mirror of
https://github.com/zladx/LADX-Disassembly.git
synced 2025-02-20 15:31:35 +00:00
Add a script to convert png<->[12]bpp.
Requires pypng (run "pip install pypng").
This commit is contained in:
parent
cedfba15d3
commit
4b32d91b7f
708
gfx.py
Executable file
708
gfx.py
Executable file
@ -0,0 +1,708 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# A library for working with Game Boy graphics.
|
||||
# Converts to and from 2bpp, 1bpp, png.
|
||||
|
||||
import os
|
||||
import sys
|
||||
import png
|
||||
from math import sqrt, floor, ceil
|
||||
import argparse
|
||||
import yaml
|
||||
|
||||
|
||||
def split(list_, interval):
|
||||
"""
|
||||
Split a list by length.
|
||||
"""
|
||||
for i in xrange(0, len(list_), interval):
|
||||
j = min(i + interval, len(list_))
|
||||
yield list_[i:j]
|
||||
|
||||
|
||||
def get_tiles(image):
|
||||
"""
|
||||
Split a 2bpp image into 8x8 tiles.
|
||||
"""
|
||||
return list(split(image, 0x10))
|
||||
|
||||
def connect(tiles):
|
||||
"""
|
||||
Combine 8x8 tiles into a 2bpp image.
|
||||
"""
|
||||
return [byte for tile in tiles for byte in tile]
|
||||
|
||||
def transpose(tiles, width=None):
|
||||
"""
|
||||
Transpose a tile arrangement along line y=-x.
|
||||
|
||||
00 01 02 03 04 05 00 06 0c 12 18 1e
|
||||
06 07 08 09 0a 0b 01 07 0d 13 19 1f
|
||||
0c 0d 0e 0f 10 11 <-> 02 08 0e 14 1a 20
|
||||
12 13 14 15 16 17 03 09 0f 15 1b 21
|
||||
18 19 1a 1b 1c 1d 04 0a 10 16 1c 22
|
||||
1e 1f 20 21 22 23 05 0b 11 17 1d 23
|
||||
|
||||
00 01 02 03 00 04 08
|
||||
04 05 06 07 <-> 01 05 09
|
||||
08 09 0a 0b 02 06 0a
|
||||
03 07 0b
|
||||
"""
|
||||
if width == None:
|
||||
width = int(sqrt(len(tiles))) # assume square image
|
||||
tiles = sorted(enumerate(tiles), key= lambda (i, tile): i % width)
|
||||
return [tile for i, tile in tiles]
|
||||
|
||||
def transpose_tiles(image, width=None):
|
||||
return connect(transpose(get_tiles(image), width))
|
||||
|
||||
def interleave(tiles, width):
|
||||
"""
|
||||
00 01 02 03 04 05 00 02 04 06 08 0a
|
||||
06 07 08 09 0a 0b 01 03 05 07 09 0b
|
||||
0c 0d 0e 0f 10 11 --> 0c 0e 10 12 14 16
|
||||
12 13 14 15 16 17 0d 0f 11 13 15 17
|
||||
18 19 1a 1b 1c 1d 18 1a 1c 1e 20 22
|
||||
1e 1f 20 21 22 23 19 1b 1d 1f 21 23
|
||||
"""
|
||||
interleaved = []
|
||||
left, right = split(tiles[::2], width), split(tiles[1::2], width)
|
||||
for l, r in zip(left, right):
|
||||
interleaved += l + r
|
||||
return interleaved
|
||||
|
||||
def deinterleave(tiles, width):
|
||||
"""
|
||||
00 02 04 06 08 0a 00 01 02 03 04 05
|
||||
01 03 05 07 09 0b 06 07 08 09 0a 0b
|
||||
0c 0e 10 12 14 16 --> 0c 0d 0e 0f 10 11
|
||||
0d 0f 11 13 15 17 12 13 14 15 16 17
|
||||
18 1a 1c 1e 20 22 18 19 1a 1b 1c 1d
|
||||
19 1b 1d 1f 21 23 1e 1f 20 21 22 23
|
||||
"""
|
||||
deinterleaved = []
|
||||
rows = list(split(tiles, width))
|
||||
for left, right in zip(rows[::2], rows[1::2]):
|
||||
for l, r in zip(left, right):
|
||||
deinterleaved += [l, r]
|
||||
return deinterleaved
|
||||
|
||||
def interleave_tiles(image, width):
|
||||
return connect(interleave(get_tiles(image), width))
|
||||
|
||||
def deinterleave_tiles(image, width):
|
||||
return connect(deinterleave(get_tiles(image), width))
|
||||
|
||||
|
||||
def condense_tiles_to_map(image):
|
||||
tiles = get_tiles(image)
|
||||
new_tiles = []
|
||||
tilemap = []
|
||||
for tile in tiles:
|
||||
if tile not in new_tiles:
|
||||
new_tiles += [tile]
|
||||
tilemap += [new_tiles.index(tile)]
|
||||
new_image = connect(new_tiles)
|
||||
return new_image, tilemap
|
||||
|
||||
|
||||
def to_file(filename, data):
|
||||
data = bytearray(data)
|
||||
with open(filename, 'wb') as out:
|
||||
out.write(data)
|
||||
|
||||
|
||||
def read_rgb_macros(lines):
|
||||
colors = []
|
||||
for line in lines:
|
||||
tokens = line.split(" ")
|
||||
macro = tokens.pop(0).strip()
|
||||
if macro == 'RGB':
|
||||
rgb = ' '.join(tokens).split(',')
|
||||
colors.append(map(int, rgb))
|
||||
return colors
|
||||
|
||||
|
||||
def flatten(planar):
|
||||
"""
|
||||
Flatten planar 2bpp image data into a quaternary pixel map.
|
||||
"""
|
||||
strips = []
|
||||
for bottom, top in split(planar, 2):
|
||||
bottom = bottom
|
||||
top = top
|
||||
strip = []
|
||||
for i in xrange(7,-1,-1):
|
||||
color = (
|
||||
(bottom >> i & 1) +
|
||||
(top *2 >> i & 2)
|
||||
)
|
||||
strip += [color]
|
||||
strips += strip
|
||||
return strips
|
||||
|
||||
|
||||
def to_lines(image, width):
|
||||
"""
|
||||
Convert a tiled quaternary pixel map to lines of quaternary pixels.
|
||||
"""
|
||||
tile_width = 8
|
||||
tile_height = 8
|
||||
num_columns = width / tile_width
|
||||
height = len(image) / width
|
||||
|
||||
lines = []
|
||||
for cur_line in xrange(height):
|
||||
tile_row = cur_line / tile_height
|
||||
line = []
|
||||
for column in xrange(num_columns):
|
||||
anchor = (
|
||||
+ num_columns * tile_row * tile_width * tile_height
|
||||
+ column * tile_width * tile_height
|
||||
+ cur_line % tile_height * tile_width
|
||||
)
|
||||
line += image[anchor : anchor + tile_width]
|
||||
lines += [line]
|
||||
return lines
|
||||
|
||||
|
||||
def cgb_to_rgb(word, alpha=255):
|
||||
"""
|
||||
Convert a cgb/agb color value (15-bit) to rgba.
|
||||
"""
|
||||
rgba = {}
|
||||
for key in 'rgb':
|
||||
rgba[key] = (word % 2**5) * 8.25
|
||||
word >>= 5
|
||||
rgba['a'] = alpha
|
||||
return rgba
|
||||
|
||||
def rgb_to_cgb(color):
|
||||
"""
|
||||
Convert an rgba pixel to cgb/agb color value (15-bit).
|
||||
"""
|
||||
word = 0
|
||||
for hue in map(color.get, 'rgb'):
|
||||
word <<= 5
|
||||
word += hue / 8
|
||||
return word
|
||||
|
||||
|
||||
def pal_to_png(filename):
|
||||
"""
|
||||
Interpret a .pal file as a png palette.
|
||||
"""
|
||||
with open(filename) as rgbs:
|
||||
colors = read_rgb_macros(rgbs.readlines())
|
||||
a = 255
|
||||
palette = []
|
||||
for color in colors:
|
||||
# even distribution over 000-255
|
||||
r, g, b = [int(hue * 8.25) for hue in color]
|
||||
palette += [(r, g, b, a)]
|
||||
white = (255,255,255,255)
|
||||
black = (000,000,000,255)
|
||||
if white not in palette and len(palette) < 4:
|
||||
palette = [white] + palette
|
||||
if black not in palette and len(palette) < 4:
|
||||
palette = palette + [black]
|
||||
return palette
|
||||
|
||||
|
||||
def png_to_rgb(palette):
|
||||
"""
|
||||
Convert a png palette to rgb macros.
|
||||
"""
|
||||
output = [
|
||||
'\tRGB ' + ', '.join(map(lambda k: '%.2d' % (color[k] / 8), 'rgb')) for color in palette]
|
||||
return '\n'.join(output)
|
||||
|
||||
|
||||
def read_filename_arguments(filename, yaml_filename='gfx.yaml'):
|
||||
"""
|
||||
A binary blob format like 2bpp has no metadata.
|
||||
Rather than passing in arguments from the command line,
|
||||
read metadata from filename, or optionally a yaml file.
|
||||
|
||||
PNG also lacks Game Boy-relevant metadata.
|
||||
"""
|
||||
parsed_arguments = {}
|
||||
path_arguments = ['pal_file']
|
||||
int_arguments = {
|
||||
'w': 'width',
|
||||
'h': 'height',
|
||||
't': 'tile_padding',
|
||||
}
|
||||
|
||||
# Look for a yaml file if one exists.
|
||||
if os.path.exists(yaml_filename):
|
||||
yaml_arguments = yaml.load(open(yaml_filename))
|
||||
args = yaml_arguments
|
||||
dirs = os.path.splitext(filename)[0].split('/')
|
||||
current_path = os.path.dirname(filename)
|
||||
while dirs:
|
||||
args = args.get(dirs.pop(0), {})
|
||||
for key, value in args.items():
|
||||
if dirs and key == dirs[0]:
|
||||
continue
|
||||
if key in path_arguments:
|
||||
value = os.path.join(current_path, value)
|
||||
parsed_arguments[key] = value
|
||||
|
||||
# Filename arguments override yaml.
|
||||
arguments = os.path.splitext(filename)[0].split('.')[1:]
|
||||
for argument in arguments:
|
||||
|
||||
num = argument[1:]
|
||||
if num.isdigit():
|
||||
arg = int_arguments.get(argument[0])
|
||||
if arg: parsed_arguments[arg] = int(num)
|
||||
|
||||
elif argument in ['interleave', 'norepeat', 'tilemap']:
|
||||
parsed_arguments[argument] = True
|
||||
|
||||
elif argument == 'arrange':
|
||||
parsed_arguments['norepeat'] = True
|
||||
parsed_arguments['tilemap'] = True
|
||||
|
||||
elif 'x' in argument:
|
||||
w, h = argument.split('x')
|
||||
if w.isdigit() and h.isdigit():
|
||||
parsed_arguments['pic_dimensions'] = map(int, (w, h))
|
||||
|
||||
return parsed_arguments
|
||||
|
||||
|
||||
def export_2bpp_to_png(filein, fileout=None, **kwargs):
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filein)[0] + '.png'
|
||||
|
||||
image = open(filein, 'rb').read()
|
||||
|
||||
kwargs.update(read_filename_arguments(filein))
|
||||
|
||||
if pal_file == None:
|
||||
if os.path.exists(os.path.splitext(fileout)[0]+'.pal'):
|
||||
kwargs['pal_file'] = os.path.splitext(fileout)[0]+'.pal'
|
||||
|
||||
result = convert_2bpp_to_png(image, **kwargs)
|
||||
width, height, palette, greyscale, bitdepth, px_map = result
|
||||
|
||||
w = png.Writer(
|
||||
width,
|
||||
height,
|
||||
palette=palette,
|
||||
compression=9,
|
||||
greyscale=greyscale,
|
||||
bitdepth=bitdepth
|
||||
)
|
||||
with open(fileout, 'wb') as f:
|
||||
w.write(f, px_map)
|
||||
|
||||
|
||||
def convert_2bpp_to_png(image, **kwargs):
|
||||
"""
|
||||
Convert a planar 2bpp graphic to png.
|
||||
"""
|
||||
|
||||
image = bytearray(image)
|
||||
|
||||
pad_color = bytearray([0])
|
||||
|
||||
width = kwargs.get('width', 0)
|
||||
height = kwargs.get('height', 0)
|
||||
tile_padding = kwargs.get('tile_padding', 0)
|
||||
pic_dimensions = kwargs.get('pic_dimensions', None)
|
||||
pal_file = kwargs.get('pal_file', None)
|
||||
interleave = kwargs.get('interleave', False)
|
||||
|
||||
# Width must be specified to interleave.
|
||||
if interleave and width:
|
||||
image = interleave_tiles(image, width / 8)
|
||||
|
||||
# Pad the image by a given number of tiles if asked.
|
||||
image += pad_color * 0x10 * tile_padding
|
||||
|
||||
# Some images are transposed in blocks.
|
||||
if pic_dimensions:
|
||||
w, h = pic_dimensions
|
||||
if not width: width = w * 8
|
||||
|
||||
pic_length = w * h * 0x10
|
||||
|
||||
trailing = len(image) % pic_length
|
||||
|
||||
pic = []
|
||||
for i in xrange(0, len(image) - trailing, pic_length):
|
||||
pic += transpose_tiles(image[i:i+pic_length], h)
|
||||
image = bytearray(pic) + image[len(image) - trailing:]
|
||||
|
||||
# Pad out trailing lines.
|
||||
image += pad_color * 0x10 * ((w - (len(image) / 0x10) % h) % w)
|
||||
|
||||
def px_length(img):
|
||||
return len(img) * 4
|
||||
def tile_length(img):
|
||||
return len(img) * 4 / (8*8)
|
||||
|
||||
if width and height:
|
||||
tile_width = width / 8
|
||||
more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
|
||||
image += pad_color * 0x10 * more_tile_padding
|
||||
|
||||
elif width and not height:
|
||||
tile_width = width / 8
|
||||
more_tile_padding = (tile_width - (tile_length(image) % tile_width or tile_width))
|
||||
image += pad_color * 0x10 * more_tile_padding
|
||||
height = px_length(image) / width
|
||||
|
||||
elif height and not width:
|
||||
tile_height = height / 8
|
||||
more_tile_padding = (tile_height - (tile_length(image) % tile_height or tile_height))
|
||||
image += pad_color * 0x10 * more_tile_padding
|
||||
width = px_length(image) / height
|
||||
|
||||
# at least one dimension should be given
|
||||
if width * height != px_length(image):
|
||||
# look for possible combos of width/height that would form a rectangle
|
||||
matches = []
|
||||
# Height need not be divisible by 8, but width must.
|
||||
# See pokered gfx/minimize_pic.1bpp.
|
||||
for w in range(8, px_length(image) / 2 + 1, 8):
|
||||
h = px_length(image) / w
|
||||
if w * h == px_length(image):
|
||||
matches += [(w, h)]
|
||||
# go for the most square image
|
||||
if len(matches):
|
||||
width, height = sorted(matches, key= lambda (w, h): (h % 8 != 0, w + h))[0] # favor height
|
||||
else:
|
||||
raise Exception, 'Image can\'t be divided into tiles (%d px)!' % (px_length(image))
|
||||
|
||||
# convert tiles to lines
|
||||
lines = to_lines(flatten(image), width)
|
||||
|
||||
if pal_file == None:
|
||||
palette = None
|
||||
greyscale = True
|
||||
bitdepth = 2
|
||||
px_map = [[3 - pixel for pixel in line] for line in lines]
|
||||
|
||||
else: # gbc
|
||||
palette = pal_to_png(pal_file)
|
||||
greyscale = False
|
||||
bitdepth = 8
|
||||
px_map = [[pixel for pixel in line] for line in lines]
|
||||
|
||||
return width, height, palette, greyscale, bitdepth, px_map
|
||||
|
||||
|
||||
def export_png_to_2bpp(filein, fileout=None, palout=None, tile_padding=0, pic_dimensions=None):
|
||||
|
||||
arguments = {
|
||||
'tile_padding': tile_padding,
|
||||
'pic_dimensions': pic_dimensions,
|
||||
}
|
||||
arguments.update(read_filename_arguments(filein))
|
||||
|
||||
image, palette, tmap = png_to_2bpp(filein, **arguments)
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filein)[0] + '.2bpp'
|
||||
to_file(fileout, image)
|
||||
|
||||
if tmap != None:
|
||||
mapout = os.path.splitext(fileout)[0] + '.tilemap'
|
||||
to_file(mapout, tmap)
|
||||
|
||||
if palout == None:
|
||||
palout = os.path.splitext(fileout)[0] + '.pal'
|
||||
export_palette(palette, palout)
|
||||
|
||||
|
||||
def get_image_padding(width, height, wstep=8, hstep=8):
|
||||
|
||||
padding = { k: 0 for k in ['left', 'right', 'top', 'bottom'] }
|
||||
|
||||
if width % wstep and width >= wstep:
|
||||
pad = float(width % wstep) / 2
|
||||
padding['left'] = int(ceil(pad))
|
||||
padding['right'] = int(floor(pad))
|
||||
|
||||
if height % hstep and height >= hstep:
|
||||
pad = float(height % hstep) / 2
|
||||
padding['top'] = int(ceil(pad))
|
||||
padding['bottom'] = int(floor(pad))
|
||||
|
||||
return padding
|
||||
|
||||
|
||||
def png_to_2bpp(filein, **kwargs):
|
||||
"""
|
||||
Convert a png image to planar 2bpp.
|
||||
"""
|
||||
|
||||
tile_padding = kwargs.get('tile_padding', 0)
|
||||
pic_dimensions = kwargs.get('pic_dimensions', None)
|
||||
interleave = kwargs.get('interleave', False)
|
||||
norepeat = kwargs.get('norepeat', False)
|
||||
tilemap = kwargs.get('tilemap', False)
|
||||
|
||||
with open(filein, 'rb') as data:
|
||||
width, height, rgba, info = png.Reader(data).asRGBA8()
|
||||
rgba = list(rgba)
|
||||
greyscale = info['greyscale']
|
||||
|
||||
# png.Reader returns flat pixel data. Nested is easier to work with
|
||||
len_px = 4 # rgba
|
||||
image = []
|
||||
palette = []
|
||||
for line in rgba:
|
||||
newline = []
|
||||
for px in xrange(0, len(line), len_px):
|
||||
color = { 'r': line[px ],
|
||||
'g': line[px+1],
|
||||
'b': line[px+2],
|
||||
'a': line[px+3], }
|
||||
newline += [color]
|
||||
if color not in palette:
|
||||
palette += [color]
|
||||
image += [newline]
|
||||
|
||||
assert len(palette) <= 4, 'Palette should be 4 colors, is really %d' % len(palette)
|
||||
|
||||
# Pad out smaller palettes with greyscale colors
|
||||
def greyscale_rgba(hue):
|
||||
rgba = {k:hue for k in 'rgb'}
|
||||
rgba['a'] = 255
|
||||
return rgba
|
||||
|
||||
for rgba in map(greyscale_rgba, [0xff, 0x00, 0x55, 0xaa]):
|
||||
if len(palette) >= 4:
|
||||
break
|
||||
if rgba not in palette:
|
||||
palette += [rgba]
|
||||
|
||||
# Sort palettes by luminance
|
||||
def luminance(color):
|
||||
rough = { 'r': 4.7,
|
||||
'g': 1.4,
|
||||
'b': 13.8, }
|
||||
return sum(color[key] * rough[key] for key in rough.keys())
|
||||
palette.sort(key=luminance)
|
||||
|
||||
# Game Boy palette order
|
||||
palette.reverse()
|
||||
|
||||
# Map pixels to quaternary color ids
|
||||
padding = get_image_padding(width, height)
|
||||
width += padding['left'] + padding['right']
|
||||
height += padding['top'] + padding['bottom']
|
||||
pad = bytearray([0])
|
||||
|
||||
qmap = []
|
||||
qmap += pad * width * padding['top']
|
||||
for line in image:
|
||||
qmap += pad * padding['left']
|
||||
qmap += map(palette.index, line)
|
||||
qmap += pad * padding['right']
|
||||
qmap += pad * width * padding['bottom']
|
||||
|
||||
# Graphics are stored in tiles instead of lines
|
||||
tile_width = 8
|
||||
tile_height = 8
|
||||
num_columns = max(width, tile_width) / tile_width
|
||||
num_rows = max(height, tile_height) / tile_height
|
||||
image = []
|
||||
|
||||
for row in xrange(num_rows):
|
||||
for column in xrange(num_columns):
|
||||
|
||||
# Split it up into strips to convert to planar data
|
||||
for strip in xrange(min(tile_height, height)):
|
||||
anchor = (
|
||||
row * num_columns * tile_width * tile_height +
|
||||
column * tile_width +
|
||||
strip * width
|
||||
)
|
||||
line = qmap[anchor : anchor + tile_width]
|
||||
bottom, top = 0, 0
|
||||
for bit, quad in enumerate(line):
|
||||
bottom += (quad & 1) << (7 - bit)
|
||||
top += (quad /2 & 1) << (7 - bit)
|
||||
image += [bottom, top]
|
||||
|
||||
if pic_dimensions:
|
||||
w, h = pic_dimensions
|
||||
|
||||
tiles = get_tiles(image)
|
||||
pic_length = w * h
|
||||
tile_width = width / 8
|
||||
trailing = len(tiles) % pic_length
|
||||
new_image = []
|
||||
for block in xrange(len(tiles) / pic_length):
|
||||
offset = (h * tile_width) * ((block * w) / tile_width) + ((block * w) % tile_width)
|
||||
pic = []
|
||||
for row in xrange(h):
|
||||
index = offset + (row * tile_width)
|
||||
pic += tiles[index:index + w]
|
||||
new_image += transpose(pic, w)
|
||||
new_image += tiles[len(tiles) - trailing:]
|
||||
image = connect(new_image)
|
||||
|
||||
# Remove any tile padding used to make the png rectangular.
|
||||
image = image[:len(image) - tile_padding * 0x10]
|
||||
|
||||
if interleave:
|
||||
image = deinterleave_tiles(image, num_columns)
|
||||
|
||||
if norepeat:
|
||||
image, tmap = condense_tiles_to_map(image)
|
||||
if not tilemap:
|
||||
tmap = None
|
||||
|
||||
return image, palette, tmap
|
||||
|
||||
|
||||
def export_palette(palette, filename, force=False):
|
||||
"""
|
||||
Export a palette from png to rgb macros in a .pal file.
|
||||
"""
|
||||
|
||||
# Some palettes are 2 colors (black/white are added later).
|
||||
# This might be better off as a yaml option.
|
||||
if os.path.exists(filename):
|
||||
with open(filename) as rgbs:
|
||||
colors = read_rgb_macros(rgbs.readlines())
|
||||
if len(colors) == 2:
|
||||
palette = palette[1:3]
|
||||
|
||||
if os.path.exists(filename) or force:
|
||||
text = png_to_rgb(palette)
|
||||
with open(filename, 'w') as out:
|
||||
out.write(text)
|
||||
|
||||
|
||||
|
||||
def convert_2bpp_to_1bpp(data):
|
||||
"""
|
||||
Convert planar 2bpp image data to 1bpp. Assume images are two colors.
|
||||
"""
|
||||
return data[::2]
|
||||
|
||||
def convert_1bpp_to_2bpp(data):
|
||||
"""
|
||||
Convert 1bpp image data to planar 2bpp (black/white).
|
||||
"""
|
||||
output = []
|
||||
for i in data:
|
||||
output += [i, i]
|
||||
return output
|
||||
|
||||
|
||||
def export_2bpp_to_1bpp(filename):
|
||||
name, extension = os.path.splitext(filename)
|
||||
image = open(filename, 'rb').read()
|
||||
image = convert_2bpp_to_1bpp(image)
|
||||
to_file(name + '.1bpp', image)
|
||||
|
||||
def export_1bpp_to_2bpp(filename):
|
||||
name, extension = os.path.splitext(filename)
|
||||
image = open(filename, 'rb').read()
|
||||
image = convert_1bpp_to_2bpp(image)
|
||||
to_file(name + '.2bpp', image)
|
||||
|
||||
|
||||
def export_1bpp_to_png(filename, fileout=None):
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filename)[0] + '.png'
|
||||
|
||||
arguments = read_filename_arguments(filename)
|
||||
|
||||
image = open(filename, 'rb').read()
|
||||
image = convert_1bpp_to_2bpp(image)
|
||||
|
||||
result = convert_2bpp_to_png(image, **arguments)
|
||||
width, height, palette, greyscale, bitdepth, px_map = result
|
||||
|
||||
w = png.Writer(width, height, palette=palette, compression=9, greyscale=greyscale, bitdepth=bitdepth)
|
||||
with open(fileout, 'wb') as f:
|
||||
w.write(f, px_map)
|
||||
|
||||
|
||||
def export_png_to_1bpp(filename, fileout=None):
|
||||
|
||||
if fileout == None:
|
||||
fileout = os.path.splitext(filename)[0] + '.1bpp'
|
||||
|
||||
arguments = read_filename_arguments(filename)
|
||||
image = png_to_1bpp(filename, **arguments)
|
||||
|
||||
to_file(fileout, image)
|
||||
|
||||
def png_to_1bpp(filename, **kwargs):
|
||||
image, palette, tmap = png_to_2bpp(filename, **kwargs)
|
||||
return convert_2bpp_to_1bpp(image)
|
||||
|
||||
|
||||
|
||||
def convert_to_2bpp(filenames=[]):
|
||||
for filename in filenames:
|
||||
name, extension = os.path.splitext(filename)
|
||||
if extension == '.1bpp':
|
||||
export_1bpp_to_2bpp(filename)
|
||||
elif extension == '.2bpp':
|
||||
pass
|
||||
elif extension == '.png':
|
||||
export_png_to_2bpp(filename)
|
||||
else:
|
||||
raise Exception, "Don't know how to convert {} to 2bpp!".format(filename)
|
||||
|
||||
def convert_to_1bpp(filenames=[]):
|
||||
for filename in filenames:
|
||||
name, extension = os.path.splitext(filename)
|
||||
if extension == '.1bpp':
|
||||
pass
|
||||
elif extension == '.2bpp':
|
||||
export_2bpp_to_1bpp(filename)
|
||||
elif extension == '.png':
|
||||
export_png_to_1bpp(filename)
|
||||
else:
|
||||
raise Exception, "Don't know how to convert {} to 1bpp!".format(filename)
|
||||
|
||||
def convert_to_png(filenames=[]):
|
||||
for filename in filenames:
|
||||
name, extension = os.path.splitext(filename)
|
||||
if extension == '.1bpp':
|
||||
export_1bpp_to_png(filename)
|
||||
elif extension == '.2bpp':
|
||||
export_2bpp_to_png(filename)
|
||||
elif extension == '.png':
|
||||
pass
|
||||
else:
|
||||
raise Exception, "Don't know how to convert {} to png!".format(filename)
|
||||
|
||||
|
||||
def main():
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument('mode')
|
||||
ap.add_argument('filenames', nargs='*')
|
||||
args = ap.parse_args()
|
||||
|
||||
method = {
|
||||
'2bpp': convert_to_2bpp,
|
||||
'1bpp': convert_to_1bpp,
|
||||
'png': convert_to_png,
|
||||
}.get(args.mode)
|
||||
|
||||
if method == None:
|
||||
raise Exception, "Unknown conversion method!"
|
||||
|
||||
method(args.filenames)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Loading…
x
Reference in New Issue
Block a user