Add a script to convert png<->[12]bpp.

Requires pypng (run "pip install pypng").
This commit is contained in:
yenatch 2014-06-27 20:19:25 -07:00
parent cedfba15d3
commit 4b32d91b7f

708
gfx.py Executable file
View File

@ -0,0 +1,708 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
# A library for working with Game Boy graphics.
# Converts to and from 2bpp, 1bpp, png.
import os
import sys
import png
from math import sqrt, floor, ceil
import argparse
import yaml
def split(list_, interval):
"""
Split a list by length.
"""
for i in xrange(0, len(list_), interval):
j = min(i + interval, len(list_))
yield list_[i:j]
def get_tiles(image):
"""
Split a 2bpp image into 8x8 tiles.
"""
return list(split(image, 0x10))
def connect(tiles):
"""
Combine 8x8 tiles into a 2bpp image.
"""
return [byte for tile in tiles for byte in tile]
def transpose(tiles, width=None):
"""
Transpose a tile arrangement along line y=-x.
00 01 02 03 04 05 00 06 0c 12 18 1e
06 07 08 09 0a 0b 01 07 0d 13 19 1f
0c 0d 0e 0f 10 11 <-> 02 08 0e 14 1a 20
12 13 14 15 16 17 03 09 0f 15 1b 21
18 19 1a 1b 1c 1d 04 0a 10 16 1c 22
1e 1f 20 21 22 23 05 0b 11 17 1d 23
00 01 02 03 00 04 08
04 05 06 07 <-> 01 05 09
08 09 0a 0b 02 06 0a
03 07 0b
"""
if width == None:
width = int(sqrt(len(tiles))) # assume square image
tiles = sorted(enumerate(tiles), key= lambda (i, tile): i % width)
return [tile for i, tile in tiles]
def transpose_tiles(image, width=None):
return connect(transpose(get_tiles(image), width))
def interleave(tiles, width):
"""
00 01 02 03 04 05 00 02 04 06 08 0a
06 07 08 09 0a 0b 01 03 05 07 09 0b
0c 0d 0e 0f 10 11 --> 0c 0e 10 12 14 16
12 13 14 15 16 17 0d 0f 11 13 15 17
18 19 1a 1b 1c 1d 18 1a 1c 1e 20 22
1e 1f 20 21 22 23 19 1b 1d 1f 21 23
"""
interleaved = []
left, right = split(tiles[::2], width), split(tiles[1::2], width)
for l, r in zip(left, right):
interleaved += l + r
return interleaved
def deinterleave(tiles, width):
"""
00 02 04 06 08 0a 00 01 02 03 04 05
01 03 05 07 09 0b 06 07 08 09 0a 0b
0c 0e 10 12 14 16 --> 0c 0d 0e 0f 10 11
0d 0f 11 13 15 17 12 13 14 15 16 17
18 1a 1c 1e 20 22 18 19 1a 1b 1c 1d
19 1b 1d 1f 21 23 1e 1f 20 21 22 23
"""
deinterleaved = []
rows = list(split(tiles, width))
for left, right in zip(rows[::2], rows[1::2]):
for l, r in zip(left, right):
deinterleaved += [l, r]
return deinterleaved
def interleave_tiles(image, width):
return connect(interleave(get_tiles(image), width))
def deinterleave_tiles(image, width):
return connect(deinterleave(get_tiles(image), width))
def condense_tiles_to_map(image):
tiles = get_tiles(image)
new_tiles = []
tilemap = []
for tile in tiles:
if tile not in new_tiles:
new_tiles += [tile]
tilemap += [new_tiles.index(tile)]
new_image = connect(new_tiles)
return new_image, tilemap
def to_file(filename, data):
data = bytearray(data)
with open(filename, 'wb') as out:
out.write(data)
def read_rgb_macros(lines):
colors = []
for line in lines:
tokens = line.split(" ")
macro = tokens.pop(0).strip()
if macro == 'RGB':
rgb = ' '.join(tokens).split(',')
colors.append(map(int, rgb))
return colors
def flatten(planar):
"""
Flatten planar 2bpp image data into a quaternary pixel map.
"""
strips = []
for bottom, top in split(planar, 2):
bottom = bottom
top = top
strip = []
for i in xrange(7,-1,-1):
color = (
(bottom >> i & 1) +
(top *2 >> i & 2)
)
strip += [color]
strips += strip
return strips
def to_lines(image, width):
"""
Convert a tiled quaternary pixel map to lines of quaternary pixels.
"""
tile_width = 8
tile_height = 8
num_columns = width / tile_width
height = len(image) / width
lines = []
for cur_line in xrange(height):
tile_row = cur_line / tile_height
line = []
for column in xrange(num_columns):
anchor = (
+ num_columns * tile_row * tile_width * tile_height
+ column * tile_width * tile_height
+ cur_line % tile_height * tile_width
)
line += image[anchor : anchor + tile_width]
lines += [line]
return lines
def cgb_to_rgb(word, alpha=255):
"""
Convert a cgb/agb color value (15-bit) to rgba.
"""
rgba = {}
for key in 'rgb':
rgba[key] = (word % 2**5) * 8.25
word >>= 5
rgba['a'] = alpha
return rgba
def rgb_to_cgb(color):
"""
Convert an rgba pixel to cgb/agb color value (15-bit).
"""
word = 0
for hue in map(color.get, 'rgb'):
word <<= 5
word += hue / 8
return word
def pal_to_png(filename):
"""
Interpret a .pal file as a png palette.
"""
with open(filename) as rgbs:
colors = read_rgb_macros(rgbs.readlines())
a = 255
palette = []
for color in colors:
# even distribution over 000-255
r, g, b = [int(hue * 8.25) for hue in color]
palette += [(r, g, b, a)]
white = (255,255,255,255)
black = (000,000,000,255)
if white not in palette and len(palette) < 4:
palette = [white] + palette
if black not in palette and len(palette) < 4:
palette = palette + [black]
return palette
def png_to_rgb(palette):
"""
Convert a png palette to rgb macros.
"""
output = [
'\tRGB ' + ', '.join(map(lambda k: '%.2d' % (color[k] / 8), 'rgb')) for color in palette]
return '\n'.join(output)
def read_filename_arguments(filename, yaml_filename='gfx.yaml'):
"""
A binary blob format like 2bpp has no metadata.
Rather than passing in arguments from the command line,
read metadata from filename, or optionally a yaml file.
PNG also lacks Game Boy-relevant metadata.
"""
parsed_arguments = {}
path_arguments = ['pal_file']
int_arguments = {
'w': 'width',
'h': 'height',
't': 'tile_padding',
}
# Look for a yaml file if one exists.
if os.path.exists(yaml_filename):
yaml_arguments = yaml.load(open(yaml_filename))
args = yaml_arguments
dirs = os.path.splitext(filename)[0].split('/')
current_path = os.path.dirname(filename)
while dirs:
args = args.get(dirs.pop(0), {})
for key, value in args.items():
if dirs and key == dirs[0]:
continue
if key in path_arguments:
value = os.path.join(current_path, value)
parsed_arguments[key] = value
# Filename arguments override yaml.
arguments = os.path.splitext(filename)[0].split('.')[1:]
for argument in arguments:
num = argument[1:]
if num.isdigit():
arg = int_arguments.get(argument[0])
if arg: parsed_arguments[arg] = int(num)
elif argument in ['interleave', 'norepeat', 'tilemap']:
parsed_arguments[argument] = True
elif argument == 'arrange':
parsed_arguments['norepeat'] = True
parsed_arguments['tilemap'] = True
elif 'x' in argument:
w, h = argument.split('x')
if w.isdigit() and h.isdigit():
parsed_arguments['pic_dimensions'] = map(int, (w, h))
return parsed_arguments
def export_2bpp_to_png(filein, fileout=None, **kwargs):
if fileout == None:
fileout = os.path.splitext(filein)[0] + '.png'
image = open(filein, 'rb').read()
kwargs.update(read_filename_arguments(filein))
if pal_file == None:
if os.path.exists(os.path.splitext(fileout)[0]+'.pal'):
kwargs['pal_file'] = os.path.splitext(fileout)[0]+'.pal'
result = convert_2bpp_to_png(image, **kwargs)
width, height, palette, greyscale, bitdepth, px_map = result
w = png.Writer(
width,
height,
palette=palette,
compression=9,
greyscale=greyscale,
bitdepth=bitdepth
)
with open(fileout, 'wb') as f:
w.write(f, px_map)
def convert_2bpp_to_png(image, **kwargs):
"""
Convert a planar 2bpp graphic to png.
"""
image = bytearray(image)
pad_color = bytearray([0])
width = kwargs.get('width', 0)
height = kwargs.get('height', 0)
tile_padding = kwargs.get('tile_padding', 0)
pic_dimensions = kwargs.get('pic_dimensions', None)
pal_file = kwargs.get('pal_file', None)
interleave = kwargs.get('interleave', False)
# Width must be specified to interleave.
if interleave and width:
image = interleave_tiles(image, width / 8)
# Pad the image by a given number of tiles if asked.
image += pad_color * 0x10 * tile_padding
# Some images are transposed in blocks.
if pic_dimensions:
w, h = pic_dimensions
if not width: width = w * 8
pic_length = w * h * 0x10
trailing = len(image) % pic_length
pic = []
for i in xrange(0, len(image) - trailing, pic_length):
pic += transpose_tiles(image[i:i+pic_length], h)
image = bytearray(pic) + image[len(image) - trailing:]
# Pad out trailing lines.
image += pad_color * 0x10 * ((w - (len(image) / 0x10) % h) % w)
def px_length(img):
return len(img) * 4
def tile_length(img):
return len(img) * 4 / (8*8)
if width and height:
tile_width = width / 8
more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
image += pad_color * 0x10 * more_tile_padding
elif width and not height:
tile_width = width / 8
more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
image += pad_color * 0x10 * more_tile_padding
height = px_length(image) / width
elif height and not width:
tile_height = height / 8
more_tile_padding = (tile_height - (tile_length(image) % tile_height or tile_height))
image += pad_color * 0x10 * more_tile_padding
width = px_length(image) / height
# at least one dimension should be given
if width * height != px_length(image):
# look for possible combos of width/height that would form a rectangle
matches = []
# Height need not be divisible by 8, but width must.
# See pokered gfx/minimize_pic.1bpp.
for w in range(8, px_length(image) / 2 + 1, 8):
h = px_length(image) / w
if w * h == px_length(image):
matches += [(w, h)]
# go for the most square image
if len(matches):
width, height = sorted(matches, key= lambda (w, h): (h % 8 != 0, w + h))[0] # favor height
else:
raise Exception, 'Image can\'t be divided into tiles (%d px)!' % (px_length(image))
# convert tiles to lines
lines = to_lines(flatten(image), width)
if pal_file == None:
palette = None
greyscale = True
bitdepth = 2
px_map = [[3 - pixel for pixel in line] for line in lines]
else: # gbc
palette = pal_to_png(pal_file)
greyscale = False
bitdepth = 8
px_map = [[pixel for pixel in line] for line in lines]
return width, height, palette, greyscale, bitdepth, px_map
def export_png_to_2bpp(filein, fileout=None, palout=None, tile_padding=0, pic_dimensions=None):
arguments = {
'tile_padding': tile_padding,
'pic_dimensions': pic_dimensions,
}
arguments.update(read_filename_arguments(filein))
image, palette, tmap = png_to_2bpp(filein, **arguments)
if fileout == None:
fileout = os.path.splitext(filein)[0] + '.2bpp'
to_file(fileout, image)
if tmap != None:
mapout = os.path.splitext(fileout)[0] + '.tilemap'
to_file(mapout, tmap)
if palout == None:
palout = os.path.splitext(fileout)[0] + '.pal'
export_palette(palette, palout)
def get_image_padding(width, height, wstep=8, hstep=8):
padding = { k: 0 for k in ['left', 'right', 'top', 'bottom'] }
if width % wstep and width >= wstep:
pad = float(width % wstep) / 2
padding['left'] = int(ceil(pad))
padding['right'] = int(floor(pad))
if height % hstep and height >= hstep:
pad = float(height % hstep) / 2
padding['top'] = int(ceil(pad))
padding['bottom'] = int(floor(pad))
return padding
def png_to_2bpp(filein, **kwargs):
"""
Convert a png image to planar 2bpp.
"""
tile_padding = kwargs.get('tile_padding', 0)
pic_dimensions = kwargs.get('pic_dimensions', None)
interleave = kwargs.get('interleave', False)
norepeat = kwargs.get('norepeat', False)
tilemap = kwargs.get('tilemap', False)
with open(filein, 'rb') as data:
width, height, rgba, info = png.Reader(data).asRGBA8()
rgba = list(rgba)
greyscale = info['greyscale']
# png.Reader returns flat pixel data. Nested is easier to work with
len_px = 4 # rgba
image = []
palette = []
for line in rgba:
newline = []
for px in xrange(0, len(line), len_px):
color = { 'r': line[px ],
'g': line[px+1],
'b': line[px+2],
'a': line[px+3], }
newline += [color]
if color not in palette:
palette += [color]
image += [newline]
assert len(palette) <= 4, 'Palette should be 4 colors, is really %d' % len(palette)
# Pad out smaller palettes with greyscale colors
def greyscale_rgba(hue):
rgba = {k:hue for k in 'rgb'}
rgba['a'] = 255
return rgba
for rgba in map(greyscale_rgba, [0xff, 0x00, 0x55, 0xaa]):
if len(palette) >= 4:
break
if rgba not in palette:
palette += [rgba]
# Sort palettes by luminance
def luminance(color):
rough = { 'r': 4.7,
'g': 1.4,
'b': 13.8, }
return sum(color[key] * rough[key] for key in rough.keys())
palette.sort(key=luminance)
# Game Boy palette order
palette.reverse()
# Map pixels to quaternary color ids
padding = get_image_padding(width, height)
width += padding['left'] + padding['right']
height += padding['top'] + padding['bottom']
pad = bytearray([0])
qmap = []
qmap += pad * width * padding['top']
for line in image:
qmap += pad * padding['left']
qmap += map(palette.index, line)
qmap += pad * padding['right']
qmap += pad * width * padding['bottom']
# Graphics are stored in tiles instead of lines
tile_width = 8
tile_height = 8
num_columns = max(width, tile_width) / tile_width
num_rows = max(height, tile_height) / tile_height
image = []
for row in xrange(num_rows):
for column in xrange(num_columns):
# Split it up into strips to convert to planar data
for strip in xrange(min(tile_height, height)):
anchor = (
row * num_columns * tile_width * tile_height +
column * tile_width +
strip * width
)
line = qmap[anchor : anchor + tile_width]
bottom, top = 0, 0
for bit, quad in enumerate(line):
bottom += (quad & 1) << (7 - bit)
top += (quad /2 & 1) << (7 - bit)
image += [bottom, top]
if pic_dimensions:
w, h = pic_dimensions
tiles = get_tiles(image)
pic_length = w * h
tile_width = width / 8
trailing = len(tiles) % pic_length
new_image = []
for block in xrange(len(tiles) / pic_length):
offset = (h * tile_width) * ((block * w) / tile_width) + ((block * w) % tile_width)
pic = []
for row in xrange(h):
index = offset + (row * tile_width)
pic += tiles[index:index + w]
new_image += transpose(pic, w)
new_image += tiles[len(tiles) - trailing:]
image = connect(new_image)
# Remove any tile padding used to make the png rectangular.
image = image[:len(image) - tile_padding * 0x10]
if interleave:
image = deinterleave_tiles(image, num_columns)
if norepeat:
image, tmap = condense_tiles_to_map(image)
if not tilemap:
tmap = None
return image, palette, tmap
def export_palette(palette, filename, force=False):
"""
Export a palette from png to rgb macros in a .pal file.
"""
# Some palettes are 2 colors (black/white are added later).
# This might be better off as a yaml option.
if os.path.exists(filename):
with open(filename) as rgbs:
colors = read_rgb_macros(rgbs.readlines())
if len(colors) == 2:
palette = palette[1:3]
if os.path.exists(filename) or force:
text = png_to_rgb(palette)
with open(filename, 'w') as out:
out.write(text)
def convert_2bpp_to_1bpp(data):
"""
Convert planar 2bpp image data to 1bpp. Assume images are two colors.
"""
return data[::2]
def convert_1bpp_to_2bpp(data):
"""
Convert 1bpp image data to planar 2bpp (black/white).
"""
output = []
for i in data:
output += [i, i]
return output
def export_2bpp_to_1bpp(filename):
name, extension = os.path.splitext(filename)
image = open(filename, 'rb').read()
image = convert_2bpp_to_1bpp(image)
to_file(name + '.1bpp', image)
def export_1bpp_to_2bpp(filename):
name, extension = os.path.splitext(filename)
image = open(filename, 'rb').read()
image = convert_1bpp_to_2bpp(image)
to_file(name + '.2bpp', image)
def export_1bpp_to_png(filename, fileout=None):
if fileout == None:
fileout = os.path.splitext(filename)[0] + '.png'
arguments = read_filename_arguments(filename)
image = open(filename, 'rb').read()
image = convert_1bpp_to_2bpp(image)
result = convert_2bpp_to_png(image, **arguments)
width, height, palette, greyscale, bitdepth, px_map = result
w = png.Writer(width, height, palette=palette, compression=9, greyscale=greyscale, bitdepth=bitdepth)
with open(fileout, 'wb') as f:
w.write(f, px_map)
def export_png_to_1bpp(filename, fileout=None):
if fileout == None:
fileout = os.path.splitext(filename)[0] + '.1bpp'
arguments = read_filename_arguments(filename)
image = png_to_1bpp(filename, **arguments)
to_file(fileout, image)
def png_to_1bpp(filename, **kwargs):
image, palette, tmap = png_to_2bpp(filename, **kwargs)
return convert_2bpp_to_1bpp(image)
def convert_to_2bpp(filenames=[]):
for filename in filenames:
name, extension = os.path.splitext(filename)
if extension == '.1bpp':
export_1bpp_to_2bpp(filename)
elif extension == '.2bpp':
pass
elif extension == '.png':
export_png_to_2bpp(filename)
else:
raise Exception, "Don't know how to convert {} to 2bpp!".format(filename)
def convert_to_1bpp(filenames=[]):
for filename in filenames:
name, extension = os.path.splitext(filename)
if extension == '.1bpp':
pass
elif extension == '.2bpp':
export_2bpp_to_1bpp(filename)
elif extension == '.png':
export_png_to_1bpp(filename)
else:
raise Exception, "Don't know how to convert {} to 1bpp!".format(filename)
def convert_to_png(filenames=[]):
for filename in filenames:
name, extension = os.path.splitext(filename)
if extension == '.1bpp':
export_1bpp_to_png(filename)
elif extension == '.2bpp':
export_2bpp_to_png(filename)
elif extension == '.png':
pass
else:
raise Exception, "Don't know how to convert {} to png!".format(filename)
def main():
ap = argparse.ArgumentParser()
ap.add_argument('mode')
ap.add_argument('filenames', nargs='*')
args = ap.parse_args()
method = {
'2bpp': convert_to_2bpp,
'1bpp': convert_to_1bpp,
'png': convert_to_png,
}.get(args.mode)
if method == None:
raise Exception, "Unknown conversion method!"
method(args.filenames)
if __name__ == "__main__":
main()