_vec; */
xacc[i] = vaddq_u64(xacc[i], vreinterpretq_u64_u32(data_vec));
data_key = veorq_u32(data_vec, key_vec);
/* Here's the magic. We use the quirkiness of vzip to shuffle data_key in place.
* shuffle: data_key[0, 1, 2, 3] = data_key[0, 2, 1, 3] */
__asm__("vzip.32 %e0, %f0" : "+w" (data_key));
/* xacc[i] += (uint64x2_t) data_key[0, 1] * (uint64x2_t) data_key[2, 3]; */
xacc[i] = vmlal_u32(xacc[i], vget_low_u32(data_key), vget_high_u32(data_key));
#else
/* On aarch64, vshrn/vmovn seems to be equivalent to, if not faster than, the vzip method. */
/* data_vec = xdata[i]; */
uint32x4_t const data_vec = vld1q_u32(xdata + (i * 4));
/* key_vec = xkey[i]; */
uint32x4_t const key_vec = vld1q_u32(xkey + (i * 4));
/* data_key = data_vec ^ key_vec; */
uint32x4_t const data_key = veorq_u32(data_vec, key_vec);
/* data_key_lo = (uint32x2_t) (data_key & 0xFFFFFFFF); */
uint32x2_t const data_key_lo = vmovn_u64 (vreinterpretq_u64_u32(data_key));
/* data_key_hi = (uint32x2_t) (data_key >> 32); */
uint32x2_t const data_key_hi = vshrn_n_u64 (vreinterpretq_u64_u32(data_key), 32);
/* xacc[i] += data_vec; */
xacc[i] = vaddq_u64 (xacc[i], vreinterpretq_u64_u32(data_vec));
/* xacc[i] += (uint64x2_t) data_key_lo * (uint64x2_t) data_key_hi; */
xacc[i] = vmlal_u32 (xacc[i], data_key_lo, data_key_hi);
#endif
}
}
#elif XXH_VECTOR == XXH_VSX
U64x2* const xacc = (U64x2*) acc; /* presumed aligned */
U64x2 const* const xdata = (U64x2 const*) data; /* no alignment restriction */
U64x2 const* const xkey = (U64x2 const*) key; /* no alignment restriction */
U64x2 const v32 = { 32, 32 };
size_t i;
for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
/* data_vec = xdata[i]; */
/* key_vec = xkey[i]; */
#ifdef __BIG_ENDIAN__
/* byteswap */
U64x2 const data_vec = vec_revb(vec_vsx_ld(0, xdata + i));
/* swap 32-bit words */
U64x2 const key_vec = vec_rl(vec_vsx_ld(0, xkey + i), v32);
#else
U64x2 const data_vec = vec_vsx_ld(0, xdata + i);
U64x2 const key_vec = vec_vsx_ld(0, xkey + i);
#endif
U64x2 data_key = data_vec ^ key_vec;
/* shuffled = (data_key << 32) | (data_key >> 32); */
U32x4 shuffled = (U32x4)vec_rl(data_key, v32);
/* product = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)shuffled & 0xFFFFFFFF); */
U64x2 product = XXH_vsxMultOdd((U32x4)data_key, shuffled);
xacc[i] += product;
xacc[i] += data_vec;
}
#else /* scalar variant of Accumulator - universal */
XXH_ALIGN(32) U64* const xacc = (U64*) acc; /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
const char* const xdata = (const char*) data; /* no alignment restriction */
const char* const xkey = (const char*) key; /* no alignment restriction */
size_t i;
assert(((size_t)acc & 31) == 0);
for (i=0; i < ACC_NB; i++) {
U64 const data_val = XXH_readLE64(xdata + 8*i);
U64 const key_val = XXH_readLE64(xkey + 8*i);
U64 const data_key = key_val ^ data_val;
xacc[i] += XXH_mult32to64(data_key & 0xFFFFFFFF, data_key >> 32);
xacc[i] += data_val;
}
#endif
}
XXH_FORCE_INLINE void
XXH3_scrambleAcc(void* restrict acc, const void* restrict key)
{
#if (XXH_VECTOR == XXH_AVX2)
assert(((size_t)acc) & 31 == 0);
{ XXH_ALIGN(32) __m256i* const xacc = (__m256i*) acc;
const __m256i* const xkey = (const __m256i *) key; /* not really aligned, just for ptr arithmetic, and because _mm256_loadu_si256() requires this argument type */
const __m256i k1 = _mm256_set1_epi32((int)PRIME32_1);
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
__m256i data = xacc[i];
__m256i const shifted = _mm256_srli_epi64(data, 47);
data = _mm256_xor_si256(data, shifted);
{ __m256i const k = _mm256_loadu_si256 (xkey+i);
__m256i const dk = _mm256_xor_si256 (data, k); /* U32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */
__m256i const dk1 = _mm256_mul_epu32 (dk, k1);
__m256i const d2 = _mm256_shuffle_epi32 (dk, 0x31);
__m256i const dk2 = _mm256_mul_epu32 (d2, k1);
__m256i const dk2h= _mm256_slli_epi64 (dk2, 32);
xacc[i] = _mm256_add_epi64(dk1, dk2h);
} }
}
#elif (XXH_VECTOR == XXH_SSE2)
{ XXH_ALIGN(16) __m128i* const xacc = (__m128i*) acc;
const __m128i* const xkey = (const __m128i *) key; /* not really aligned, just for ptr arithmetic */
const __m128i k1 = _mm_set1_epi32((int)PRIME32_1);
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
__m128i data = xacc[i];
__m128i const shifted = _mm_srli_epi64(data, 47);
data = _mm_xor_si128(data, shifted);
{ __m128i const k = _mm_loadu_si128 (xkey+i);
__m128i const dk = _mm_xor_si128 (data,k);
__m128i const dk1 = _mm_mul_epu32 (dk,k1);
__m128i const d2 = _mm_shuffle_epi32 (dk, 0x31);
__m128i const dk2 = _mm_mul_epu32 (d2,k1);
__m128i const dk2h= _mm_slli_epi64(dk2, 32);
xacc[i] = _mm_add_epi64(dk1, dk2h);
} }
}
#elif (XXH_VECTOR == XXH_NEON)
assert(((size_t)acc) & 15 == 0);
{ uint64x2_t* const xacc = (uint64x2_t*) acc;
uint32_t const* const xkey = (uint32_t const*) key;
uint32x2_t const prime = vdup_n_u32 (PRIME32_1);
size_t i;
for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
/* data_vec = xacc[i] ^ (xacc[i] >> 47); */
uint64x2_t const acc_vec = xacc[i];
uint64x2_t const shifted = vshrq_n_u64 (acc_vec, 47);
uint64x2_t const data_vec = veorq_u64 (acc_vec, shifted);
/* key_vec = xkey[i]; */
uint32x4_t const key_vec = vld1q_u32 (xkey + (i * 4));
/* data_key = data_vec ^ key_vec; */
uint32x4_t const data_key = veorq_u32 (vreinterpretq_u32_u64(data_vec), key_vec);
/* shuffled = { data_key[0, 2], data_key[1, 3] }; */
uint32x2x2_t const shuffled = vzip_u32 (vget_low_u32(data_key), vget_high_u32(data_key));
/* data_key *= PRIME32_1 */
/* prod_hi = (data_key >> 32) * PRIME32_1; */
uint64x2_t const prod_hi = vmull_u32 (shuffled.val[1], prime);
/* xacc[i] = prod_hi << 32; */
xacc[i] = vshlq_n_u64(prod_hi, 32);
/* xacc[i] += (prod_hi & 0xFFFFFFFF) * PRIME32_1; */
xacc[i] = vmlal_u32(xacc[i], shuffled.val[0], prime);
} }
#elif (XXH_VECTOR == XXH_VSX)
U64x2* const xacc = (U64x2*) acc;
const U64x2* const xkey = (const U64x2*) key;
/* constants */
U64x2 const v32 = { 32, 32 };
U64x2 const v47 = { 47, 47 };
U32x4 const prime = { PRIME32_1, PRIME32_1, PRIME32_1, PRIME32_1 };
size_t i;
for (i = 0; i < STRIPE_LEN / sizeof(U64x2); i++) {
U64x2 const acc_vec = xacc[i];
U64x2 const data_vec = acc_vec ^ (acc_vec >> v47);
/* key_vec = xkey[i]; */
#ifdef __BIG_ENDIAN__
/* swap 32-bit words */
U64x2 const key_vec = vec_rl(vec_vsx_ld(0, xkey + i), v32);
#else
U64x2 const key_vec = vec_vsx_ld(0, xkey + i);
#endif
U64x2 const data_key = data_vec ^ key_vec;
/* data_key *= PRIME32_1 */
/* prod_lo = ((U64x2)data_key & 0xFFFFFFFF) * ((U64x2)prime & 0xFFFFFFFF); */
U64x2 const prod_lo = XXH_vsxMultOdd((U32x4)data_key, prime);
/* prod_hi = ((U64x2)data_key >> 32) * ((U64x2)prime >> 32); */
U64x2 const prod_hi = XXH_vsxMultEven((U32x4)data_key, prime);
xacc[i] = prod_lo + (prod_hi << v32);
}
#else /* scalar variant of Scrambler - universal */
XXH_ALIGN(32) U64* const xacc = (U64*) acc; /* presumed aligned on 32-bytes boundaries, little hint for the auto-vectorizer */
const char* const xkey = (const char*) key; /* no alignment restriction */
int i;
assert((((size_t)acc) & 31) == 0);
for (i=0; i < (int)ACC_NB; i++) {
U64 const key64 = XXH_readLE64(xkey + 8*i);
U64 acc64 = xacc[i];
acc64 ^= acc64 >> 47;
acc64 ^= key64;
acc64 *= PRIME32_1;
xacc[i] = acc64;
}
#endif
}
/* assumption : nbStripes will not overflow secret size */
XXH_FORCE_INLINE void
XXH3_accumulate(U64* restrict acc, const void* restrict data,
const void* restrict secret, size_t nbStripes)
{
size_t n;
/* Clang doesn't unroll this loop without the pragma. Unrolling can be up to 1.4x faster.
* The unroll statement seems detrimental for WASM (@aras-p) and ARM though.
*/
#if defined(__clang__) && !defined(__OPTIMIZE_SIZE__) && !defined(__ARM_ARCH) && !defined(__EMSCRIPTEN__)
# pragma clang loop unroll(enable)
#endif
for (n = 0; n < nbStripes; n++ ) {
XXH3_accumulate_512(acc,
(const char*)data + n*STRIPE_LEN,
(const char*)secret + n*XXH_SECRET_CONSUME_RATE);
}
}
/* note : clang auto-vectorizes well in SS2 mode _if_ this function is `static`,
* and doesn't auto-vectorize it at all if it is `FORCE_INLINE`.
* However, it auto-vectorizes better AVX2 if it is `FORCE_INLINE`
* Pretty much every other modes and compilers prefer `FORCE_INLINE`.
*/
#if defined(__clang__) && (XXH_VECTOR==0) && !defined(__AVX2__)
static void
#else
XXH_FORCE_INLINE void
#endif
XXH3_hashLong_internal_loop( U64* restrict acc,
const void* restrict data, size_t len,
const void* restrict secret, size_t secretSize)
{
size_t const nb_rounds = (secretSize - STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
size_t const block_len = STRIPE_LEN * nb_rounds;
size_t const nb_blocks = len / block_len;
size_t n;
assert(secretSize >= XXH3_SECRET_SIZE_MIN);
for (n = 0; n < nb_blocks; n++) {
XXH3_accumulate(acc, (const char*)data + n*block_len, secret, nb_rounds);
XXH3_scrambleAcc(acc, (const char*)secret + secretSize - STRIPE_LEN);
}
/* last partial block */
assert(len > STRIPE_LEN);
{ size_t const nbStripes = (len - (block_len * nb_blocks)) / STRIPE_LEN;
assert(nbStripes <= (secretSize / XXH_SECRET_CONSUME_RATE));
XXH3_accumulate(acc, (const char*)data + nb_blocks*block_len, secret, nbStripes);
/* last stripe */
if (len & (STRIPE_LEN - 1)) {
const void* const p = (const char*)data + len - STRIPE_LEN;
#define XXH_SECRET_LASTACC_START 7 /* do not align on 8, so that secret is different from scrambler */
XXH3_accumulate_512(acc, p, (const char*)secret + secretSize - STRIPE_LEN - XXH_SECRET_LASTACC_START);
} }
}
XXH_FORCE_INLINE U64
XXH3_mix2Accs(const U64* restrict acc, const void* restrict secret)
{
const U64* const key64 = (const U64*)secret;
return XXH3_mul128_fold64(
acc[0] ^ XXH_readLE64(key64),
acc[1] ^ XXH_readLE64(key64+1) );
}
static XXH64_hash_t
XXH3_mergeAccs(const U64* restrict acc, const void* restrict secret, U64 start)
{
U64 result64 = start;
result64 += XXH3_mix2Accs(acc+0, (const char*)secret + 0);
result64 += XXH3_mix2Accs(acc+2, (const char*)secret + 16);
result64 += XXH3_mix2Accs(acc+4, (const char*)secret + 32);
result64 += XXH3_mix2Accs(acc+6, (const char*)secret + 48);
return XXH3_avalanche(result64);
}
XXH_FORCE_INLINE XXH64_hash_t
XXH3_hashLong_internal(const void* restrict data, size_t len,
const void* restrict secret, size_t secretSize)
{
XXH_ALIGN(XXH_ACC_ALIGN) U64 acc[ACC_NB] = { PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3, PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1 };
XXH3_hashLong_internal_loop(acc, data, len, secret, secretSize);
/* converge into final hash */
XXH_STATIC_ASSERT(sizeof(acc) == 64);
#define XXH_SECRET_MERGEACCS_START 11 /* do not align on 8, so that secret is different from accumulator */
assert(secretSize >= sizeof(acc) + XXH_SECRET_MERGEACCS_START);
return XXH3_mergeAccs(acc, (const char*)secret + XXH_SECRET_MERGEACCS_START, (U64)len * PRIME64_1);
}
XXH_NO_INLINE XXH64_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_64b_defaultSecret(const void* restrict data, size_t len)
{
return XXH3_hashLong_internal(data, len, kSecret, sizeof(kSecret));
}
XXH_NO_INLINE XXH64_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_64b_withSecret(const void* restrict data, size_t len, const void* restrict secret, size_t secretSize)
{
return XXH3_hashLong_internal(data, len, secret, secretSize);
}
XXH_FORCE_INLINE void XXH_writeLE64(void* dst, U64 v64)
{
if (!XXH_CPU_LITTLE_ENDIAN) v64 = XXH_swap64(v64);
memcpy(dst, &v64, sizeof(v64));
}
/* XXH3_initKeySeed() :
* destination `customSecret` is presumed allocated and same size as `kSecret`.
*/
XXH_FORCE_INLINE void XXH3_initKeySeed(void* customSecret, U64 seed64)
{
char* const dst = (char*)customSecret;
const char* const src = (const char*)kSecret;
int const nbRounds = XXH_SECRET_DEFAULT_SIZE / 16;
int i;
XXH_STATIC_ASSERT((XXH_SECRET_DEFAULT_SIZE & 15) == 0);
for (i=0; i < nbRounds; i++) {
XXH_writeLE64(dst + 16*i, XXH_readLE64(src + 16*i) + seed64);
XXH_writeLE64(dst + 16*i + 8, XXH_readLE64(src + 16*i + 8) - seed64);
}
}
/* XXH3_hashLong_64b_withSeed() :
* Generate a custom key,
* based on alteration of default kSecret with the seed,
* and then use this key for long mode hashing.
* This operation is decently fast but nonetheless costs a little bit of time.
* Try to avoid it whenever possible (typically when seed==0).
*/
XXH_NO_INLINE XXH64_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_64b_withSeed(const void* data, size_t len, XXH64_hash_t seed)
{
XXH_ALIGN(8) char secret[XXH_SECRET_DEFAULT_SIZE];
XXH3_initKeySeed(secret, seed);
return XXH3_hashLong_internal(data, len, secret, sizeof(secret));
}
XXH_FORCE_INLINE U64 XXH3_mix16B(const void* restrict data, const void* restrict key, U64 seed64)
{
const U64* const key64 = (const U64*)key;
U64 const ll1 = XXH_readLE64(data);
U64 const ll2 = XXH_readLE64((const BYTE*)data+8);
return XXH3_mul128_fold64(
ll1 ^ (XXH_readLE64(key64) + seed64),
ll2 ^ (XXH_readLE64(key64+1) - seed64) ) ;
}
XXH_FORCE_INLINE XXH64_hash_t
XXH3_len_17to128_64b(const void* restrict data, size_t len, const void* restrict secret, size_t secretSize, XXH64_hash_t seed)
{
const BYTE* const p = (const BYTE*)data;
const char* const key = (const char*)secret;
assert(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
assert(16 < len && len <= 128);
{ U64 acc = len * PRIME64_1;
if (len > 32) {
if (len > 64) {
if (len > 96) {
acc += XXH3_mix16B(p+48, key+96, seed);
acc += XXH3_mix16B(p+len-64, key+112, seed);
}
acc += XXH3_mix16B(p+32, key+64, seed);
acc += XXH3_mix16B(p+len-48, key+80, seed);
}
acc += XXH3_mix16B(p+16, key+32, seed);
acc += XXH3_mix16B(p+len-32, key+48, seed);
}
acc += XXH3_mix16B(p+0, key+0, seed);
acc += XXH3_mix16B(p+len-16, key+16, seed);
return XXH3_avalanche(acc);
}
}
XXH_NO_INLINE XXH64_hash_t
XXH3_len_129to240_64b(const void* restrict data, size_t len, const void* restrict secret, size_t secretSize, XXH64_hash_t seed)
{
const BYTE* const p = (const BYTE*)data;
const char* const key = (const char*)secret;
assert(secretSize >= XXH3_SECRET_SIZE_MIN); (void)secretSize;
assert(128 < len && len <= 240);
#define XXH3_MIDSIZE_STARTOFFSET 3
#define XXH3_MIDSIZE_LASTOFFSET 9
{ U64 acc = len * PRIME64_1;
int const nbRounds = (int)len / 16;
int i;
for (i=0; i<8; i++) {
acc += XXH3_mix16B(p+(16*i), key+(16*i), seed);
}
acc = XXH3_avalanche(acc);
assert(nbRounds >= 8);
for (i=8 ; i < nbRounds; i++) {
acc += XXH3_mix16B(p+(16*i), key+(16*(i-8)) + XXH3_MIDSIZE_STARTOFFSET, seed);
}
/* last bytes */
acc += XXH3_mix16B(p + len - 16, key + XXH3_SECRET_SIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
return XXH3_avalanche(acc);
}
}
#define XXH3_MIDSIZE_MAX 240
/* === Public entry point === */
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len)
{
if (len <= 16) return XXH3_len_0to16_64b(data, len, kSecret, 0);
if (len <= 128) return XXH3_len_17to128_64b(data, len, kSecret, sizeof(kSecret), 0);
if (len <= 240) return XXH3_len_129to240_64b(data, len, kSecret, sizeof(kSecret), 0);
return XXH3_hashLong_64b_defaultSecret(data, len);
}
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSecret(const void* data, size_t len, const void* secret, size_t secretSize)
{
assert(secretSize >= XXH3_SECRET_SIZE_MIN);
/* if an action must be taken should `secret` conditions not be respected,
* it should be done here.
* For now, it's a contract pre-condition.
* Adding a check and a branch here would cost performance at every hash */
if (len <= 16) return XXH3_len_0to16_64b(data, len, secret, 0);
if (len <= 128) return XXH3_len_17to128_64b(data, len, secret, secretSize, 0);
if (len <= 240) return XXH3_len_129to240_64b(data, len, secret, secretSize, 0);
return XXH3_hashLong_64b_withSecret(data, len, secret, secretSize);
}
XXH_PUBLIC_API XXH64_hash_t
XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed)
{
/* note : opened question : would it be faster to
* route to XXH3_64bits_withSecret_internal()
* when `seed == 0` ?
* This would add a branch though.
* Maybe do it into XXH3_hashLong_64b_withSeed() instead,
* since that's where it matters */
if (len <= 16) return XXH3_len_0to16_64b(data, len, kSecret, seed);
if (len <= 128) return XXH3_len_17to128_64b(data, len, kSecret, sizeof(kSecret), seed);
if (len <= 240) return XXH3_len_129to240_64b(data, len, kSecret, sizeof(kSecret), seed);
return XXH3_hashLong_64b_withSeed(data, len, seed);
}
/* === XXH3 streaming === */
XXH_PUBLIC_API XXH3_state_t* XXH3_64bits_createState(void)
{
return (XXH3_state_t*)XXH_malloc(sizeof(XXH3_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH3_64bits_freeState(XXH3_state_t* statePtr)
{
XXH_free(statePtr);
return XXH_OK;
}
XXH_PUBLIC_API void
XXH3_64bits_copyState(XXH3_state_t* dst_state, const XXH3_state_t* src_state)
{
memcpy(dst_state, src_state, sizeof(*dst_state));
}
static void
XXH3_64bits_reset_internal(XXH3_state_t* statePtr,
XXH64_hash_t seed,
const void* secret, size_t secretSize)
{
assert(statePtr != NULL);
memset(statePtr, 0, sizeof(*statePtr));
statePtr->acc[0] = PRIME32_3;
statePtr->acc[1] = PRIME64_1;
statePtr->acc[2] = PRIME64_2;
statePtr->acc[3] = PRIME64_3;
statePtr->acc[4] = PRIME64_4;
statePtr->acc[5] = PRIME32_2;
statePtr->acc[6] = PRIME64_5;
statePtr->acc[7] = PRIME32_1;
statePtr->seed = seed;
assert(secret != NULL);
statePtr->secret = secret;
assert(secretSize >= XXH3_SECRET_SIZE_MIN);
statePtr->secretLimit = (XXH32_hash_t)(secretSize - STRIPE_LEN);
statePtr->nbStripesPerBlock = statePtr->secretLimit / XXH_SECRET_CONSUME_RATE;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset(XXH3_state_t* statePtr)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_64bits_reset_internal(statePtr, 0, kSecret, XXH_SECRET_DEFAULT_SIZE);
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSecret(XXH3_state_t* statePtr, const void* secret, size_t secretSize)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_64bits_reset_internal(statePtr, 0, secret, secretSize);
if (secret == NULL) return XXH_ERROR;
if (secretSize < XXH3_SECRET_SIZE_MIN) return XXH_ERROR;
return XXH_OK;
}
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_reset_withSeed(XXH3_state_t* statePtr, XXH64_hash_t seed)
{
if (statePtr == NULL) return XXH_ERROR;
XXH3_64bits_reset_internal(statePtr, seed, kSecret, XXH_SECRET_DEFAULT_SIZE);
XXH3_initKeySeed(statePtr->customSecret, seed);
statePtr->secret = statePtr->customSecret;
return XXH_OK;
}
static void
XXH3_64bits_consumeStripes( U64* acc,
XXH32_hash_t* nbStripesSoFarPtr, XXH32_hash_t nbStripesPerBlock,
const void* data, size_t totalStripes,
const void* secret, size_t secretLimit)
{
assert(*nbStripesSoFarPtr < nbStripesPerBlock);
if (nbStripesPerBlock - *nbStripesSoFarPtr <= totalStripes) {
/* need a scrambling operation */
size_t const nbStripes = nbStripesPerBlock - *nbStripesSoFarPtr;
XXH3_accumulate(acc, data, (const char*)secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, nbStripes);
XXH3_scrambleAcc(acc, (const char*)secret + secretLimit);
XXH3_accumulate(acc, (const char*)data + nbStripes * STRIPE_LEN, secret, totalStripes - nbStripes);
*nbStripesSoFarPtr = (XXH32_hash_t)(totalStripes - nbStripes);
} else {
XXH3_accumulate(acc, data, (const char*)secret + nbStripesSoFarPtr[0] * XXH_SECRET_CONSUME_RATE, totalStripes);
*nbStripesSoFarPtr += (XXH32_hash_t)totalStripes;
}
}
XXH_PUBLIC_API XXH_errorcode
XXH3_64bits_update(XXH3_state_t* state, const void* input, size_t len)
{
if (input==NULL)
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
return XXH_OK;
#else
return XXH_ERROR;
#endif
{ const BYTE* p = (const BYTE*)input;
const BYTE* const bEnd = p + len;
state->totalLen += len;
if (state->bufferedSize + len <= XXH3_INTERNALBUFFER_SIZE) { /* fill in tmp buffer */
XXH_memcpy(state->buffer + state->bufferedSize, input, len);
state->bufferedSize += (XXH32_hash_t)len;
return XXH_OK;
}
/* input now > XXH3_INTERNALBUFFER_SIZE */
#define XXH3_INTERNALBUFFER_STRIPES (XXH3_INTERNALBUFFER_SIZE / STRIPE_LEN)
XXH_STATIC_ASSERT(XXH3_INTERNALBUFFER_SIZE % STRIPE_LEN == 0); /* clean multiple */
if (state->bufferedSize) { /* some data within internal buffer: fill then consume it */
size_t const loadSize = XXH3_INTERNALBUFFER_SIZE - state->bufferedSize;
XXH_memcpy(state->buffer + state->bufferedSize, input, loadSize);
p += loadSize;
XXH3_64bits_consumeStripes(state->acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, XXH3_INTERNALBUFFER_STRIPES,
state->secret, state->secretLimit);
state->bufferedSize = 0;
}
/* consume input by full buffer quantities */
if (p+XXH3_INTERNALBUFFER_SIZE <= bEnd) {
const BYTE* const limit = bEnd - XXH3_INTERNALBUFFER_SIZE;
do {
XXH3_64bits_consumeStripes(state->acc,
&state->nbStripesSoFar, state->nbStripesPerBlock,
p, XXH3_INTERNALBUFFER_STRIPES,
state->secret, state->secretLimit);
p += XXH3_INTERNALBUFFER_SIZE;
} while (p<=limit);
}
if (p < bEnd) { /* some remaining input data : buffer it */
XXH_memcpy(state->buffer, p, (size_t)(bEnd-p));
state->bufferedSize = (XXH32_hash_t)(bEnd-p);
}
}
return XXH_OK;
}
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits_digest (const XXH3_state_t* state)
{
if (state->totalLen > XXH3_MIDSIZE_MAX) {
XXH_ALIGN(XXH_ACC_ALIGN) XXH64_hash_t acc[ACC_NB];
memcpy(acc, state->acc, sizeof(acc)); /* digest locally, state remains unaltered, and can continue ingesting more data afterwards */
if (state->bufferedSize >= STRIPE_LEN) {
size_t const totalNbStripes = state->bufferedSize / STRIPE_LEN;
XXH32_hash_t nbStripesSoFar = state->nbStripesSoFar;
XXH3_64bits_consumeStripes(acc,
&nbStripesSoFar, state->nbStripesPerBlock,
state->buffer, totalNbStripes,
state->secret, state->secretLimit);
if (state->bufferedSize % STRIPE_LEN) { /* one last partial stripe */
XXH3_accumulate_512(acc, state->buffer + state->bufferedSize - STRIPE_LEN, (const char*)state->secret + state->secretLimit - XXH_SECRET_LASTACC_START);
}
} else { /* bufferedSize < STRIPE_LEN */
if (state->bufferedSize) { /* one last stripe */
char lastStripe[STRIPE_LEN];
size_t const catchupSize = STRIPE_LEN - state->bufferedSize;
memcpy(lastStripe, (const char*)state->buffer + sizeof(state->buffer) - catchupSize, catchupSize);
memcpy(lastStripe + catchupSize, state->buffer, state->bufferedSize);
XXH3_accumulate_512(acc, lastStripe, (const char*)state->secret + state->secretLimit - XXH_SECRET_LASTACC_START);
} }
return XXH3_mergeAccs(acc, (const char*)state->secret + XXH_SECRET_MERGEACCS_START, (U64)state->totalLen * PRIME64_1);
}
/* len <= XXH3_MIDSIZE_MAX : short code */
if (state->seed)
return XXH3_64bits_withSeed(state->buffer, (size_t)state->totalLen, state->seed);
return XXH3_64bits_withSecret(state->buffer, (size_t)(state->totalLen), state->secret, state->secretLimit + STRIPE_LEN);
}
/* ==========================================
* XXH3 128 bits (=> XXH128)
* ========================================== */
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_1to3_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
{
assert(data != NULL);
assert(len > 0 && len <= 3);
assert(keyPtr != NULL);
{ const U32* const key32 = (const U32*) keyPtr;
BYTE const c1 = ((const BYTE*)data)[0];
BYTE const c2 = ((const BYTE*)data)[len >> 1];
BYTE const c3 = ((const BYTE*)data)[len - 1];
U32 const l1 = (U32)(c1) + ((U32)(c2) << 8);
U32 const l2 = (U32)(len) + ((U32)(c3) << 2);
U64 const ll11 = XXH_mult32to64((unsigned int)(l1 + seed + key32[0]), (unsigned int)(l2 + key32[1]));
U64 const ll12 = XXH_mult32to64((unsigned int)(l1 + key32[2]), (unsigned int)(l2 - seed + key32[3]));
XXH128_hash_t const h128 = { XXH3_avalanche(ll11), XXH3_avalanche(ll12) };
return h128;
}
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_4to8_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
{
assert(data != NULL);
assert(len >= 4 && len <= 8);
{ const U32* const key32 = (const U32*) keyPtr;
U32 const l1 = XXH_readLE32(data) + (U32)seed + key32[0];
U32 const l2 = XXH_readLE32((const BYTE*)data + len - 4) + (U32)(seed >> 32) + key32[1];
U64 const acc1 = len + l1 + ((U64)l2 << 32) + XXH_mult32to64(l1, l2);
U64 const acc2 = len*PRIME64_1 + l1*PRIME64_2 + l2*PRIME64_3;
{ XXH128_hash_t const h128 = { XXH3_avalanche(acc1), XXH3_avalanche(acc2) };
return h128;
}
}
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_9to16_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
{
assert(data != NULL);
assert(key != NULL);
assert(len >= 9 && len <= 16);
{ const U64* const key64 = (const U64*) keyPtr;
U64 acc1 = PRIME64_1 * ((U64)len + seed);
U64 acc2 = PRIME64_2 * ((U64)len - seed);
U64 const ll1 = XXH_readLE64(data);
U64 const ll2 = XXH_readLE64((const BYTE*)data + len - 8);
acc1 += XXH3_mul128_fold64(ll1 + XXH_readLE64(key64+0), ll2 + XXH_readLE64(key64+1));
acc2 += XXH3_mul128_fold64(ll1 + XXH_readLE64(key64+2), ll2 + XXH_readLE64(key64+3));
{ XXH128_hash_t const h128 = { XXH3_avalanche(acc1), XXH3_avalanche(acc2) };
return h128;
}
}
}
XXH_FORCE_INLINE XXH128_hash_t
XXH3_len_0to16_128b(const void* data, size_t len, XXH64_hash_t seed)
{
assert(data != NULL);
assert(len <= 16);
{ if (len > 8) return XXH3_len_9to16_128b(data, len, kSecret, seed);
if (len >= 4) return XXH3_len_4to8_128b(data, len, kSecret, seed);
if (len) return XXH3_len_1to3_128b(data, len, kSecret, seed);
{ XXH128_hash_t const h128 = { seed, (XXH64_hash_t)0 - seed };
return h128;
}
}
}
XXH_NO_INLINE XXH128_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
XXH3_hashLong_128b(const void* data, size_t len, XXH64_hash_t seed)
{
XXH_ALIGN(64) U64 acc[ACC_NB] = { seed, PRIME64_1, PRIME64_2, PRIME64_3, PRIME64_4, PRIME64_5, (U64)0 - seed, 0 };
assert(len > 128);
XXH3_hashLong_internal_loop(acc, data, len, kSecret, sizeof(kSecret));
/* converge into final hash */
assert(sizeof(acc) == 64);
{ U64 const low64 = XXH3_mergeAccs(acc, kSecret, (U64)len * PRIME64_1);
U64 const high64 = XXH3_mergeAccs(acc, kSecret+16, ((U64)len+1) * PRIME64_2);
XXH128_hash_t const h128 = { low64, high64 };
return h128;
}
}
XXH_PUBLIC_API XXH128_hash_t
XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed)
{
if (len <= 16) return XXH3_len_0to16_128b(data, len, seed);
{ U64 acc1 = PRIME64_1 * (len + seed);
U64 acc2 = 0;
const BYTE* const p = (const BYTE*)data;
const char* const key = (const char*)kSecret;
if (len > 32) {
if (len > 64) {
if (len > 96) {
if (len > 128) return XXH3_hashLong_128b(data, len, seed);
acc1 += XXH3_mix16B(p+48, key+96, seed);
acc2 += XXH3_mix16B(p+len-64, key+112, seed);
}
acc1 += XXH3_mix16B(p+32, key+64, seed);
acc2 += XXH3_mix16B(p+len-48, key+80, seed);
}
acc1 += XXH3_mix16B(p+16, key+32, seed);
acc2 += XXH3_mix16B(p+len-32, key+48, seed);
}
acc1 += XXH3_mix16B(p+0, key+0, seed);
acc2 += XXH3_mix16B(p+len-16, key+16, seed);
{ U64 const part1 = acc1 + acc2;
U64 const part2 = (acc1 * PRIME64_3) + (acc2 * PRIME64_4) + ((len - seed) * PRIME64_2);
XXH128_hash_t const h128 = { XXH3_avalanche(part1), (XXH64_hash_t)0 - XXH3_avalanche(part2) };
return h128;
}
}
}
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len)
{
return XXH3_128bits_withSeed(data, len, 0);
}
XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed)
{
return XXH3_128bits_withSeed(data, len, seed);
}
#ifdef UNDEF_NDEBUG
# undef NDEBUG
#endif
#endif /* XXH3_H */